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ABSTRACT
In health research, statistical methods are frequently 
used to address a wide variety of research questions. 
For almost every analytical challenge, different methods 
are available. But how do we choose between different 
methods and how do we judge whether the chosen 
method is appropriate for our specific study? Like in 
any science, in statistics, experiments can be run to 
find out which methods should be used under which 
circumstances. The main objective of this paper is to 
demonstrate that simulation studies, that is, experiments 
investigating synthetic data with known properties, are 
an invaluable tool for addressing these questions. We aim 
to provide a first introduction to simulation studies for 
data analysts or, more generally, for researchers involved 
at different levels in the analyses of health data, who (1) 
may rely on simulation studies published in statistical 
literature to choose their statistical methods and who, 
thus, need to understand the criteria of assessing the 
validity and relevance of simulation results and their 
interpretation; and/or (2) need to understand the basic 
principles of designing statistical simulations in order to 
efficiently collaborate with more experienced colleagues 
or start learning to conduct their own simulations. We 
illustrate the implementation of a simulation study 
and the interpretation of its results through a simple 
example inspired by recent literature, which is completely 
reproducible using the R- script available from online 
supplemental file 1.

INTRODUCTION
In health research, statistical methods are 
frequently used to address a wide variety of 
research questions. For almost every analyt-
ical challenge, different methods are avail-
able. But how do we choose between different 
methods and how do we judge whether the 
chosen method is appropriate for our specific 
study? Most statistical methods are devel-
oped under specific assumptions, but these 
assumptions are often difficult to check in 
applied settings. Moreover, performance of 
methods may still be reasonable when some 
assumptions are violated, such as the linearity 
of relationships in regression models in the 
presence of mild non- linear relationships. 
In real- life studies of human health, some 

of these formal underlying assumptions may 
be questionable or definitely violated. For 
example, frequent problems, such as unusual 
distributions, missing data, measurement 
errors, unmeasured confounders or lack of 
accurate information on event times, may 
affect the accuracy or even the validity of the 
proposed analyses. What conditions (eg, what 
sample size) are needed for a specific method 
to behave well? Which method is most appro-
priate in a particular setting?

The main objective of this paper is to 
demonstrate that simulation studies, that is, 
evaluation of synthetic data with known prop-
erties, are an invaluable tool for addressing 
these questions. We aim to provide a first 
introduction to simulation studies for data 
analysts or, more generally, for researchers 
involved at different levels in the analyses of 
health data, for example, data from observa-
tional studies or from clinical trials, who (1) 
may rely on simulation studies published in 
statistical literature to choose their statistical 
methods and who, thus, need to understand 
the criteria of assessing the validity and rele-
vance of simulation results and their inter-
pretation; and/or (2) need to understand 
the basic principles of designing statistical 
simulations in order to efficiently collaborate 
with a more experienced colleague or to start 
learning to conduct their own simulations. 
Our paper is intended for an audience that 
is otherwise not targeted by previous litera-
ture on simulation studies and uses a novel 
approach to introduce the basic principles of 
simulation studies to clinical researchers and 
end users of statistical methods. Statisticians 
interested in more details about statistical 
simulations are referred to the more tech-
nical overviews available in the literature.1–3

More generally, our introduction to simu-
lation studies aims to draw the attention of 
readers of medical papers, including practi-
tioners, to the importance of the choice of 
appropriate, validated statistical methods. 
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The use of inappropriate statistical methods contributes 
to the replication crisis that has drawn increasing atten-
tion in recent years; see for example The Lancet series 
‘Increasing value, reducing waste’.4 Simulation studies 
have a role to play in this global process as they are a means 
of identifying the appropriate methodology for a partic-
ular study in a specific context, thus improving research 
quality. In this context, understanding the principles of 
simulation studies allows clinical researchers to better use 
published simulation results. Note that simulation studies 
themselves also have to be relevant and replicable.

Statistical methodology has seen substantial develop-
ment in recent times, but many of these developments 
are largely ignored in the practice of health data analyses. 
To help bridge the gap between methodological inno-
vation and applications to medical data, the STRength-
ening Analytical Thinking for Observational Studies 
(STRATOS) initiative was launched in 2013.5 It aims to 
provide statistical guidance for key topics in the design 
and analysis of observational studies. In practice, anal-
yses are sometimes conducted by researchers with limited 
statistical background. Consequently, STRATOS plans 
to develop guidance for researchers with different levels 
of statistical knowledge, including researchers without 
strong statistical backgrounds (see table 1 in Sauerbrei 
et al5). For the analysis of observational studies, typically 
several approaches are possible, and the properties of 
each approach should be assessed in comparison with 
alternative methods. Simulation studies are key instru-
ments for such assessments. Ideally, all data analysts 
should be familiar with them.

