81,621 research outputs found

    Spiers Memorial Lecture: Interplay of theory and computation in chemistry—examples from on-water organic catalysis, enzyme catalysis, and single-molecule fluctuations

    Get PDF
    In this lecture, several examples are considered that illustrate the interplay of experiment, theory, and computations. The examples include on-water catalysis of organic reactions, enzymatic catalysis, single molecule fluctuations, and some much earlier work on electron transfer and atom or group transfer reactions. Computations have made a major impact on our understanding and in the comparisons with experiments. There are also major advantages of analytical theories that may capture in a single equation an entire field and relate experiments of one type to those of another. Such a theory has a generic quality. These topics are explored in the present lecture

    Single-Atom Catalysis in Organic Synthesis

    Get PDF
    Single-atom catalysts hold the potential to significantly impact the chemical sector, pushing the boundaries of catalysis in new, uncharted directions. These materials, featuring isolated metal species ligated on solid supports, can exist in many coordination environments, all of which have shown important functions in specific transformations. Their emergence has also provided exciting opportunities for mimicking metalloenzymes and bridging the gap between homogeneous and heterogeneous catalysis. This review outlines the impressive progress made in recent years regarding the use of single-atom catalysts in organic synthesis. We also illustrate potential knowledge gaps in the search for more sustainable, earth-abundant single-atom catalysts for synthetic applications

    Catalytic applications of small bite-angle diphosphorus ligands with single-atom linkers

    Get PDF
    Diphosphorus ligands connected by a single atom (R2PEPR2; E = CR2, CCR2and NR) give chelating ligands with very small bite-angles as well as enable access to other properties such as bridging modes and hemilability. ThisPerspectivereviews the properties of diphosphorus ligands featuring a single-atom linker and their applications in catalysis, including transformations of alkenes and transfer hydrogenation and hydrogen-borrowing reactions.</p

    Substitutional Si impurities in monolayer hexagonal boron nitride

    Full text link
    We report the first observation of substitutional silicon atoms in single-layer hexagonal boron nitride (h-BN) using aberration corrected scanning transmission electron microscopy (STEM). The medium angle annular dark field (MAADF) images reveal silicon atoms exclusively filling boron vacancies. This structure is stable enough under electron beam for repeated imaging. Density functional theory (DFT) is used to study the energetics, structure and properties of the experimentally observed structure. The formation energies of all possible charge states of the different silicon substitutions (SiB_\mathrm{B}, SiN_\mathrm{N} and SiBN_\mathrm{{BN}}) are calculated. The results reveal SiB+1_\mathrm{B}^{+1} as the most stable substitutional configuration. In this case, silicon atom elevates by 0.66{\AA} out of the lattice with unoccupied defect levels in the electronic band gap above the Fermi level. The formation energy shows a slightly exothermic process. Our results unequivocally show that heteroatoms can be incorporated into the h-BN lattice opening way for applications ranging from single-atom catalysis to atomically precise magnetic structures

    Metal-Support Interactions of Single-Atom Catalysts for Biomedical Applications

    Get PDF
    The development of single-atom catalysts (SACs) has become a rapidly growing research field. It is a critical challenge to understand the interactions between the single-atom metal active sites and the support materials. Recently, original research reports of SACs in biomedical applications have emerged in the literature, yet this topic has seldom been reviewed. Here, this review focuses on the latest advances in single-atom catalysis for biomedical applications and highlights the keys for the design of SACs, such as understanding the interactions between metals and supports and classifying various enzyme-like activities. This review helps bridge the knowledge of multiple disciplines and provides prospects regarding the development of SACs for biomedicine

    Ligand–metal charge transfer induced via adjustment of textural properties controls the performance of single-atom catalysts during photocatalytic degradation

