131 research outputs found

    Calibration : the Achilles heel of predictive analytics

    Get PDF
    Acknowledgements This work was developed as part of the international STRengthening Analytical Thinking for Observational Studies (STRATOS) initiative. The objective of STRATOS is to provide accessible and accurate guidance in the design and analysis of observational studies (http://stratos-initiative.org/). Members of the STRATOS Topic Group ‘Evaluating diagnostic tests and prediction models’ are (alphabetically) Patrick Bossuyt, Gary S. Collins, Petra Macaskill, David J. McLernon, Karel G.M. Moons, Ewout W. Steyerberg, Ben Van Calster, Maarten van Smeden, and Andrew Vickers. Funding This work was funded by the Research Foundation – Flanders (FWO; grant G0B4716N) and Internal Funds KU Leuven (grant C24/15/037). The funders had no role in study design, data collection, data analysis, interpretation of results, or writing of the manuscript. Contributions All authors conceived of the study. BVC drafted the manuscript. All authors reviewed and edited the manuscript and approved the final version.Peer reviewedPublisher PD

    Analysis of time-to-event for observational studies: Guidance to the use of intensity models

    Full text link
    This paper provides guidance for researchers with some mathematical background on the conduct of time-to-event analysis in observational studies based on intensity (hazard) models. Discussions of basic concepts like time axis, event definition and censoring are given. Hazard models are introduced, with special emphasis on the Cox proportional hazards regression model. We provide check lists that may be useful both when fitting the model and assessing its goodness of fit and when interpreting the results. Special attention is paid to how to avoid problems with immortal time bias by introducing time-dependent covariates. We discuss prediction based on hazard models and difficulties when attempting to draw proper causal conclusions from such models. Finally, we present a series of examples where the methods and check lists are exemplified. Computational details and implementation using the freely available R software are documented in Supplementary Material. The paper was prepared as part of the STRATOS initiative.Comment: 28 pages, 12 figures. For associated Supplementary material, see http://publicifsv.sund.ku.dk/~pka/STRATOSTG8

    Systematic review of education and practical guidance on regression modeling for medical researchers who lack a strong statistical background: Study protocol

    Get PDF
    In the last decades, statistical methodology has developed rapidly, in particular in the field of regression modeling. Multivariable regression models are applied in almost all medical research projects. Therefore, the potential impact of statistical misconceptions within this field can be enormous Indeed, the current theoretical statistical knowledge is not always adequately transferred to the current practice in medical statistics. Some medical journals have identified this problem and published isolated statistical articles and even whole series thereof. In this systematic review, we aim to assess the current level of education on regression modeling that is provided to medical researchers via series of statistical articles published in medical journals. The present manuscript is a protocol for a systematic review that aims to assess which aspects of regression modeling are covered by statistical series published in medical journals that intend to train and guide applied medical researchers with limited statistical knowledge. Statistical paper series cannot easily be summarized and identified by common keywords in an electronic search engine like Scopus. We therefore identified series by a systematic request to statistical experts who are part or related to the STRATOS Initiative (STRengthening Analytical Thinking for Observational Studies). Within each identified article, two raters will independently check the content of the articles with respect to a predefined list of key aspects related to regression modeling. The content analysis of the topic-relevant articles will be performed using a predefined report form to assess the content as objectively as possible. Any disputes will be resolved by a third reviewer. Summary analyses will identify potential methodological gaps and misconceptions that may have an important impact on the quality of analyses in medical research. This review will thus provide a basis for future guidance papers and tutorials in the field of regression modeling which will enable medical researchers 1) to interpret publications in a correct way, 2) to perform basic statistical analyses in a correct way and 3) to identify situations when the help of a statistical expert is required

    State of the art in selection of variables and functional forms in multivariable analysis-outstanding issues

    Get PDF
    Background: How to select variables and identify functional forms for continuous variables is a key concern when creating a multivariable model. Ad hoc ‘traditional’ approaches to variable selection have been in use for at least 50 years. Similarly, methods for determining functional forms for continuous variables were first suggested many years ago. More recently, many alternative approaches to address these two challenges have been proposed, but knowledge of their properties and meaningful comparisons between them are scarce. To define a state of the art and to provide evidence-supported guidance to researchers who have only a basic level of statistical knowledge, many outstanding issues in multivariable modelling remain. Our main aims are to identify and illustrate such gaps in the literature and present them at a moderate technical level to the wide community of practitioners, researchers and students of statistics. Methods: We briefly discuss general issues in building descriptive regression models, strategies for variable selection, different ways of choosing functional forms for continuous variables and methods for combining the selection of variables and functions. We discuss two examples, taken from the medical literature, to illustrate problems in the practice of modelling. Results: Our overview revealed that there is not yet enough evidence on which to base recommendations for the selection of variables and functional forms in multivariable analysis. Such evidence may come from comparisons between alternative methods. In particular, we highlight seven important topics that require further investigation and make suggestions for the direction of further research. Conclusions: Selection of variables and of functional forms are important topics in multivariable analysis. To define a state of the art and to provide evidence-supported guidance to researchers who have only a basic level of statistical knowledge, further comparative research is required