This paper is structured as follows. We first discuss the 
role of statistical simulation studies in the next section"The 
role of simulation studies". The section "Examples of statis-
tical methods" outlines four relatively simple examples 
of statistical methods and then explains how the perfor-
mance of these methods could be evaluated using simu-
lation studies. The section "Basic principles of simulation 
studies" sketches out the basic principles of designing and 
conducting simulations. Finally, the section "An example 
of a statistical simulation" briefly illustrates the imple-
mentation of a simulation study and the interpretation 
of its results through a simple example inspired by recent 
literature.

THE ROLE OF SIMULATION STUDIES
Comparing methods based on theory
During the first half of the 20th century, mathematical 
theory was the cornerstone of evaluating traditional 
statistical methods addressing well- defined problems. 
However, to investigate questions in modern medicine, 
more complex statistical modelling or the use of machine 
learning techniques is often required. Only in rare cases 
of low complexity and often of limited practical rele-
vance mathematics tells us that—given the data satisfy 
certain properties—the considered method behaves in 
a particular way. For example, theory tells us that the 

two- sample t- test has better power to detect a true differ-
ence between mean values in two independent groups 
than the Mann- Whitney test—if the variable of interest 
is normally distributed within each of the two groups. 
Most theoretical results of this type are valid only under 
specific assumptions about the available data. While it 
may be acceptable to assume normally distributed data 
in the case of the simple example mentioned above, for 
more complex problems the required assumptions can 
be unrealistic; see the second, third and fourth subsec-
tions of the section "Examples of statistical methods" for 
examples beyond this simple case. Moreover, the process 
of verifying assumptions is often already challenging in 
practice; see for example Rochon et al6 for an extensive 
simulation study of the choice between t- test and Mann- 
Whitney test, including considerations on normality 
checks.

Comparing methods using empirical data
Another approach for evaluating statistical methods 
consists of applying them to representative data sets from 
the considered field and assessing their performance, or 
more generally of observing their behaviour when using 
them in these data sets. Some important characteristics 
of statistical methods can indeed be derived from real 
data sets. For example, are results stable if we modify 
the data set slightly? For many approaches, however, the 
most important evaluation criteria cannot be assessed for 
real data, simply because for real data we do not know 
the true values of the underlying parameters we aim to 
draw inferences about. For example, if one method esti-
mates a difference of 1 between two groups, and another 
estimates a difference of 2, we can see that they give us 
different results (assuming that the confidence intervals 
are narrow), but we do not know whether 1 or 2 is closer 
to the correct answer.

Why simulation studies?
A simulation study is useful if theoretical arguments are 
insufficient to determine whether the method of interest 
is valid in a specific real- life application or whether viola-
tions of the assumptions underlying the available theory 
(such as normal distribution of residuals, proportional 
hazards and so on) affect the validity of the results. In 
methodological research, simulations play a role similar 
to experiments in basic science.7 The idea of a simu-
lation study is to investigate the behaviour of methods 
when applied to synthetic data sets with known char-
acteristics. Because the ‘correct’ or ‘true’ answer is 
known by the researchers, who had full control of how 
the data were simulated, simulations permit assessment 
of whether the methods recover this known truth. For 
example, we may generate data with and without a treat-
ment effect and then assess how often a test correctly or 
incorrectly rejects the null hypothesis of no treatment 
effect. Alternatively, we may generate data in which the 
treatment effect has a certain value and then study how 
accurately a regression model can estimate this known 
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effect. Notice that such assessment is not possible using 
real data when the true response or the true effect is not 
known.

Suppose a scientist is planning a cohort study of the 
effect of an exposure on time to a clinical event (eg, 
death) and wants to know what sample size is necessary 
to achieve a certain power with a given test or a certain 
precision with a given estimation method. A question 
that might be explored using a simulation study could 
be the following: What is the power of the log- rank test 
(an asymptotic test requiring large sample sizes to ensure 
validity) in the case of small samples? Here, a simple simu-
lation study, designed to be consistent with the specific 
settings of the proposed study (sample size, prevalence of 
the exposure of interest, incidence of events and so on), 
could provide the necessary answers.

Simulation studies are also helpful to provide objec-
tive reproducible answers to more general methodolog-
ical questions on the behaviour of statistical methods 
(ie, not necessarily motivated through a specific appli-
cation). Examples of this type of question, which have 
been investigated by recent simulation studies, include 
the following: What is the effect of measurement errors 
on the estimated exposure- outcome relations in epide-
miological studies?8 Does it make sense to check for 
subgroup- specific treatment effects even if the test for an 
overall effect is non- significant?9

In addition to the evaluation of individual methods, 
simulations can also be used to determine which one 
of several candidate methods will perform best for the 
application at hand. In the case of simulations reported 
in statistical literature, candidate methods may include 
existing methods and may (but do not have to) include 
new methods proposed by the researchers performing 
the simulation study. In the latter case, their focus is often 
on showing in which settings the new method performs 
better than its existing ‘competitors’.10 11

