10 research outputs found

    Evolution and strengthening of the Calabrian Regional Seismic Network

    Get PDF
    The Calabrian Arc is an area of high seismic hazard, in the past often affected by destructive earthquakes. The seismicity of the Calabrian region is monitored by the Italian National Seismic Network integrated by the Calabrian Regional one and, in the last three years, by the Pollino temporary array. We have applied the Seismic Network Evaluation through Simulation to assess the individual contribution of each network in locating earthquakes with epicentres in the Calabrian region and surrounding. We shows that the Calabrian Regional Seismic Network greatly improves the quality of the coverage in almost the Calabria territory except in the Crotone Basin, in the Serre and in the offshore areas. We show that the contribution of the Pollino temporary array is instead restricted to a very small area centred on the Pollino Chain. Due to the presence in the Serre of important seismogenic volumes, which in the past have generated destructive earthquakes, it would be opportune to add at least several seismic stations in this area and surrounding to improve the seismic monitoring

    Integration of onshore and offshore seismic arrays to study the seismicity of the Calabrian Region: a two steps automatic procedure for the identification of the best stations geometry

    Get PDF
    We plan to deploy in the Taranto Gulf some Ocean Bottom broadband Seismometer with Hydrophones. Our aim is to investigate the offshore seismicity of the Sibari Gulf. The seismographic network optimization consists in the identification of the optimal sites for the installation of the offshore stations, which is a crucial factor for the success of the monitoring campaign. In this paper, we propose a two steps automatic procedure for the identification of the best stations geometry. In the first step, based on the application of a set of a priori criteria, the suitable sites to host the ocean bottom seismic stations are identified. In the second step, the network improvement is evaluated for all the possible stations geometries by means of numerical simulation. The application of this procedure allows us to identify the best stations geometry to be achieved in the monitoring campaign

    Urban MEMS based seismic network for post-earthquakes rapid disaster assessment

    Get PDF
    In this paper, we introduce a project for the realization of the first European real-time urban seismic network based on Micro Electro-Mechanical Systems (MEMS) technology. MEMS accelerometers are a highly enabling technology, and nowadays, the sensitivity and the dynamic range of these sensors are such as to allow the recording of earthquakes of moderate magnitude even at a distance of several tens of kilometers. Moreover, thanks to their low cost and smaller size, MEMS accelerometers can be easily installed in urban areas in order to achieve an urban seismic network constituted by high density of observation points. The network is being implemented in the Acireale Municipality (Sicily, Italy), an area among those with the highest hazard, vulnerability and exposure to the earthquake of the Italian territory. The main objective of the implemented urban network will be to achieve an effective system for post-earthquake rapid disaster assessment. The earthquake recorded, also that with moderate magnitude will be used for the effective seismic microzonation of the area covered by the network. The implemented system will be also used to realize a site-specific earthquakes early warning system

    Insights on the Italian Seismic Network from location uncertainties

    Get PDF
    AbstractProbabilistic earthquake locations provide confidence intervals for the hypocentre solutions such as errors encountered in the position, the origin time, and in magnitude. If the relationship of the parameters relative to the local arrangement of the seismic network is considered, such as the node distance, the number of stations, the seismic gap, and the quality of phase readings), the uncertainties can then provide insights on the location capability of the network. In this paper, we collect the earthquake data recorded from the Italian Seismic Network for a time span of 5 years. The data pertain to three different catalogues according to the progressive refinement phases of the location procedure: automatic location, revised location, and published location. By means of spatial analysis, we assess the distribution of the location-related and network-related estimators across the study area. These estimators are subsequently combined to assess the existence of spatial correlations at a local scale. The results indicate that the Italian network is generally able to provide robust locations at the national scale and for smaller earthquakes, and the elongated shape of Italy (and of its network) does not cause systematic bias in the locations. However, we highlight the existence of subregions in which the performance of the network is weaker. At present, a unique 2D, 3-layer velocity model is used for the earthquake location procedure, and this could represent the main limitation for the improvement of the locations. Therefore, the assessment of locally optimized velocity models is the priority for the homogenization and the improvement of the Italian Seismic Network performance

    Probabilistic Tsunami Hazard Assessment in Meso and Macro Tidal Areas. Application to the Cádiz Bay, Spain

