26,139 research outputs found

    Thermal environment

    Get PDF
    Human tolerance in thermal environment, thermal physiology of space clothing, and biothermal considerations in space cabin desig

    Stochastic Master Equations in Thermal Environment

    Full text link
    We derive the stochastic master equations which describe the evolution of open quantum systems in contact with a heat bath and undergoing indirect measurements. These equations are obtained as a limit of a quantum repeated measurement model where we consider a small system in contact with an infinite chain at positive temperature. At zero temperature it is well-known that one obtains stochastic differential equations of jump-diffusion type. At strictly positive temperature, we show that only pure diffusion type equations are relevant

    Influences of thermal environment on fish growth

    Get PDF
    Indexación: Scopus.Thermoregulation in ectothermic animals is influenced by the ability to effectively respond to thermal variations. While it is known that ectotherms are affected by thermal changes, it remains unknown whether physiological and/or metabolic traits are impacted by modifications to the thermal environment. Our research provides key evidence that fish ectotherms are highly influenced by thermal variability during development, which leads to important modifications at several metabolic levels (e.g., growth trajectories, microstructural alterations, muscle injuries, and molecular mechanisms). In Atlantic salmon (Salmo salar), a wide thermal range (ΔT 6.4°C) during development (posthatch larvae to juveniles) was associated with increases in key thermal performance measures for survival and growth trajectory. Other metabolic traits were also significantly influenced, such as size, muscle cellularity, and molecular growth regulators possibly affected by adaptive processes. In contrast, a restricted thermal range (ΔT 1.4°C) was detrimental to growth, survival, and cellular microstructure as muscle growth could not keep pace with increased metabolic demands. These findings provide a possible basic explanation for the effects of thermal environment during growth. In conclusion, our results highlight the key role of thermal range amplitude on survival and on interactions with major metabolism-regulating processes that have positive adaptive effects for organisms.http://onlinelibrary.wiley.com/doi/10.1002/ece3.3239/ful

    Gaussian entanglement induced by an extended thermal environment

    Get PDF
    We study stationary entanglement among three harmonic oscillators which are dipole coupled to a one-dimensional or a three-dimensional bosonic environment. The analysis of the open-system dynamics is performed with generalized quantum Langevin equations which we solve exactly in Fourier representation. The focus lies on Gaussian bipartite and tripartite entanglement induced by the highly non-Markovian interaction mediated by the environment. This environment-induced interaction represents an effective many-parties interaction with a spatial long-range feature: a main finding is that the presence of a passive oscillator is detrimental for the stationary two-mode entanglement. Furthermore, our results strongly indicate that the environment-induced entanglement mechanism corresponds to uncontrolled feedback which is predominantly coherent at low temperatures and for moderate oscillator-environment coupling as compared to the oscillator frequency.Comment: 15 page, 6 figure

    Dynamics of oscillating scalar field in thermal environment

    Full text link
    There often appear coherently oscillating scalar fields in particle physics motivated cosmological scenarios, which may have rich phenomenological consequences. Scalar fields should somehow interact with background thermal bath in order to decay into radiation at an appropriate epoch, but introducing some couplings to the scalar field makes the dynamics complicated. We investigate in detail the dynamics of a coherently oscillating scalar field, which has renormalizable couplings to another field interacting with thermal background. The scalar field dynamics and its resultant abundance are significantly modified by taking account of following effects : (1) thermal correction to the effective potential, (2) dissipation effect on the scalar field in thermal bath, (3) non-perturbative particle production events and (4) formation of non-topological solitons. There appear many time scales depending on the scalar mass, amplitude, couplings and the background temperature, which make the efficiencies of these effects non-trivial.Comment: 45 pages, 6 figures; v2: several typos corrected; v3: minor corrections and references added; v4: minor corrections to reflect the published version; v5: minor correction

    Analytical prediction of aerothermal environment in a wing-elevon cove

    Get PDF
    The fluid/thermal environment in the cove between the wing and elevon surfaces was a concern throughout the design and initial operational phases of the space shuttle. Experimenal and analytical investigations provided some understanding of the environmental in the wing-elevon cove. An incompressible finite element analysis of flow through straight parallel walls and curved parallel walls to determine the effects of cove geomtry on the fluid/thermal environment is described. Results from this analysis agree qualitatively with experimental data. The centerline gas temperatures and cold wall heating rates are virtually identical for the two cases indicating that the slight curvature has little effect on the overall thermal environment
    corecore