    Get PDF
    Because of their peculiar nitrogen-rich structure, carbon nitrides are convenient polydentate ligands for designing single atom-dispersed photocatalysts. However, the relation between catalysts’ textural properties and their photophysical–photocatalytic properties is rarely elaborated. Herein, we report the preparation and characterization of a series of single-atom heterogeneous catalysts featuring highly dispersed Ag and Cu species on mesoporous graphitic C3N4. We show that adjustment of materials textural properties and therefore metal single-atom coordination mode enables ligand-to-metal charge transfer (LMCT) or ligand-to-metal-to-ligand charge transfer (LMLCT), properties that were long speculated in single-atom catalysis but never observed. We employ the developed materials in the degradation of organic pollutants under irradiation with visible light. Kinetic investigations under flow conditions show that single atoms of Ag and Cu decrease the number of toxic organic fragmentation products while leading to a higher selectivity toward full degradation. The results correlate with the selected mode of charge transfer in the designed photocatalysts and provide a new understanding of how the local environment of a single-atom catalyst affects the surface structure and reactivity. The concepts can be exploited further to rationally design and optimize other single-atom materials

    One Pot Cooperation of Single Atom Rh and Ru Solid Catalysts for a Selective Tandem Olefin Isomerization - Hydrosilylation Process

    Get PDF
    [EN] Realizing the full potential of oxide-supported single-atom metal catalysts (SACs) is key to successfully bridge the gap between the fields of homogeneous and heterogeneous catalysis. Here we show that the one-pot combination of Ru-1/CeO2 and Rh-1/CeO2 SACs enables a highly selective olefin isomerization-hydrosilylation tandem process, hitherto restricted to molecular catalysts in solution. Individually, monoatomic Ru and Rh sites show a remarkable reaction specificity for olefin double-bond migration and anti-Markovnikov alpha-olefin hydrosilylation, respectively. First-principles DFT calculations ascribe such selectivity to differences in the binding strength of the olefin substrate to the monoatomic metal centers. The single-pot cooperation of the two SACs allows the production of terminal organosilane compounds with high regio-selectivity (>95 %) even from industrially-relevant complex mixtures of terminal and internal olefins, alongside a straightforward catalyst recycling and reuse. These results demonstrate the significance of oxide-supported single-atom metal catalysts in tandem catalytic reactions, which are central for the intensification of chemical processes.X-ray absorption experiments were performed at the ALBA Synchrotron Light Source (Spain), experiments 2018082961 and 2019023278. L. Simonelli and C. Marini (CLAESSALBA beamline) are thanked for beamline setup. E. Andres, M. E. Martinez, M. Garcia, and I. Lopez (ITQ), are acknowledged for their assistance with XAS experiments. J. Buscher, J. Ternedien, B. Spliethoff, and C. Wirtz (MPI-KOFO) are acknowledged for the performance of XPS, XRD, BF-TEM and 2H NMR experiments, respectively. I. C. de Freitas (MPIKOFO) is thanked for assistance with Raman spectroscopy. J. M. Salas (ITQ) is gratefully