    Get PDF
    ABSTRACT: Tsunami hazard can be analyzed from both deterministic and probabilistic points of view. The deterministic approach is based on a "credible" worst case tsunami, which is often selected from historical events in the region of study. Within the probabilistic approach (PTHA, Probabilistic Tsunami Hazard Analysis), statistical analysis can be carried out in particular regions where historical records of tsunami heights and runup are available. In areas where these historical records are scarce, synthetic series of events are usually generated using Monte Carlo approaches. Commonly, the sea level variation and the currents forced by the tidal motion are either disregarded or considered and treated as aleatory uncertainties in the numerical models. However, in zones with a macro and meso tidal regime, the effect of the tides on the probability distribution of tsunami hazard can be highly important. In this work, we present a PTHA methodology based on the generation of synthetic seismic catalogs and the incorporation of the sea level variation into a Monte Carlo simulation. We applied this methodology to the Bay of Cádiz area in Spain, a zone that was greatly damaged by the 1755 earthquake and tsunami. We build a database of tsunami numerical simulations for different variables: faults, earthquake magnitudes, epicenter locations and sea levels. From this database we generate a set of scenarios from the synthetic seismic catalogs and tidal conditions based on the probabilistic distribution of the involved variables. These scenarios cover the entire range of possible tsunami events in the synthetic catalog (earthquakes and sea levels). Each tsunami scenario is propagated using the tsunami numerical model C3, from the source region to the target coast (Cádiz Bay). Finally, we map the maximum values for a given probability of the selected variables (tsunami intensity measures) producing a set of thematic hazard maps. 1000 different time series of combined tsunamigenic earthquakes and tidal levels were synthetically generated using the Monte Carlo technique. Each time series had a 10000-year duration. The tsunami characteristics were statistically analyzed to derive different thematic maps for the return periods of 500, 1000, 5000, and 10000 years, including the maximum wave elevation, the maximum current speed, the maximum Froude number, and the maximum total forces

    Earthquake Early Warning System (EEWs) for the New Madrid Seismic Zone

    Get PDF
    Part 1: Research in the last decade on Earthquake Early Warning Systems (EEWSs) has undergone rapid development in terms of theoretical and methodological advances in real time data analysis, improved telemetry, and computer technology and is becoming a useful tool for practical real time seismic hazard mitigation. The main focus of this study is to undertake a feasibility study of an EEWS for the New Madrid Seismic Zone (NMSZ) from the standpoint of source location. Magnitude determination is addressed in a separate paper. The NMSZ covers a wide area with several heavily populated cities, vital infrastructures, and facilities located within a radius of less than 70 km from the epicenters of the 1811-1812 earthquakes. One of the challenges associated with the NMSZ is that while low to moderate levels of seismic activity are common, larger earthquakes are rare (i.e. there are no instrumentally recorded data for earthquakes with magnitudes greater than M5.5 in the NMSZ). We also recognize that it may not be realistic to provide early warning for all possible sources as is done on the west coast U.S. and we therefore focus on a specific source zone. We examine the stations within the NMSZ in order to answer the question What changes should be applied to the NMSZ network to make it suitable for earthquake early warning (EEW). We also explore needed changes to the Advanced National Seismic System (ANSS) Earthquake Monitoring System Real Time (AQMS RT) data acquisition system to make it useful for EEW. Our results show that EEW is feasible, though several technical challenges remain in incorporating its use with the present network.Part 2: Increasing vulnerability of metropolitan areas within stable continental regions (SCR), such as Memphis, TN and St. Louis, MO near the New Madrid Seismic Zone (NMSZ), to earthquakes and the very low probability level at which short term earthquake forecasting is possible make an earthquake early warning system (EEWS) a viable alternative for effective real-time risk reduction in these cities. In this study, we explore practical approaches to earthquake early warning (EEWS), and test the adaptability and potential of the real-time monitoring system in the NMSZ. We determine empirical relations based on amplitude and frequency magnitude proxies from the initial four seconds of the P-waveform records available from the Cooperative New Madrid Seismic Network (CNMSN) database for magnitude ????\u3e2.1. The amplitude-based proxies include low pass filtered peak displacement (Pd), peak velocity (Pv), and integral of the velocity squared (IV2), whereas the frequency-based proxies include predominant period (????????), characteristic period (????????), and log average period (????????????????). Very few studies have considered areas with lower magnitude events. With an active EEW system in the NMSZ, damage resulting from the catastrophic event, as witnessed in 1811-1812, may be mitigated in real-time

    GIS-based study of the evolution of the IGN's strong motion network of mainland Spain and the balearics

    No full text
    In some countries with seismicity, an adequate detection network is essential to assess seismic hazards. The Instituto Geográfico Nacional (National Geographic Institute/IGN) of Spain manages a strong motion network distributed throughout the whole country and an earthquake detection network composed of velocity stations. This paper aims at studying the development of the strong motion network of the Spanish National Seismic Network (focusing on mainland Spain and the Balearics) in the last three decades. A Geographic Information System (GIS) has been implemented to integrate the attributes from the IGN's database concerning the earthquake catalogue, seismograph and accelerometer networks, which enabled to analyse the data and map the distribution of detection equipments in the region. The irregularly distributed Spanish strong motion network was greatly expanded from 1990 to 2010. In the past decade, it developed at a slower rate, but more modern technology was implemented. © 2021 The Author
    corecore