No matter the context of the simulation study, the 
objective is to find out if/when methods perform well 
and when they fail. Regarding the ‘when’ question, simu-
lations provide an ideal setting for a systematic assessment 
of how variations in the values of relevant parameters 
and/or assumptions regarding data structure (eg, inde-
pendence of observations, lack of measurement errors) 
affect the performance of the methods of interest. The 
definition of the term ‘good performance’ depends on 
the context. For example, if we compute a 95% confi-
dence interval (CI), we usually want it to yield 95% 
coverage (ie, we want 95% of the CIs constructed in this 
way, using varying data sets, to cover the true value). If 
we apply a statistical test, we want this test to reject the 
null hypothesis with high probability if it is false, but to 
retain it with high probability if it is true. In comparison 
studies, two or more methods may be compared in this 
respect. In the case of a simulation performed for sample 
size calculation, we want to determine the smallest sample 
size with which a study has a given power to detect clini-
cally important effects.

In practice, nobody can predict with certainty whether 
a method will yield accurate results for a specific data set, 
or which of a set of considered methods will perform best 
on that data set. Simulations can provide systematic evidence 
regarding how methods perform on average for data sets 
with similar characteristics to the data set under investi-
gation. In an ideal world, relevant results from simula-
tion studies would be available from previous research 
to help make rational decisions about which method to 
use. Data analysts would then use simulation results to 
verify whether the method they choose is adequate or to 
pick the most suitable from a range of different methods. 
Such ‘previous research’ is typically done by statistical 
researchers working on methods as the focus of research 
(as opposed to researchers applying methods in health 
research projects). For a data analyst with little experience 
and background in statistical methodological research, it 
is important to be able to interpret the results of such 
simulation studies. If previous evidence is lacking, or if 
previous studies do not seem to apply to the specific data 
setting under consideration, data analysts should conduct 
a targeted simulation study tailored to their specific data 
set.

EXAMPLES OF STATISTICAL METHODS
In this section we present four examples of analyses 
which help us to explain the basic principles of simula-
tion studies. Key criteria for evaluating the performance 
of methods related to these examples are summarised in 
table 1.

Statistical hypothesis testing and CIs
In most health research projects we perform statistical tests 
and/or derive CIs. However, their behaviour is often not 
well characterised in real- world situations. For example, 
for time- to- event data with censored observations, how do 
the log- rank test and CI for hazard ratios (HR) behave 
in relatively small samples? Which technique should be 
preferred to compute the CI for proportions in a given 
setting (eg, very small proportions)?12

What is a good test/CI?
A good test is one that yields the correct answer with high 
probability, that is, one that rejects the null hypothesis 
with high probability if it is not true and retains it with 
high probability if it is true. Classical tests are defined in 
such a way that, in theory, the probability that the null 
hypothesis is rejected despite being true (called type 1 
error) does not exceed a level α chosen by the user (in 
medicine, often α=0.05)—provided the assumptions are 
fulfilled. However, it is possible that the actual type 1 
error may be larger than α, in which case the results of 
the test should be interpreted with caution. When eval-
uating a test, it is thus important to verify that the type 
1 error does not exceed the nominal significance level 
α that was chosen by the researcher. Provided the type 1 
error is as it should be (equal to or smaller than α), the 
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most important quantity characterising a statistical test is 
its power, defined as the probability of correctly rejecting 
the null hypothesis.

Apart from hypothesis testing, results of statistical 
analysis are often presented as an estimate with a corre-
sponding CI. A good method for deriving, say, 95% CI, 
is a method that yields CIs covering the true value with 
probability of 95%.

Can real data be used for the evaluation?
The main performance criteria cannot simply be assessed 
based on real data, because the truth (which hypotheses 
are true or false, or the true value of the parameter being 
estimated) is generally unknown in practice—we can see 
that a test has rejected the null hypothesis, but do not 
know if this was correct or not. If the truth were known, 
there would be no need to perform the test or compute a 
CI. Baseline characteristics in correctly randomised trials 
are a notable exception. Given the randomisation proce-
dure, they are expected to be equally distributed in the 
two groups by definition.

Model selection for regression models: explaining the effects 
of covariates on an outcome variable
The second example is regression modelling of 
an outcome variable of interest, sometimes called 
‘dependent’ variable, using several covariates, some-
times denoted as predictor variables or indepen-
dent variables (often, prognostic or risk factors). In 
general, such modelling is performed either to explain 
the outcome variable by determining the effects of 
the covariates (as considered in this subsection), or 
to build a model, which will be used later on new 
patients for prediction purposes (as considered in 
the next subsection); see Shmueli13 for a discussion 
of these two related but distinct purposes. In health 

research, the outcome variable is often of one of the 
three following types: continuous (eg, amount of 
cholesterol reduction), categorical (eg, response to 
therapy) or survival time (eg, disease- free survival in 
months). Even though for all three cases standard 
regression modelling is reasonably well understood, 
the behaviour of regression techniques (including 
model selection) still raises questions in particular 
cases; see for example a recent simulation study on 
the use of resampling techniques for model selection 
purposes.14

What is a good regression approach?
In principle, a regression technique (including model 
selection aspects) is expected to (1) correctly distinguish 
the variables that are related to the outcome variable from 
those that are not, and (2) correctly fit the regression 
coefficients of the variables, that is, fit them to provide 
estimated values close to the true ones (unbiased and low 
variance). Regarding (1), it is good to have high sensitivity 
(ie, selecting most/all variables with effects, this is anal-
ogous to detecting most/all diseased patients in a diag-
nostic study) as well as high specificity (ie, not selecting 
variables without an effect, analogous to correctly iden-
tifying participants without disease). Depending on the 
specific goal, analysts may also aim to eliminate variables 
with very small effects.

