3,333 research outputs found

    Metastable Voltage States of Coupled Josephson Junctions

    Full text link
    We investigate a chain of capacitively coupled Josephson junctions in the regime where the charging energy dominates over the Josephson coupling, exploiting the analogy between this system and a multi-dimensional crystal. We find that the current-voltage characteristic of the current-driven chain has a staircase shape, beginning with an (insulating) non-zero voltage plateau at small currents. This behavior differs qualitatively from that of a single junction, which should show Bloch oscillations with vanishing dc voltage. The simplest system where this effect can be observed consists of three grains connected by two junctions. The theory explains the results of recent experiments on Josephson junction arrays.Comment: 5 pages, 4 figures include

    Stable amplifier having a stable quiescent point Patent

    Get PDF
    Development of stable electronic amplifier adaptable for monolithic and thin film constructio

    Progress in the development of lightweight nickel electrode for aerospace applications

    Get PDF
    The NASA Lewis Research Center is currently developing nickel electrodes for nickel-hydrogen (Ni-H2) cells and batteries. These electrodes are lighter in weight and have higher specific energy than the heavy sintered state of the art nickel electrodes. In the present approach, lightweight materials or plaques are used as conductive supports for the nickel hydroxide active material. These plaques (fiber, felt, and nickel plated plastic) are fabricated into nickel electrodes by electrochemically impregnating them with active material. Initial performance tests include capacity measurements at five discharge levels, C/2, 1.0C, 1.37C, 2.0C, and 2.74C. The electrodes that pass the initial tests are life cycle tested at 40 and 80 percent depths of discharge (DOD). Different formulations of nickel fiber materials obtained from several manufacturers are currently being tested as possible candidates for nickel electrodes. Over 7,000 cycles of life cycle testing have been accumulated at 40 percent DOD, using the lightweight fiber electrode in a boiler plate Ni-H2 cell with stable voltage

    Voltage supply and voltage regulation

    Get PDF
    A stable voltage supply is important for the proper operation of electronic devices. Stability is characterized by the ability of the voltage output to stay constant and ripplefree regardless of how much load is connected to the circuit. There is a brief discussion on how much inaccuracy is caused by voltage supplies which are prone to voltage fluctuations due to switching phenomenon taking place in the circuit, load fluctuations or temperature change

    High-Capacity, Dendrite-Free, and Ultrahigh-Rate Lithium-Metal Anodes Based on Monodisperse N-Doped Hollow Carbon Nanospheres

    Get PDF
    To unlock the great potential of lithium metal anodes for high-performance batteries, a number of critical challenges must be addressed. The uncontrolled dendrite growth and volume changes during cycling (especially, at high rates) will lead to short lifespan, low Coulombic efficiency (CE), and security risks of the batteries. Here it is reported that Li metal anodes, employing the monodisperse, lithiophilic, robust, and large-cavity N-doped hollow carbon nanospheres (NHCNSs) as the host, show remarkable performances—high areal capacity (10 mAh cm−2), high CE (up to 99.25% over 500 cycles), complete suppression of dendrite growth, dense packing of Li anode, and an extremely smooth electrode surface during repeated Li plating/stripping. In symmetric cells, a highly stable voltage hysteresis over a long cycling life >1200 h is achieved, and a low and stable voltage hysteresis can be realized even at an ultrahigh current density of 64 mA cm−2. Furthermore, the NHCNSs-based anodes, when paired with a LiFePO4 (LFP) cathode in full cells, give rise to highly improved rate capability (104 mAh g−1 at 10 C) and cycling stability (91.4% capacity retention for 200 cycles), enabling a promising candidate for the next-generation high energy/power density batteries

    Аналіз впливу роботи пристроїв контактної зварки на параметри напруги мережі

    Get PDF
    Three fully integrated bandgap voltage references (BGVRs) have been demonstrated in a 4H-SiC bipolar technology. The circuits have been characterized over a wide temperature range from 25 degrees C to 500 degrees C. The three BGVRs are functional and exhibit 46 ppm/degrees C, 131 ppm/degrees C, and 120 ppm/degrees C output voltage variations from 25 degrees C up to 500 degrees C. This letter shows that SiC bipolar BGVRs are capable of providing stable voltage references over a wide temperature range.QC 20160311HOTSi
    corecore