224 research outputs found

    Flexible Thin Metal Film Thermal Sensing System

    Get PDF
    A flexible thin metal film thermal sensing system is provided. A thermally-conductive film made from a thermally-insulating material is doped with thermally-conductive material. At least one layer of electrically-conductive metal is deposited directly onto a surface of the thermally-conductive film. One or more devices are coupled to the layer(s) to measure an electrical characteristic associated therewith as an indication of temperature

    Three-Axis’ Heat Loss Anemometer Comprising Thick-Film Segmented Thermistors

    Get PDF
    NTC thick-film segmented thermistors were used as anemometer sensing devices. They were screen printed of thick-film thermistor paste based on modified NiMn2O4 fine powder, organic vehicle, and glass frit. Their electrical properties, such as resistance vs. temperature R(T) and thermistor exponential factor B were obtained using measurements in the climatic test chamber. A uniaxial anemometer was formed using a thick-film segmented thermistor, which was placed in the hole drilled in rectangular piece of thermally insulating material. The uniaxial anemometer was used for the optimization of operating point of segmented thermistors as self-heating/wind sensing devices. The dc supply voltage was correlated with the air temperature sub-ranges (RCV). The power save mode such as 30s self-heating/5 min pause was used to measure the thermistor response on stable wind blow. The three-axis' anemometer was formed using five sensor devices placed in five holes drilled in the cubical piece of thermally insulating material: three thermistor sensors measure wind speed on the x, y, z - axes, the fourth sensor Pt 1000 measures the air temperature T, while the fifth sensor (capacitive type) measures humidity H. The obtained sensitivity and inaccuracy were compared with respective ones of other anemometers

    Improving the thermal stability of 1-3 piezoelectric composite transducers manufactured using thermally conductive polymeric fillers

    Get PDF
    With a view to improving the thermal stability of ultrasonic transducers prepared using 1-3 piezoelectric composites, the use of front face layers manufactured from thermally insulating and partially thermally conductive polymeric materials has been investigated. Experimentally, heat dissipation was investigated, in air and in water, using different transducer configurations and the advantage of including a front face layer manufactured from thermally conductive polymeric material is demonstrated. The PZFlex finite element modelling package was utilised to assess the thermal diffusivity of each polymer in the different transducer configurations and was found to compare well with experiment

    Dynamic Thermal Analysis of a Power Amplifier

    Get PDF
    This paper presents dynamic thermal analyses of a power amplifier. All the investigations are based on the transient junction temperature measurements performed during the circuit cooling process. The presented results include the cooling curves, the structure functions, the thermal time constant distribution and the Nyquist plot of the thermal impedance. The experiments carried out demonstrated the influence of the contact resistance and the position of the entire cooling assembly on the obtained results.Comment: Submitted on behalf of TIMA Editions (http://irevues.inist.fr/tima-editions

    Improving the near-field transmission efficiency of nano-optical transducers by tailoring the near-field sample

    Get PDF
    Despite research efforts to find a better nano-optical transducer for light localization and high transmission efficiency for existing and emerging plasmonic applications, there has not been much consideration on improving the near-field optical performance of the system by engineering the near-field sample. In this work, we demonstrate the impact of tailoring the near-field sample by studying an emerging plasmonic application, namely heat-assisted magnetic recording. Basic principles of Maxwell's and heat transfer equations are utilized to obtain a magnetic medium with superior optical and thermal performance compared to a conventional magnetic medium

    Demonstration of a pulsing liquid hydrogen/liquid oxygen thruster

    Get PDF
    Successful operation of a pulsing liquid hydrogen/liquid oxygen attitude control propulsion system thruster (1250 lb sub f) at cryogenic inlet conditions while maintaining high specific impulse and low impulse bit capability was demonstrated. Significant technical advances and departures from conventional injector design practices were necessary in order to achieve an operable thruster. These advancements were achieved through extensive analyses of heat transfer and injector manifold priming that established the baseline feasibility for an actual hardware design. The primary subject of this paper is the result of experimental evaluation of the 45 R hydrogen inlet temperature injector concept. The test matrix consisted of 66 hot firing tests in a heat sink thrust chamber