Can real data be used for the evaluation?
In practice, the exact set of variables that have an effect 
on the outcome variable and the values of these effects 
are unknown, although previous knowledge from the 
literature may provide valuable guidance in some cases. 
Thus, in most cases, real data are of limited use for the 
evaluation of model selection approaches for regression 
models.

Table 1 Overview of the main criteria for evaluating statistical methods in the four considered examples

Example Evaluation criterion Target value

A: testing and CI Type 1 error Close to and not greater than nominal value α
Type 2 error Low

Coverage of (1–α) CI Close to and not lower than nominal value 1–α

B: explaining Mean coefficient values Close to true values (low bias)

Precision of coefficient estimation High (low variance)

Coverage of CI Close to and not lower than nominal value 1–α

Sensitivity of variable selection High

Specificity of variable selection High

C: predicting Prediction error on independent data Low

Accuracy measures High

D: clustering Agreement with true cluster structure High

All settings Stability High

Computational cost Low

Success of the computation (eg, ‘convergence’) Yes

The last column indicates which values the considered evaluation criterion takes if the investigated method is good.
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Model selection for regression models: predicting the values 
of an outcome using the values of covariates
The third example is related to the second example, but 
takes a different perspective. While regression models 
are often used to ‘explain’ the outcome variable (eg, a 
disease outcome or survival time), in order to understand 
how different risk factors affect the outcome variable, 
they can also be used as ‘prediction models’ to predict 
the outcome of interest for new patients, based on these 
patients’ values of the covariates. Classical linear regres-
sion models can be used for this purpose as well as various 
more complex alternative procedures, especially algo-
rithms developed in the machine learning community, 
such as support vector machines or random forests (see 
Boulesteix et al15 for a gentle introduction). In this field, 
simulations can be useful to assess the prediction accu-
racy of the considered prediction methods in different 
settings. For example, different penalised regression 
methods may be compared in simulations with respect 
to their prediction performance when a small number of 
clinical covariates are combined with a large number of 
candidate molecular covariates.16

What is a good prediction model?
A good prediction model is a model that yields accurate 
predictions in the future patients it will be applied to. 
For continuous and categorical outcome variables, often 
predicted and true values are directly compared, and the 
differences are summarised across patients. For survival 
times, suitable adjusted scores, like the Brier score, may 
be used to take into account censoring.17

Can real data be used for the evaluation?
The prediction error can be estimated based on the 
available data set using a large (possibly external) vali-
dation data set if available, or the so- called resampling 
techniques such as cross- validation.18 Note that this esti-
mation may be unreliable depending on the context (eg, 
the smaller the sample size, the more unstable the cross- 
validation estimates).19 What these evaluations tell us 
about the methods’ accuracy is relevant to the considered 
specific real data example(s), but may not be relevant to 
other settings.

Clustering
The last example considered in this paper is clustering, 
also called cluster analysis. The objective of clustering 
is to identify clusters, that is, ‘groups’ of patients that 
behave similarly. For example, clustering methods may 
be used with the goal of identifying clinically meaningful 
subgroups of patients, using MRI data and clinical data, 
among others.20 Clusters should be constructed in such a 
way that the values of patients within a cluster are more 
similar (according to the chosen similarity criterion) 
than the values of patients from different clusters. Many 
different clustering algorithms have been proposed at 
the interface between computer science and statistics, for 
example k- means clustering or hierarchical clustering. 

Simulation studies may be used to assess the ability of 
methods to recover a true underlying structure.20 21

What is a good clustering method?
A good clustering procedure is a procedure that correctly 
recovers a true cluster structure present in the data 
but does not falsely identify clusters that are not in fact 
present.

Can real data be used for the evaluation?
In practice, the true cluster structure is often unknown, 
and even if there is a known cluster structure further 
sensible cluster structures might exist. The abilities 
of clustering methods to group similar observations 
together may be assessed by using data that consist of 
known subgroups and measuring the degree of overlap 
between the clustering structure defined by the known 
subgroups and the clustering structure proposed by the 
clustering algorithm. However, there might not be only 
one sensible cluster structure; in fact, the observations 
may cluster together more strongly according to factors 
other than the subgroup membership, for example, gene 
expressions are associated with various phenotypes. Real 
data may be used to assess aspects such as stability (ie, 
robustness against small changes in the data) or compu-
tational efficiency, but they are of limited use for the eval-
uation of a clustering method according to the criterion 
‘agreement with the true cluster structure’.