    Effects of Influential Points and Sample Size on the Selection and Replicability of Multivariable Fractional Polynomial Models

    Full text link
    The multivariable fractional polynomial (MFP) procedure combines variable selection with a function selection procedure (FSP). For continuous variables, a closed test procedure is used to decide between no effect, linear, FP1 or FP2 functions. Influential observations (IPs) and small sample size can both have an impact on a selected fractional polynomial model. In this paper, we used simulated data with six continuous and four categorical predictors to illustrate approaches which can help to identify IPs with an influence on function selection and the MFP model. Approaches use leave-one or two-out and two related techniques for a multivariable assessment. In seven subsamples we also investigated the effects of sample size and model replicability. For better illustration, a structured profile was used to provide an overview of all analyses conducted. The results showed that one or more IPs can drive the functions and models selected. In addition, with a small sample size, MFP might not be able to detect non-linear functions and the selected model might differ substantially from the true underlying model. However, if the sample size is sufficient and regression diagnostics are carefully conducted, MFP can be a suitable approach to select variables and functional forms for continuous variables.Comment: Main paper and a supplementary combine

    Phases of methodological research in biostatistics—Building the evidence base for new methods

    Get PDF
    Although new biostatistical methods are published at a very high rate, many of these developments are not trustworthy enough to be adopted by the scientific community. We propose a framework to think about how a piece of methodological work contributes to the evidence base for a method. Similar to the well-known phases of clinical research in drug development, we propose to define four phases of methodological research. These four phases cover (I) proposing a new methodological idea while providing, for example, logical reasoning or proofs, (II) providing empirical evidence, first in a narrow target setting, then (III) in an extended range of settings and for various outcomes, accompanied by appropriate application examples, and (IV) investigations that establish a method as sufficiently well-understood to know when it is preferred over others and when it is not; that is, its pitfalls. We suggest basic definitions of the four phases to provoke thought and discussion rather than devising an unambiguous classification of studies into phases. Too many methodological developments finish before phase III/IV, but we give two examples with references. Our concept rebalances the emphasis to studies in phases III and IV, that is, carefully planned method comparison studies and studies that explore the empirical properties of existing methods in a wider range of problems

    Introduction to statistical simulations in health research

    Get PDF
    In health research, statistical methods are frequently used to address a wide variety of research questions. For almost every analytical challenge, different methods are available. But how do we choose between different methods and how do we judge whether the chosen method is appropriate for our specific study? Like in any science, in statistics, experiments can be run to find out which methods should be used under which circumstances. The main objective of this paper is to demonstrate that simulation studies, that is, experiments investigating synthetic data with known properties, are an invaluable tool for addressing these questions. We aim to provide a first introduction to simulation studies for data analysts or, more generally, for researchers involved at different levels in the analyses of health data, who (1) may rely on simulation studies published in statistical literature to choose their statistical methods and who, thus, need to understand the criteria of assessing the validity and relevance of simulation results and their interpretation; and/or (2) need to understand the basic principles of designing statistical simulations in order to efficiently collaborate with more experienced colleagues or start learning to conduct their own simulations. We illustrate the implementation of a simulation study and the interpretation of its results through a simple example inspired by recent literature, which is completely reproducible using the R-script available from online supplemental file 1

    Statistical analysis of high-dimensional biomedical data: a gentle introduction to analytical goals, common approaches and challenges

    Get PDF
    International audienceBackground: In high-dimensional data (HDD) settings, the number of variables associated with each observation is very large. Prominent examples of HDD in biomedical research include omics data with a large number of variables such as many measurements across the genome, proteome, or metabolome, as well as electronic health records data that have large numbers of variables recorded for each patient. The statistical analysis of such data requires knowledge and experience, sometimes of complex methods adapted to the respective research questions. Methods: Advances in statistical methodology and machine learning methods offer new opportunities for innovative analyses of HDD, but at the same time require a deeper understanding of some fundamental statistical concepts. Topic group TG9 “High-dimensional data” of the STRATOS (STRengthening Analytical Thinking for Observational Studies) initiative provides guidance for the analysis of observational studies, addressing particular statistical challenges and opportunities for the analysis of studies involving HDD. In this overview, we discuss key aspects of HDD analysis to provide a gentle introduction for non-statisticians and for classically trained statisticians with little experience specific to HDD. Results: The paper is organized with respect to subtopics that are most relevant for the analysis of HDD, in particular initial data analysis, exploratory data analysis, multiple testing, and prediction. For each subtopic, main analytical goals in HDD settings are outlined. For each of these goals, basic explanations for some commonly used analysis methods are provided. Situations are identified where traditional statistical methods cannot, or should not, be used in the HDD setting, or where adequate analytic tools are still lacking. Many key references are provided. Conclusions: This review aims to provide a solid statistical foundation for researchers, including statisticians and non-statisticians, who are new to research with HDD or simply want to better evaluate and understand the results of HDD analyses
    • 

    corecore