acknowledged for his contribution to CO-FTIR experiments. J. J. Barnes and Shell (Amsterdam) are acknowledged for kindly providing an industrial olefin mixture as feed. Authors are thankful to F. Schuth for the provision of lab space and continued support. Part of the HRSTEM and EDX-STEM studies were conducted at the Laboratorio de Microscopias Avanzadas, Instituto de Nanociencia de Aragon, Universidad de Zaragoza, Spain. R.A. gratefully acknowledges the support from the Spanish Ministry of Economy and Competitiveness (MINECO) through project grant MAT2016-79776-P (AEI/FEDER, UE) and from the European Union H2020 programs "ESTEEM3" (823717). The authors acknowledge support by the state of Baden-Wurttemberg through bwHPC (bwUnicluster and JUSTUS, RV bw17D01), by the GRK 2450 and by the Helmholtz Association. This research received funding from the Max Planck Society, and the Fonds der Chemische Industrie of Germany. Funding from the Spanish Ministry of Science, Innovation and Universities (Severo Ochoa program SEV-2016-0683 and grant RTI2018096399-A-I00) is also acknowledged. B.B.S. acknowledges the Alexander von Humboldt Foundation for a postdoctoral scholarship. Open Access funding is provided by the Max Planck Society.Sarma, BB.; Kim, J.; Amsler, J.; Agostini, G.; Weidenthaler, C.; Pfaender, N.; Arenal, R.... (2020). One Pot Cooperation of Single Atom Rh and Ru Solid Catalysts for a Selective Tandem Olefin Isomerization - Hydrosilylation Process. Angewandte Chemie International Edition. 59(14):5806-5815. https://doi.org/10.1002/anie.201915255S580658155914Liang, S., Hao, C., & Shi, Y. (2015). The Power of Single-Atom Catalysis. ChemCatChem, 7(17), 2559-2567. doi:10.1002/cctc.201500363Liu, J. (2016). Catalysis by Supported Single Metal Atoms. ACS Catalysis, 7(1), 34-59. doi:10.1021/acscatal.6b01534Gates, B. C., Flytzani-Stephanopoulos, M., Dixon, D. A., & Katz, A. (2017). Atomically dispersed supported metal catalysts: perspectives and suggestions for future research. Catalysis Science & Technology, 7(19), 4259-4275. doi:10.1039/c7cy00881cLiu, L., & Corma, A. (2018). Metal Catalysts for Heterogeneous Catalysis: From Single Atoms to Nanoclusters and Nanoparticles. Chemical Reviews, 118(10), 4981-5079. doi:10.1021/acs.chemrev.7b00776Wang, A., Li, J., & Zhang, T. (2018). Heterogeneous single-atom catalysis. Nature Reviews Chemistry, 2(6), 65-81. doi:10.1038/s41570-018-0010-1Parkinson, G. S. (2019). Single-Atom Catalysis: How Structure Influences Catalytic Performance. Catalysis Letters, 149(5), 1137-1146. doi:10.1007/s10562-019-02709-7Babucci, M., Sarac Oztuna, F. E., Debefve, L. M., Boubnov, A., Bare, S. R., Gates, B. C., … Uzun, A. (2019). Atomically Dispersed Reduced Graphene Aerogel-Supported Iridium Catalyst with an Iridium Loading of 14.8 wt %. ACS Catalysis, 9(11), 9905-9913. doi:10.1021/acscatal.9b02231Qiao, B., Wang, A., Yang, X., Allard, L. F., Jiang, Z., Cui, Y., … Zhang, T. (2011). Single-atom catalysis of CO oxidation using Pt1/FeOx. Nature Chemistry, 3(8), 634-641. doi:10.1038/nchem.1095Duan, S., Wang, R., & Liu, J. (2018). Stability investigation of a high number density Pt1/Fe2O3 single-atom catalyst under different gas environments by HAADF-STEM. Nanotechnology, 29(20), 204002. doi:10.1088/1361-6528/aab1d2Pinto, H., Haapasilta, V., Lokhandwala, M., Öberg, S., & Foster, A. S. (2017). Adsorption and migration of single metal atoms on the calcite (10.4) surface. Journal of Physics: Condensed Matter, 29(13), 135001. doi:10.1088/1361-648x/aa5bd9Parkinson, G. S., Novotny, Z., Argentero, G., Schmid, M., Pavelec, J., Kosak, R., … Diebold, U. (2013). Carbon monoxide-induced adatom sintering in a Pd–Fe3O4 model catalyst. Nature Materials, 12(8), 724-728. doi:10.1038/nmat3667Yang, X.