BASIC PRINCIPLES OF SIMULATION STUDIES
Key features of a simulation study
In this section we provide a brief overview of the key 
features of a simulation study, which are also displayed 
in table 2, together with the example from the section 

Table 2 Overview of the key features of a simulation study 
(first column) with the NHANES example described in the 
section "An example of a statistical simulation" (second 
column)

Key features 
of simulation 
studies NHANES example

Aims To quantify the impact of measurement error.

Data generating 
mechanism

Take real data, add normally distributed random 
error to the exposure of interest (HbA1c) and/or 
the confounder (BMI).

Method of 
analysis

Multivariable linear regression, first on data 
with no measurement error, then on data with 
measurement error added.

Performance 
measure

Bias in regression coefficient for exposure of 
interest (HbA1c).

Number of 
repetitions

1000

This table is inspired by the ‘ADEMP’ system (aims, data generating 
mechanisms, estimands, methods and performance measures) 
introduced previously in statistical literature.3

BMI, body mass index; HbA1c, glycated haemoglobin; NHANES, 
National Health and Nutrition Examination Survey.
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"An example of a statistical simulation". A more detailed 
introduction to the concepts of data generating mecha-
nisms and simulation scenarios is given in the subsection 
"Sampling variability and data generating processes" for 
interested readers. One may also refer to a recent indepth 
article on simulation studies addressing an audience of 
statisticians.3

The first key feature of a simulation study is its overall 
objective. Is the simulation study tailored to a specific 
data set relevant to a particular application or does it 
address a methodological question of general interest for 
future applications? Regardless of the overall objective, 
researchers performing a simulation study should make 
decisions considering the following key issues.

Aims
What do we want to learn about the method(s) from the 
simulation study? For example, one may want to assess 
whether a model selection method selects the right covari-
ates (main aim) and whether it estimates their effects 
accurately (secondary aim). This point is analogous to the 
definition of primary and secondary outcomes in clinical 
trials, for example disease- free survival or side effects.

Data generating mechanism (including choice of relevant 
parameters)
How do we generate the simulated data sets? From which 
distribution? Which parameters may affect the results and 
what values should be considered? Each combination of 
the relevant assumptions and parameter values defines 
one simulation scenario (for which several data sets will 
usually be (randomly) generated, as outlined in the 
next subsection). There are many ways to generate data 
sets: by using real data sets as a starting point (see our 
example later) or by sampling from (possibly multivar-
iate) prespecified distributions, for example the normal 
distribution. The definition of the scenarios is analo-
gous to the definition of experimental conditions for a 
lab experiment and should be guided by considerations 
about clinical plausibility and/or relevance.11 While simu-
lation designs can be made complex, the focus is often 
on relatively simple properties of the data distributions, 
such as skewness or outliers. The performance of many 
widely used basic statistical building blocks, such as the 
least squares optimisation principle for estimating model 
parameters, can be severely affected by the type of distri-
bution under consideration. As a result, in order to 
comprehensively gauge performance, simulation studies 
should also include the rather innocent looking prob-
lems of real data, such as some outlier observations. More 
insights are given in the subsection "Sampling variability 
and data generating processes".

Method(s) of analysis to be evaluated/compared
Which method(s)/variant(s) is (are) evaluated? This 
point is analogous to the definition of the treatments with 
all necessary details (dose and so on) to be compared 
in a clinical trial. Further discussion about the analogy 

between clinical trials and comparisons of statistical 
methods can be found elsewhere.10

Performance measure(s)
Which criteria are used to assess the performance of the 
considered data analysis methods? In the example of 
model selection mentioned above, one may address the 
main aim by considering the sensitivity of the method 
for selecting the ‘true effects’ as well as the frequency of 
‘false positives’ (ie, selection of variables that have no true 
associations with the outcome). The secondary aim may 
be addressed by computing the mean squared deviation 
or the mean absolute deviation of the coefficient esti-
mates from the true values. This point is analogous to the 
precise definition of primary and secondary outcomes in 
a clinical trial: for example, which instruments are used 
for the assessment of side effects of the therapy, or how 
do we exactly estimate disease- free survival and compare 
it across the trial arms?

Number of repetitions
For each considered scenario, how many data sets are 
randomly drawn? It is necessary to generate several 
(ideally, ‘many’) data sets in order to average out random 
fluctuations and ensure sufficiently precise simulation 
results. The more data sets are generated, the more 
precise the performance evaluation will be—as can be 
quantified through, for example, the width of the CI for 
the selected ‘performance criteria’. The number of repe-
titions is analogous to the sample size in a clinical trial. 
In contrast to increasing the sample size in clinical trials, 
however, it is often easy to extend the number of repeti-
tions in simulation studies. The number of repetitions is 
chosen as a compromise between precision of the results 
and computational time.

