Recovery of Cork Manufacturing Waste within Mortar and Polyurethane: Feasibility of Use and Physical, Mechanical, Thermal Insulating Properties of the Final Green Composite Construction Materials

Abstract

The valorization of industrial waste is a hot topic toward circular economy and sustainability. Several wastes have been proposed as resources for different production processes; however, others are still disposed to landfill or waste-to-energy plants. For the first time, this work suggests a sustainable alternative to managing cork waste from bottle caps manufacturing; this is generated by a local company at about 220,000 m3/year. The powder waste has a 0.063–1 mm particle size and is mainly composed of cork, polyurethane adhesive, and paraffin. Its valorization is proposed as filler in construction materials such as lime-based mortar (1–4 wt%) and polyurethane (5–15 wt%). Thermal, spectroscopic, and physical characterizations are performed on the cork waste, and mainly result in a low apparent density (340 kg/m3) and high-water absorption (177%). Cork properties allow consideration of extra water in the mortar mix and improve lightness without significantly affecting compressive, bending strength, and thermal insulation. Cork waste in polyurethanes promotes a color change, slightly increases the density (up to 12.5%), and still results in producing a thermally insulating material (<0.06 W/mK). Considering the promising results, this study demonstrates the feasibility of using the manufacturing waste from cork bottle caps to produce green construction materials, thus upgrading it from waste to secondary raw material

    Similar works