-F., Wang, A., Qiao, B., Li, J., Liu, J., & Zhang, T. (2013). Single-Atom Catalysts: A New Frontier in Heterogeneous Catalysis. Accounts of Chemical Research, 46(8), 1740-1748. doi:10.1021/ar300361mCui, X., Li, W., Ryabchuk, P., Junge, K., & Beller, M. (2018). Bridging homogeneous and heterogeneous catalysis by heterogeneous single-metal-site catalysts. Nature Catalysis, 1(6), 385-397. doi:10.1038/s41929-018-0090-9Mitchell, S., Vorobyeva, E., & Pérez‐Ramírez, J. (2018). The Multifaceted Reactivity of Single‐Atom Heterogeneous Catalysts. Angewandte Chemie International Edition, 57(47), 15316-15329. doi:10.1002/anie.201806936Mitchell, S., Vorobyeva, E., & Pérez‐Ramírez, J. (2018). Die facettenreiche Reaktivität heterogener Einzelatom‐Katalysatoren. Angewandte Chemie, 130(47), 15538-15552. doi:10.1002/ange.201806936Kumar, A., Bhatti, T. M., & Goldman, A. S. (2017). Dehydrogenation of Alkanes and Aliphatic Groups by Pincer-Ligated Metal Complexes. Chemical Reviews, 117(19), 12357-12384. doi:10.1021/acs.chemrev.7b00247Lang, R., Li, T., Matsumura, D., Miao, S., Ren, Y., Cui, Y.-T., … Zhang, T. (2016). Hydroformylation of Olefins by a Rhodium Single-Atom Catalyst with Activity Comparable to RhCl(PPh3)3. Angewandte Chemie International Edition, 55(52), 16054-16058. doi:10.1002/anie.201607885Lang, R., Li, T., Matsumura, D., Miao, S., Ren, Y., Cui, Y.-T., … Zhang, T. (2016). Hydroformylation of Olefins by a Rhodium Single-Atom Catalyst with Activity Comparable to RhCl(PPh3)3. Angewandte Chemie, 128(52), 16288-16292. doi:10.1002/ange.201607885Cui, X., Junge, K., Dai, X., Kreyenschulte, C., Pohl, M.-M., Wohlrab, S., … Beller, M. (2017). Synthesis of Single Atom Based Heterogeneous Platinum Catalysts: High Selectivity and Activity for Hydrosilylation Reactions. ACS Central Science, 3(6), 580-585. doi:10.1021/acscentsci.7b00105Chen, Y., Ji, S., Sun, W., Chen, W., Dong, J., Wen, J., … Li, Y. (2018). Discovering Partially Charged Single-Atom Pt for Enhanced Anti-Markovnikov Alkene Hydrosilylation. Journal of the American Chemical Society, 140(24), 7407-7410. doi:10.1021/jacs.8b03121Malta, G., Kondrat, S. A., Freakley, S. J., Davies, C. J., Lu, L., Dawson, S., … Hutchings, G. J. (2017). Identification of single-site gold catalysis in acetylene hydrochlorination. Science, 355(6332), 1399-1403. doi:10.1126/science.aal3439Ye, L., Duan, X., Wu, S., Wu, T.-S., Zhao, Y., Robertson, A. W., … Tsang, S. C. E. (2019). Self- regeneration of Au/CeO2 based catalysts with enhanced activity and ultra-stability for acetylene hydrochlorination. Nature Communications, 10(1). doi:10.1038/s41467-019-08827-5Zhang, X., Sun, Z., Wang, B., Tang, Y., Nguyen, L., Li, Y., & Tao, F. F. (2018). C–C Coupling on Single-Atom-Based Heterogeneous Catalyst. Journal of the American Chemical Society, 140(3), 954-962. doi:10.1021/jacs.7b09314Chen, Z., Vorobyeva, E., Mitchell, S., Fako, E., Ortuño, M. A., López, N., … Pérez-Ramírez, J. (2018). A heterogeneous single-atom palladium catalyst surpassing homogeneous systems for Suzuki coupling. Nature Nanotechnology, 13(8), 702-707. doi:10.1038/s41565-018-0167-2Wasilke, J.