4,092 research outputs found

    Noise Suppression in Images by Median Filter

    Full text link
    A new and efficient algorithm for high-density salt and pepper noise removal in images and videos is proposed. In the transmission of images over channels, images are corrupted by salt and pepper noise, due to faulty communications. Salt and Pepper noise is also referred to as Impulse noise. The objective of filtering is to remove the impulses so that the noise free image is fully recovered with minimum signal distortion. Noise removal can be achieved, by using a number of existing linear filtering techniques. We will deal with the images corrupted by salt-and-pepper noise in which the noisy pixels can take only the maximum or minimum values (i.e. 0 or 255 for 8-bit grayscale images)

    Robust watermarking for magnetic resonance images with automatic region of interest detection

    Get PDF
    Medical image watermarking requires special considerations compared to ordinary watermarking methods. The first issue is the detection of an important area of the image called the Region of Interest (ROI) prior to starting the watermarking process. Most existing ROI detection procedures use manual-based methods, while in automated methods the robustness against intentional or unintentional attacks has not been considered extensively. The second issue is the robustness of the embedded watermark against different attacks. A common drawback of existing watermarking methods is their weakness against salt and pepper noise. The research carried out in this thesis addresses these issues of having automatic ROI detection for magnetic resonance images that are robust against attacks particularly the salt and pepper noise and designing a new watermarking method that can withstand high density salt and pepper noise. In the ROI detection part, combinations of several algorithms such as morphological reconstruction, adaptive thresholding and labelling are utilized. The noise-filtering algorithm and window size correction block are then introduced for further enhancement. The performance of the proposed ROI detection is evaluated by computing the Comparative Accuracy (CA). In the watermarking part, a combination of spatial method, channel coding and noise filtering schemes are used to increase the robustness against salt and pepper noise. The quality of watermarked image is evaluated using Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM), and the accuracy of the extracted watermark is assessed in terms of Bit Error Rate (BER). Based on experiments, the CA under eight different attacks (speckle noise, average filter, median filter, Wiener filter, Gaussian filter, sharpening filter, motion, and salt and pepper noise) is between 97.8% and 100%. The CA under different densities of salt and pepper noise (10%-90%) is in the range of 75.13% to 98.99%. In the watermarking part, the performance of the proposed method under different densities of salt and pepper noise measured by total PSNR, ROI PSNR, total SSIM and ROI SSIM has improved in the ranges of 3.48-23.03 (dB), 3.5-23.05 (dB), 0-0.4620 and 0-0.5335 to 21.75-42.08 (dB), 20.55-40.83 (dB), 0.5775-0.8874 and 0.4104-0.9742 respectively. In addition, the BER is reduced to the range of 0.02% to 41.7%. To conclude, the proposed method has managed to significantly improve the performance of existing medical image watermarking methods

    Two new methods for removing salt - and - pepper noise from digital images

    Get PDF
    In this study, we developed two new alternative methods to enhance images which operate satisfactorily with high levels of noise in any given window size. We also conducted a test by adding the most frequently used noise type to the test images of salt-and-pepper noise. The results are compared with other well-known noise remover methods in the literature such as, standard median filter (SMF) and adaptive median filter (AMF), and much better results were obtained. For instance, the results of SMF and AMF filters as well as peak signal-to-noise ratio (PSNR) are 33.2 and 29.8 respectively by adding a ratio of 0.1 salt-and-pepper noise to the Lena image. With the new methods,the results are 41.4 and 41.4. The newly developed methods also generate better results in reducing high volume of noise. For instance, if a ratio of 0.5 salt-and-pepper noise is applied to a Lena image, PSNR results are 15.22 and 22.78 in SMF and AMF, and 25.8 and 28.9 with newly developed methods

    A Two-Stage Filter for High Density Salt and Pepper Denoising

    Get PDF
    Image restoration is an important and interesting problem in the field of image processing because it improves the quality of input images, which facilitates postprocessing tasks. The salt-and-pepper noise has a simpler structure than other noises, such as Gaussian and Poisson noises, but is a very common type of noise caused by many electronic devices. In this article, we propose a two-stage filter to remove high-density salt-and-pepper noise on images. The range of application of the proposed denoising method goes from low-density to high-density corrupted images. In the experiments, we assessed the image quality after denoising using the peak signal-to-noise ratio and structural similarity metric. We also compared our method against other similar state-of-the-art denoising methods to prove its effectiveness for salt and pepper noise removal. From the findings, one can conclude that the proposed method can successfully remove super-high-density noise with noise level above 90%. (c) 2020, Springer Science+Business Media, LLC, part of Springer Nature

    Lossless Authentication Watermarking Based on Adaptive Modular Arithmetic

    Get PDF
    Reversible watermarking schemes based on modulo-256 addition may cause annoying salt-and-pepper noise. To avoid the salt-and-pepper noise, a reversible watermarking scheme using human visual perception characteristics and adaptive modular arithmetic is proposed. First, a high-bit residual image is obtained by extracting the most significant bits (MSB) of the original image, and a new spatial visual perception model is built according to the high-bit residual image features. Second, the watermark strength and the adaptive divisor of modulo operation for each pixel are determined by the visual perception model. Finally, the watermark is embedded into different least significant bits (LSB) of original image with adaptive modulo addition. The original image can be losslessly recovered if the stego-image has not been altered. Extensive experiments show that the proposed algorithm eliminates the salt-and-pepper noise effectively, and the visual quality of the stego-image with the proposed algorithm has been dramatically improved over some existing reversible watermarking algorithms. Especially, the stegoimage of this algorithm has about 9.9864 dB higher PSNR value than that of modulo-256 addition based reversible watermarking scheme
    corecore