211,964 research outputs found
Biocatalytic self-assembly cascades
The properties of supramolecular materials are dictated by both kinetic and thermodynamic aspects, providing opportunities to dynamically regulate morphology and function. Herein, we demonstrate time-dependent regulation of supramolecular self-assembly by connected, kinetically competing enzymatic reactions. Starting from Fmoc-tyrosine phosphate and phenylalanine amide in the presence of an amidase and phosphatase, four distinct self-assembling molecules may be formed which each give rise to distinct morphologies (spheres, fibers, tubes/tapes and sheets). By varying the sequence or ratio in which the enzymes are added to mixtures of precursors, these structures can be (transiently) accessed and interconverted. The approach provides insights into dynamic self-assembly using competing pathways that may aid the design of soft nanostructures with tunable dynamic properties and life times
The Statistical Mechanics of Dynamic Pathways to Self-assembly
We describe some of the important physical characteristics of the `pathways',
i.e. dynamical processes, by which molecular, nanoscale and micron-scale
self-assembly occurs. We highlight the fact that there exist features of
self-assembly pathways that are common to a wide range of physical systems,
even though those systems may be different in respect of their microscopic
details. We summarize some existing theoretical descriptions of self-assembly
pathways, and highlight areas -- notably, the description of self-assembly
pathways that occur `far' from equilibrium -- that are likely to become
increasingly important.Comment: To appear in Annual Review of Physical Chemistr
Intrinsic Universality in Self-Assembly
We show that the Tile Assembly Model exhibits a strong notion of universality
where the goal is to give a single tile assembly system that simulates the
behavior of any other tile assembly system. We give a tile assembly system that
is capable of simulating a very wide class of tile systems, including itself.
Specifically, we give a tile set that simulates the assembly of any tile
assembly system in a class of systems that we call \emph{locally consistent}:
each tile binds with exactly the strength needed to stay attached, and that
there are no glue mismatches between tiles in any produced assembly.
Our construction is reminiscent of the studies of \emph{intrinsic
universality} of cellular automata by Ollinger and others, in the sense that
our simulation of a tile system by a tile system represents each tile
in an assembly produced by by a block of tiles in , where
is a constant depending on but not on the size of the assembly
produces (which may in fact be infinite). Also, our construction improves on
earlier simulations of tile assembly systems by other tile assembly systems (in
particular, those of Soloveichik and Winfree, and of Demaine et al.) in that we
simulate the actual process of self-assembly, not just the end result, as in
Soloveichik and Winfree's construction, and we do not discriminate against
infinite structures. Both previous results simulate only temperature 1 systems,
whereas our construction simulates tile assembly systems operating at
temperature 2
DNA Computing by Self-Assembly
Information and algorithms appear to be central to biological organization
and processes, from the storage and reproduction of genetic information to
the control of developmental processes to the sophisticated computations
performed by the nervous system. Much as human technology uses electronic
microprocessors to control electromechanical devices, biological
organisms use biochemical circuits to control molecular and chemical events.
The engineering and programming of biochemical circuits, in vivo and in
vitro, would transform industries that use chemical and nanostructured
materials. Although the construction of biochemical circuits has been
explored theoretically since the birth of molecular biology, our practical
experience with the capabilities and possible programming of biochemical
algorithms is still very young
Coarse-grained simulation of amphiphilic self-assembly
We present a computer simulation study of amphiphilic self assembly performed using a computationally efficient single-site model based on Gay-Berne and Lennard-Jones particles. Molecular dynamics simulations of these systems show that free self-assembly of micellar, bilayer and inverse micelle arrangements can be readily achieved for a single model parameterisation. This self-assembly is predominantly driven by the anisotropy of the amphiphile-solvent interaction, amphiphile-amphiphile interactions being found to be of secondary importance. While amphiphile concentration is the main determinant of phase stability, molecular parameters such as headgroup size and interaction strength also have measurable affects on system properties. </p
- …