-C., Obrey, S. J., Baker, R. T., & Bazan, G. C. (2005). Concurrent Tandem Catalysis. Chemical Reviews, 105(3), 1001-1020. doi:10.1021/cr020018nLohr, T. L., & Marks, T. J. (2015). Orthogonal tandem catalysis. Nature Chemistry, 7(6), 477-482. doi:10.1038/nchem.2262Reuben, B., & Wittcoff, H. (1988). The SHOP process: An example of industrial creativity. Journal of Chemical Education, 65(7), 605. doi:10.1021/ed065p605Fogg, D. E., & dos Santos, E. N. (2004). Tandem catalysis: a taxonomy and illustrative review. Coordination Chemistry Reviews, 248(21-24), 2365-2379. doi:10.1016/j.ccr.2004.05.012Poe, S. L., Kobašlija, M., & McQuade, D. T. (2006). Microcapsule Enabled Multicatalyst System. Journal of the American Chemical Society, 128(49), 15586-15587. doi:10.1021/ja066476lLu, J., Dimroth, J., & Weck, M. (2015). Compartmentalization of Incompatible Catalytic Transformations for Tandem Catalysis. Journal of the American Chemical Society, 137(40), 12984-12989. doi:10.1021/jacs.5b07257Abel, M.-L. (2011). Organosilanes: Adhesion Promoters and Primers. Handbook of Adhesion Technology, 237-258. doi:10.1007/978-3-642-01169-6_11Semenov, V. V. (2011). Preparation, properties and applications of oligomeric and polymeric organosilanes. Russian Chemical Reviews, 80(4), 313-339. doi:10.1070/rc2011v080n04abeh004110Obligacion, J. V., & Chirik, P. J. (2018). Earth-abundant transition metal catalysts for alkene hydrosilylation and hydroboration. Nature Reviews Chemistry, 2(5), 15-34. doi:10.1038/s41570-018-0001-2Jones, J., Xiong, H., DeLaRiva, A. T., Peterson, E. J., Pham, H., Challa, S. R., … Datye, A. K. (2016). Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science, 353(6295), 150-154. doi:10.1126/science.aaf8800Pereira-Hernández, X. I., DeLaRiva, A., Muravev, V., Kunwar, D., Xiong, H., Sudduth, B., … Datye, A. K. (2019). Tuning Pt-CeO2 interactions by high-temperature vapor-phase synthesis for improved reducibility of lattice oxygen. Nature Communications, 10(1). doi:10.1038/s41467-019-09308-5Speier, J. L., Zimmerman, R., & Webster, J. (1956). The Addition of Silicon Hydrides to Olefinic Double Bonds. Part I. The Use of Phenylsilane, Diphenylsilane, Phenylmethylsilane, Amylsilane and Tribromosilane. Journal of the American Chemical Society, 78(10), 2278-2281. doi:10.1021/ja01591a068Nakajima, Y., & Shimada, S. (2015). Hydrosilylation reaction of olefins: recent advances and perspectives. RSC Advances, 5(26), 20603-20616. doi:10.1039/c4ra17281gMeister, T. K., Riener, K., Gigler, P., Stohrer, J., Herrmann, W. A., & Kühn, F. E. (2016). Platinum Catalysis Revisited—Unraveling Principles of Catalytic Olefin Hydrosilylation. ACS Catalysis, 6(2), 1274-1284. doi:10.1021/acscatal.5b02624Morgan, K., Goguet, A., & Hardacre, C. (2015). Metal Redispersion Strategies for Recycling of Supported Metal Catalysts: A Perspective. ACS Catalysis, 5(6), 3430-3445. doi:10.1021/acscatal.5b00535Ono, L. K., Yuan, B., Heinrich, H., & Cuenya, B. R. (2010). Formation and Thermal Stability of Platinum Oxides on Size-Selected Platinum Nanoparticles: Support Effects. The Journal of Physical Chemistry C, 114(50), 22119-22133. doi:10.1021/jp1086703Stein, J., Lewis, L. N., Gao, Y., & Scott, R. A. (1999). In Situ Determination of the Active Catalyst in Hydrosilylation Reactions Using Highly Reactive Pt(0) Catalyst Precursors. Journal of the American Chemical Society, 121(15), 3693-3703. doi:10.1021/ja9825377Sadeghmoghaddam, E., Gu, H., & Shon, Y.