16,551 research outputs found

    Laser scanned image sensors using photoconductors with deep traps

    Get PDF
    Photoconductor records image when holes and electrons are trapped inside it due to incident photons. Image can be read out by exposing photoconductor to scanning laser beam. Photons from scanning laser empty traps, generating photocurrent. Image information is obtained by detecting this photocurrent synchronously with laser scan

    Photoelectric scanner makes detailed work function maps of metal surface

    Get PDF
    Photoelectric scanning device maps the work function of a metal surface by scanning it with a light spot and measuring the resulting photocurrent. The device is capable of use over a range of surface temperatures

    A versatile scanning photocurrent mapping system to characterize optoelectronic devices based on 2D materials

    Full text link
    The investigation of optoelectronic devices based on two-dimensional materials and their heterostructures is a very active area of investigation with both fundamental and applied aspects involved. We present a description of a home-built scanning photocurrent microscope that we have designed and developed to perform electronic transport and optical measurements of two-dimensional materials based devices. The complete system is rather inexpensive (<10000 EUR) and it can be easily replicated in any laboratory. To illustrate the setup we measure current-voltage characteristics, in dark and under global illumination, of an ultra-thin PN junction formed by the stacking of an n-doped few-layer MoS2 flake onto a p-type MoS2 flake. We then acquire scanning photocurrent maps and by mapping the short circuit current generated in the device under local illumination we find that at zero bias the photocurrent is generated mostly in the region of overlap between the n-type and p-type flakes.Comment: 9 pages, 3 figures, 1 table, supporting informatio

    Near-field photocurrent nanoscopy on bare and encapsulated graphene

    Get PDF
    Opto-electronic devices utilizing graphene have already demonstrated unique capabilities, which are much more difficult to realize with conventional technologies. However, the requirements in terms of material quality and uniformity are very demanding. A major roadblock towards high-performance devices are the nanoscale variations of graphene properties, which strongly impact the macroscopic device behaviour. Here, we present and apply opto-electronic nanoscopy to measure locally both the optical and electronic properties of graphene devices. This is achieved by combining scanning near-field infrared nanoscopy with electrical device read-out, allowing infrared photocurrent mapping at length scales of tens of nanometers. We apply this technique to study the impact of edges and grain boundaries on spatial carrier density profiles and local thermoelectric properties. Moreover, we show that the technique can also be applied to encapsulated graphene/hexagonal boron nitride (h-BN) devices, where we observe strong charge build-up near the edges, and also address a device solution to this problem. The technique enables nanoscale characterization for a broad range of common graphene devices without the need of special device architectures or invasive graphene treatment
    • …
    corecore