    Metamaterials simulation for thermal diffusers

    Get PDF
    The heat extraction efficiency of a cylindrical diffuser can be optimized by applying differential geometry [J.-P. Huang, Theoretical Thermotics: Transformation Thermotics and Extended Theories for Thermal Metamaterials (Springer, 2020)], in order to find a metamaterial design. That can be done by coupling a thermally insulating material (polytetrafluoroethylene) with a high thermal conductivity material (copper) where the heat flow is directed. By controlling the distance between the isothermal contours, to extract the heat while maintaining a constant temperature gradient along the diffuser avoiding heat accumulation

    The Effect of Distribution on Product Temperature Profile in Thermally Insulated Containers for Express Shipments

    Get PDF
    An uninterrupted cold chain is a continual series of storage and distribution activities that maintain a specific temperature or temperature range. Cold chain solutions typically involve excessive packaging to ensure that the desired product temperature is maintained through the distribution process, thereby increasing the logistics-related costs. There is a myriad of solutions available for shipping temperature-sensitive products, including those constructed with a variety of packaging materials as well as refrigerants. Although static characteristics for thermally insulated packaging solutions such as the R-values of package systems as well as the melting points and heat absorption rates of various refrigerants have been studied in the past, none of the past studies have evaluated the effect of comprehensive distribution on the reliability of the cold chain packaging solutions. This research was undertaken to study the temperature profiles for factors such as different densities for a given thickness of thermally insulating material, wall thicknesses and distribution environments for four different types of materials—polyurethane, virgin expanded polystyrene, recycled content expanded polystyrene and vacuum-insulated panels. The temperature range of 2 °C–8 °C, critical for pharmaceutical drugs and vaccines, was targeted. An interesting regression-based finding was that the interaction between the R-value and the wall thickness significantly influenced the length of time the thermally insulated packages stayed in the desired range of 2 °C–8 °C . The findings of this study will be decisive in designing cost-efficient and practical single-use cold chain transportation solutions for temperature-sensitive products. Copyright © 2012 John Wiley & Sons, Ltd

    Fabrication of Thin Film Heat Flux Sensors

    Get PDF
    Prototype thin film heat flux sensors have been constructed and tested. The sensors can be applied to propulsion system materials and components. The sensors can provide steady state and fast transient heat flux information. Fabrication of the sensor does not require any matching of the mounting surface. Heat flux is proportional to the temperature difference across the upper and lower surfaces of an insulation material. The sensor consists of an array of thermocouples on the upper and lower surfaces of a thin insulating layer. The thermocouples for the sensor are connected in a thermopile arrangement. A 100 thermocouple pair heat flux sensor has been fabricated on silicon wafers. The sensor produced an output voltage of 200-400 microvolts when exposed to a hot air heat gun. A 20 element thermocouple pair heat flux sensor has been fabricated on aluminum oxide sheet. Thermocouples are Pt-Pt/Rh with silicon dioxide as the insulating material. This sensor produced an output of 28 microvolts when exposed to the radiation of a furnace operating at 1000 C. Work is also underway to put this type of heat flux sensor on metal surfaces

    Recovery of Cork Manufacturing Waste within Mortar and Polyurethane: Feasibility of Use and Physical, Mechanical, Thermal Insulating Properties of the Final Green Composite Construction Materials

    Get PDF
    The valorization of industrial waste is a hot topic toward circular economy and sustainability. Several wastes have been proposed as resources for different production processes; however, others are still disposed to landfill or waste-to-energy plants. For the first time, this work suggests a sustainable alternative to managing cork waste from bottle caps manufacturing; this is generated by a local company at about 220,000 m3/year. The powder waste has a 0.063–1 mm particle size and is mainly composed of cork, polyurethane adhesive, and paraffin. Its valorization is proposed as filler in construction materials such as lime-based mortar (1–4 wt%) and polyurethane (5–15 wt%). Thermal, spectroscopic, and physical characterizations are performed on the cork waste, and mainly result in a low apparent density (340 kg/m3) and high-water absorption (177%). Cork properties allow consideration of extra water in the mortar mix and improve lightness without significantly affecting compressive, bending strength, and thermal insulation. Cork waste in polyurethanes promotes a color change, slightly increases the density (up to 12.5%), and still results in producing a thermally insulating material (<0.06 W/mK). Considering the promising results, this study demonstrates the feasibility of using the manufacturing waste from cork bottle caps to produce green construction materials, thus upgrading it from waste to secondary raw material
    • …
    corecore