Sampling variability and data generating processes
This section gives further insights into the data gener-
ating process for readers interested in gaining a deeper 
understanding of the fundamentals of simulation studies, 
beyond the key points outlined above. To this end we 
first explain briefly how simulations provide a framework 
for assessing and accounting for the impact of random 
sampling error on the results of empirical studies.

Preliminary: sampling variability in real data
Suppose a clinical researcher is interested in the mean 
difference between the blood pressure of men and 
women in the population aged 20–60. The true mean 
difference could only be calculated if we had data on the 
whole populations of men and women aged 20–60. Of 
course, in practice, we only have a sample available with 
a specific (often moderate) size and can only estimate the 
mean difference using this sample. Different samples will 
yield different estimates of the same mean difference in 
the population. Collecting a data sample can be seen 
as drawing observations from a population of interest 
that has particular characteristics. In statistical terms, 
these observations can be seen as random observations 
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generated from the true distribution of the variable(s) of 
interest in the relevant population. In real- life studies, this 
distribution and the true values of its parameters (eg, 
population means) are unknown and we can only estimate 
them using available sample data.

Simulating data
The principle of simulations is to mimic the process of 
taking repeated (random) samples from a large popu-
lation, by repeatedly generating synthetic data (‘virtual 
observations’) from a virtual population, under prespeci-
fied assumptions that can be varied across the considered 
simulation scenarios. Each synthetic sample is generated 
from a particular known distribution, with ‘true’ values 
of all relevant parameters fixed by the researchers. Each 
simulated sample is then analysed using the method(s) 
of interest, and its (their) performance is evaluated using 
prespecified criteria (see table 1 for examples). To give 
one simple example, we may simulate systolic blood pres-
sure values for a sample of n=100 ‘synthetic subjects’ by 
generating 100 independent numbers from a normal 
distribution with, say, mean of 120 and standard deviation 
(SD) of 15. Doing so, we know that the true population 
mean is 120 mmHg and that the simulated blood pres-
sure follows the normal distribution. The way in which 
virtual observations are generated in the context of a 
simulation (in our example, ‘100 independent numbers 
from a normal distribution with mean 120 and SD 15’) 
is termed the data generating mechanism. There is a large 
number of user- friendly statistical packages that can be 
used to accomplish this task.

Sampling variability in simulations
Just as random sample- to- sample variability affects real 
data samples drawn from a population of interest, it 
also affects the results obtained using simulated data. If 
we generate two synthetic data sets using the same data 
generating mechanism and the same parameters, we 
will get somewhat different results (with the differences 
decreasing, on average, with increasing size of the gener-
ated data sets). It is therefore almost always important 
to repeat the same data generation and analysis process 
using many simulated data sets, as outlined above. The 
variability of the results obtained across the different data 
sets simulated from the same distribution has to be care-
fully assessed by, for example, calculating the SD of the 
individual estimates. Calculating the mean value of the 
individual estimates provides a more robust estimate of 
the unknown population- level parameter than a value 
from a single simulated sample, as averaging over several 
repetitions reduces the impact of random sampling error.

Choice of data generating mechanisms
When performing a simulation, one has to choose one or 
several data generating mechanisms that reflect, as closely 
as possible, the distribution and relevant characteristics of 
the real data of interest, no matter whether the focus is on 
a specific application or on a ‘generic’ methodological 

question, such as evaluation or comparison of specific 
analytical methods. The difficulty is that, in reality, the 
true data generating process is unknown as mentioned 
above in the example of blood pressure. The only possi-
bility is to consider several data generating mechanisms—
called simulation scenarios—that, together, will cover the 
range of situations congruent with the expected struc-
ture of real data of interest. Scenarios may differ, among 
other ways, in the sample size, the true distributions of 
the considered variables (normal, uniform, exponential 
and so on), the values of parameters such as means or 
variances, the correlation structure of the variables or the 
presence of outliers. For example, we may be interested in 
the behaviour of a test that assumes a normal distribution 
in situations where this assumption is not fulfilled. If the 
variable of interest is expected, based on earlier studies 
and/or substantive knowledge, to be (approximately) 
uniformly distributed (meaning that the observations 
are evenly distributed over a certain interval), priority 
will be given to corresponding scenarios. However, it 
may be useful to also consider a few alternative scenarios 
with other distributions, for example, a positively skewed 
distribution with most values concentrating below the 
mean and relatively few high values.

In general, if the focus of the simulation study is on a 
specific application, the primary goal is essentially to simu-
late data sets that are as similar as possible to the relevant 
real data set. This may necessitate making some plausible 
assumptions and involve some uncertainty if the data have 
not yet been collected—as is the case when simulations 
are performed with the aim of calculating the adequate 
sample size or assessing the expected power and/or 
precision of future analyses. In contrast, if the focus of 
the simulation is on the general behaviour of a partic-
ular method (or comparison of alternative methods) for 
a class of applications, the primary goal when choosing 
scenarios is often to cover a wide spectrum of potentially 
plausible situations in which the method(s) of interest are 
likely to be employed. Some scenarios may be unrealistic 
but are nevertheless helpful in understanding how the 
method works or when it breaks down (and how it can be 
improved to cope better with the problematic situations), 
and thus yield valuable information. The choice of simu-
lation scenarios is thus intrinsically related to the goal of 
the simulation, but should also account for substantive 
knowledge in the field of potential real- life applications.