-S. (2012). Pd Nanoparticle-Catalyzed Isomerization vs Hydrogenation of Allyl Alcohol: Solvent-Dependent Regioselectivity. ACS Catalysis, 2(9), 1838-1845. doi:10.1021/cs300270dGaleandro-Diamant, T., Zanota, M.-L., Sayah, R., Veyre, L., Nikitine, C., de Bellefon, C., … Thieuleux, C. (2015). Platinum nanoparticles in suspension are as efficient as Karstedt’s complex for alkene hydrosilylation. Chemical Communications, 51(90), 16194-16196. doi:10.1039/c5cc05675fROTH, J. F., ABELL, J. B., FANNIN, L. W., & SCHAEFER, A. R. (1970). Catalytic Dehydrogenation of Higher Normal Paraffins to Linear Olefins. Advances in Chemistry, 193-203. doi:10.1021/ba-1970-0097.ch011Dry, M. E. (1990). The fischer-tropsch process - commercial aspects. Catalysis Today, 6(3), 183-206. doi:10.1016/0920-5861(90)85002-6Bukur, D. B., Lang, X., Akgerman, A., & Feng, Z. (1997). Effect of Process Conditions on Olefin Selectivity during Conventional and Supercritical Fischer−Tropsch Synthesis. Industrial & Engineering Chemistry Research, 36(7), 2580-2587. doi:10.1021/ie960507bPrieto, G., De Mello, M. I. S., Concepción, P., Murciano, R., Pergher, S. B. C., & Martı́nez, A. (2015). Cobalt-Catalyzed Fischer–Tropsch Synthesis: Chemical Nature of the Oxide Support as a Performance Descriptor. ACS Catalysis, 5(6), 3323-3335. doi:10.1021/acscatal.5b00057Keim, W. (2013). Oligomerization of Ethylene to α-Olefins: Discovery and Development of the Shell Higher Olefin Process (SHOP). Angewandte Chemie International Edition, 52(48), 12492-12496. doi:10.1002/anie.201305308Keim, W. (2013). Oligomerisierung von Ethen zu α-Olefinen: Erfindung und Entwicklung des Shell-Higher-Olefin-Prozesses (SHOP). Angewandte Chemie, 125(48), 12722-12726. doi:10.1002/ange.201305308Chalk, A. J., & Harrod, J. F. (1965). Homogeneous Catalysis. II. The Mechanism of the Hydrosilation of Olefins Catalyzed by Group VIII Metal Complexes1. Journal of the American Chemical Society, 87(1), 16-21. doi:10.1021/ja01079a004Jia, X., & Huang, Z. (2015). Conversion of alkanes to linear alkylsilanes using an iridium–iron-catalysed tandem dehydrogenation–isomerization–hydrosilylation. Nature Chemistry, 8(2), 157-161. doi:10.1038/nchem.2417Dvořák, F., Farnesi Camellone, M., Tovt, A., Tran, N.-D., Negreiros, F. R., Vorokhta, M., … Fabris, S. (2016). Creating single-atom Pt-ceria catalysts by surface step decoration. Nature Communications, 7(1). doi:10.1038/ncomms10801Kozlov, S. M., Viñes, F., Nilius, N., Shaikhutdinov, S., & Neyman, K. M. (2012). Absolute Surface Step Energies: Accurate Theoretical Methods Applied to Ceria Nanoislands. The Journal of Physical Chemistry Letters, 3(15), 1956-1961. doi:10.1021/jz3006942Wodrich, M. D., Busch, M., & Corminboeuf, C. (2016). Accessing and predicting the kinetic profiles of homogeneous catalysts from volcano plots. Chemical Science, 7(9), 5723-5735. doi:10.1039/c6sc01660jGutiérrez-Tarriño, S., Concepción, P., & Oña-Burgos, P. (2018). Cobalt Catalysts for Alkene Hydrosilylation under Aerobic Conditions without Dry Solvents or Additives. European Journal of Inorganic Chemistry, 2018(45), 4867-4874. doi:10.1002/ejic.20180106
    corecore