3,927 research outputs found

    Stimulus Responsive Nanoparticles

    Get PDF
    Disclosed are various embodiments of methods and systems related to stimulus responsive nanoparticles. In one embodiment includes a stimulus responsive nanoparticle system, the system includes a first electrode, a second electrode, and a plurality of elongated electro-responsive nanoparticles dispersed between the first and second electrodes, the plurality of electro-responsive nanorods configured to respond to an electric field established between the first and second electrodes

    Responsive polymer photonics

    Get PDF
    Stimulus-responsive materials: This thesis describes the development of stimulus-responsive polymeric materials based on liquid crystalline polymers and hydrogels. Novel responsive molecular building blocks were designed and synthesised. Specific monomer mixtures were crosslinked by UV-photopolymerisation methods, and the response of the obtained (structured) material was analysed

    Beads, boats and switches: making things happen with molecular photoswitches

    Get PDF
    In this paper we present recent results obtained with a stimulus-responsive materials based on the photo-switchable behaviour exhibited by spiro-cyclic derivatives. Our results suggest that these highly novel materials offer unique capabilities hitherto inaccessible using conventional materials. In particular, we will focus on photocontrolled guest binding and release, inherent signalling of status, photo-actuation and solvent driven motion of small structures as examples of the fascinating behaviour of these exceptional materials

    Smart Drug Delivery Strategies Based on Porous Nanostructure Materials

    Get PDF
    The control of drug delivery can have a great effect on its efficacy. An optimum concentration range of drugs can play a significant role in the human body, and it can cause harm to humans when it exceeds the range of the drug concentration. Recently, a variety of drug deliveries and their targeted systems have been studied to minimize drug loss and maximize the amount of drug accumulated in the required area, thus increasing drug bioavailability. In addition, we should especially consider the prevention of its harmful side-effects in the human body. Innovative drug delivery systems based on biodegradable, natural or synthetic polymers, micro- or nano-particles, lipoproteins, micelles, TiO2 nanotube arrays (TNTs), nanoporous anodic aluminum oxide (AAO), and so on were developed, which combined magnetic targeting and stimulus-responsive in drug delivery systems. The composition of delivery carriers and the stimulus-responsive elements proved stimulus-responsive drug release as a smart drug delivery system

    Responsive anionophores with AND logic multi-stimuli activation

    Get PDF
    Artificial ion transport systems have emerged as an important class of compounds that promise applications in chemotherapeutics as anticancer agents or to treat channelopathies. Stimulus-responsive systems that offer spatiotemporally controlled activity for targeted applications remain rare. Here we utilize dynamic hydrogen bonding interactions of a 4,6-dihydroxy-isophthalamide core to generate a modular platform enabling access to stimuli-responsive ion transporters that can be activated in response to a wide variety of external stimuli, including light, redox, and enzymes, with excellent OFF-ON activation profiles. Alkylation of the two free hydroxyl groups with stimulus-responsive moieties locks the amide bonds through intramolecular hydrogen bonding and hence makes them unavailable for anion binding and transport. Triggering using a particular stimulus to cleave both cages reverses the hydrogen bonding arrangement, to generate a highly preorganized anion binding cavity for efficient transmembrane transport. Integration of two cages that are responsive to orthogonal stimuli enables multi-stimuli activation, where both stimuli are required to trigger transport in an AND logic process. Importantly, the strategy provides a facile method to post-functionalize the highly active transporter core with a variety of stimulus-responsive moieties for targeted activation with multiple triggers

    New approaches in the engineering and characterization of macromolecular interfaces across the length scales: applications to hydrophobic and stimulus responsive polymers

    Get PDF
    The aim of the present Thesis is to enhance characterization and surface engineering approaches to test and control physico-chemical changes on modified hydrophobic (LDPE and PDMS) and stimulus-responsive (PFS) polymers across different length scales. [Here LDPE denotes low density polyethylene, PDMS stands for poly(dimethylsiloxane), and PFS for poly (ferrocenyldimethylsilanes)]. Efforts have been made to design and engineer desired surface properties of selected polymers and to characterize the chemical composition, electrokinetic and mechanical properties by various experimental techniques from the nano to the meso scale. Furthermore, a comparison of these techniques has been carried out in order to understand the aforementioned issues

    Reversible stimulus-responsive Cu(i) iodide pyridine coordination polymer

    Full text link
    We present a structurally flexible copper–iodide–pyridine-based coordination polymer showing drastic variations in its electrical conductivity driven by temperature and sorption of acetic acid molecules. The dramatic effect on the electrical conductivity enables the fabrication of a simple and robust device for gas detection. X-ray diffraction studies and DFT calculations allow the rationalisation of these observations.We are thankful for support from MICINN (MAT2013-46753-C2-1-P, MAT2013-46502-C2-1/2-P and CTQ2011-26507), Eusko Jaurlaritza (S-PE13UN016) and Generalitat Valenciana PrometeoII/2014/076
    corecore