Advantages and drawbacks of simulation studies
To simulate the synthetic data sets, we define the under-
lying ‘truth’ regarding the research question being 
explored. For example, in example A in the section "Exam-
ples of statistical methods" (testing) we know whether the 
null hypothesis is true or not. In example B (explaining) 
we know which variables have independent effects on the 
outcome variable. In example C (predicting) we know the 
true values of the outcome variable. In example D (clus-
tering) we know the true cluster structure. To sum up, in 
all these examples, we know what an accurate method of 
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data analysis is supposed to find. Thus, we can determine 
how well the method(s) being evaluated perform(s) by 
comparing their results against this known ‘truth’. This 
feature is the major advantage of simulations over empir-
ical comparisons of the same methods based on one or 
few real- life data sets as, in the latter case, the true answers 
often remain unknown.

Another advantage of simulations is that they allow 
investigation of a large number of different scenarios, 
and in particular also scenarios that are not directly 
observed in real data sets. This means that the analysis 
can be extended to new or rare scenarios, or scenarios 
reflecting practically unrealistic settings (eg, randomised 
trial data or very large sample sizes). A related advantage 
of simulations is that, by varying the assumptions and 
the values of relevant parameters used to generate data 
for different scenarios, one can systematically assess how 
the performance of different methods depends on these 
assumptions and parameters. Furthermore, one can also 
perform, for each considered scenario, as many repeti-
tions as needed to average out random fluctuations. This 
is in contrast to real data experiments where the quantity 
of data is often severely limited, which affects the preci-
sion of the results.

These advantages, however, come at a cost. First, 
simulation scenarios are often simplified, that is, they 
do not reflect the true complexity of the data encoun-
tered in real- life data analyses. The lack of complexity 
of simulated data may lead to a distorted picture of the 
methods’ performance. For example, an approach that 
can model data in a very flexible manner might be more 
severely affected by outliers. Yet simulation designs so 
far rarely incorporate outliers or skewed distributions. 
Real- world performance of an approach that has been 
selected based on simulation study results might be 
surprisingly bad. Second, large simulation studies can 
be computationally very expensive, taking days or weeks 
and even requiring the use of parallel computing, if a 
large number of scenarios and/or large numbers of 
repetitions are considered and especially if the analysis 
also involves large data sets and/or complex statistical 
methods.

Finally, it is important to note that simulations are not 
immune to the typical flaws of numerical studies leading 
to biased results. For example, the effect of single influ-
ential points, which are difficult to detect in simulation 
studies with hundreds or thousands of simulated samples, 
can be critical. They may be relevant in some of the simu-
lation repetitions, in which they cause unreliable results. 
If undetected, they can bias the results. Most importantly, 
selective reporting may be an issue. If a very large number 
of scenarios are analysed, but only those scenarios that 
favour one particular method are presented in the paper, 
the reported results will give a distorted picture of reality. 
Obviously, this is a serious problem of bad reporting 
and bad research, which can be easily avoided by being 
transparent.

AN EXAMPLE OF A STATISTICAL SIMULATION
For illustration, in this section we consider a simple simu-
lation study that investigates the impact of measurement 
error in linear regression analysis, inspired by a previous 
study.8 See the overview of its key features in the right 
column of table 2. Our study is completely reproducible 
using the R code provided in online supplemental file 1, 
which uses freely available data. In epidemiological studies 
of the relation between an exposure and an outcome, this 
relation is often estimated using regression analysis. As an 
example, we consider a study of the association between 
glycated haemoglobin (HbA1c) levels and systolic blood 
pressure assessed using linear regression. Data from 5092 
subjects in the 2015–2016 National Health and Nutrition 
Examination Survey (NHANES)22 are used to obtain an 
estimate of the effect of HbA1c on systolic blood pres-
sure, while adjusting for age, gender and body mass index 
(BMI). Details on the data are described on the NHANES 
website (https:// wwwn. cdc. gov/ nchs/ nhanes/). After 
adjustment for age and gender, it was estimated that 
HbA1c increases systolic blood pressure by 1.13 mmHg 
(95% CI 0.73 to 1.52) per unit increase in HbA1c. Addi-
tional adjustment for BMI resulted in a considerable 
change in the effect estimate: HbA1c was estimated to 
increase blood pressure by 0.75 mmHg (95% CI 0.35 to 
1.16) per unit increase in HbA1c.

The confounding variable BMI as well as the expo-
sure variable HbA1c may be subject to measurement 
error. For example, BMI may be self- reported (instead 
of a standardised measurement using scales) or tech-
nical problems in the lab may have affected the HbA1c 
measurement. Therefore, researchers may want to know 
the possible impact of measurement error of the expo-
sure and/or confounding variable(s) in terms of bias.23 
We are interested both in the direction and magnitude 
of this bias.

One way to investigate the possible impact of measure-
ment error is through a small simulation study,8 whose 
steps are schematically represented in figure 1. For the 
purpose of this example, the original recordings in the 
NHANES data were assumed to be measured without 
error (step 1 in figure 1). Then, in addition, new artificial 
variables were created that represented HbA1c and BMI, 
but for the situation in which these are measured with 
error. To create these variables, measurement error was 
artificially added to the exposure variable (HbA1c) and/
or the confounding variable (BMI) (step 2 in figure 1). 
These errors were drawn from a normal distribution with 
a mean zero and were independent of all variables consid-
ered. This type of measurement error is often referred 
to as classical measurement error.24 The variance of the 
normal distribution, defining the amount of measure-
ment error added, was altered for different scenarios. 
Scenarios ranged from no measurement error on either 
HbA1c or BMI (reference scenario) to 50% of the vari-
ance in HbA1c and/or BMI attributable to measurement 
error. To minimise the impact of simulation error, each 
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scenario was repeated 1000 times and the results were 
averaged per scenario over these 1000 repetitions.

Figure 2 shows the impact of measurement error on 
HbA1c and/or BMI on the estimate of the regression 
coefficient of HbA1c (steps 3 and 4 in figure 1). The rela-
tion between HbA1c and systolic blood pressure was atten-
uated when measurement error was added to HbA1c, but 
not when measurement error was added to BMI. The asso-
ciation became stronger as measurement error was added 
solely to the confounding variable BMI. The reason for 
this effect is that, with increasing levels of measurement 
error on BMI, adjustment for the confounding due to 
BMI becomes less efficient and the effect estimate gets 
closer to the unadjusted estimate (1.13 mmHg). Due to 
measurement error, a type of residual confounding is 
introduced. In the case of measurement error on HbA1c 
as well as BMI, both phenomena play a role and may 
cancel each other out. In this study, measurement error 
on HbA1c seemed more influential than measurement 
error on BMI.

This example illustrates how a simple simulation study 
could provide insight into an important potential source 
of bias, namely measurement error. Here, we only consid-
ered classical measurement error, but simulations could 
easily be extended to incorporate more complex forms 
of measurement error. For example, the errors may not 
be drawn from a normal distribution with mean zero or 
may not be independent of all other variables consid-
ered. Instead, the mean of the distribution of errors may 
depend on the value of another variable in the model, 
for example, error on BMI may depend on gender. 

Furthermore, non- normal distributions may be consid-
ered, or scenarios in which the variance of the errors 
depends on the true value of the measurement (heteroske-
dastic errors), among other possible extensions.

Finally, we note that researchers conducting small- scale 
simulation studies like the one presented here should 
reflect on the plausibility of the scenarios considered. 
For example, knowing whether it is realistic to assume 
that 50% of the total variance of HbA1c and BMI is due 
to measurement error (top- right scenario in figure 2) 
requires subject- matter knowledge.

CONCLUDING REMARKS
Just as randomised clinical trials form part of the evidence 
base for the choice of therapy in medical practice, simu-
lation studies form part of the evidence base for statistical 
practice. Large- scale simulation studies allow assessment 
of the properties of complex estimation and inferential 
methods, and comparison of complex model building 
strategies under a variety of alternative assumptions and 
sample sizes.5 They provide valuable support for decision- 
making regarding the choice of statistical methods to be 
used in a given real- life application and they are the corner-
stone of the work on guidance for the design and analysis 
of the STRATOS initiative. They complement—rather 
than replace—the judgement of a trained expert (a data 
analyst in the choice of statistical methods, analogous to a 
physician in the choice of therapies). Increased computa-
tional power nowadays makes it possible to examine many 
possible simulation scenarios with different combinations 

Figure 1 Schematic illustration of the key steps of the example simulation study.
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of distributional parameters and assumptions. This partly 
addresses the main limitation of simulations, namely that 
they can never fully reflect the complexity of real data.

Let us again consider our analogy between simulation 
studies and clinical studies. The design and implementa-
tion of clinical studies should be left to teams of trained 
clinical researchers, but it is crucial for practitioners who 
want to practise evidence- based medicine to be able to 
read and understand the results of these clinical studies. 
Similarly, the design, implementation and reporting of 
complex simulations are still a subject of debate3 and 
should be left to methodological statistical experts, but it 
is important for data analysts to be able to read and under-
stand simulation studies in the literature (or perhaps to 
implement simple ones themselves). Armed with these 
skills, they will be better able to identify appropriate data 
analysis methods for their data and research questions, 
which will ultimately contribute to improved replicability 
of research results.
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