302 research outputs found

    Development of a model for sEMG based joint-torque estimation using Swarm techniques

    Full text link
    © 2016 IEEE. Over the years, numerous researchers have explored the relationship between surface electromyography (sEMG) signal with joint torque that would be useful to develop a suitable controller for rehabilitation robot. This research focuses on the transformation of sEMG signal by adopting a mathematical model to find the estimated joint torque of knee extension. Swarm techniques such as Particle Swarm Optimization (PSO) and Improved Particle Swarm Optimization (IPSO) were adapted to optimize the mathematical model for estimated joint torque. The correlation between the estimated joint torque and actual joint torque were determined by Coefficient of Determination (R2) and fitness value of Sum Squared Error (SSE). The outcome of the research shows that both the PSO and IPSO have yielded promising results

    Robotics rehabilitation of the elbow based on surface electromyography signals

    Get PDF
    Physical rehabilitation based on robotic systems has the potential to cover the patient’s need of improvement of upper extremity functionalities. In this article, the state of the art of resistant and assistive upper limb exoskeleton robots and their control are thoroughly investigated. Afterward, a single-degree-of-freedom exoskeleton matching the elbow–forearm has been advanced to grant a valid rehabilitation therapy for persons with physical disability of upper limb motion. The authors have focused on the control system based on the use of electromyography signals as an input to drive the joint movement and manage the robotics arm. The correlation analysis between surface electromyography signal and the force exerted by the subject was studied in objects’ grasping tests with the purpose of validating the methodology. The authors developed an innovative surface electromyography force–based active control that adjusts the force exerted by the device during rehabilitation. The control was validated by an experimental campaign on healthy subjects simulating disease on an arm, with positive results that confirm the proposed solution and that open the way to future researches

    Biomechatronics: Harmonizing Mechatronic Systems with Human Beings

    Get PDF
    This eBook provides a comprehensive treatise on modern biomechatronic systems centred around human applications. A particular emphasis is given to exoskeleton designs for assistance and training with advanced interfaces in human-machine interaction. Some of these designs are validated with experimental results which the reader will find very informative as building-blocks for designing such systems. This eBook will be ideally suited to those researching in biomechatronic area with bio-feedback applications or those who are involved in high-end research on manmachine interfaces. This may also serve as a textbook for biomechatronic design at post-graduate level

    An EMG-based force prediction and control approach for robot-assisted lower limb rehabilitation

    Get PDF
    This paper proposes an electromyography (EMG)-based method for online force prediction and control of a lower limb rehabilitation robot. Root mean square (RMS) features of EMG signals from four muscles of the lower limb are used as the inputs to a support vector regression (SVR) model to estimate the human-robot interaction force. The autoregressive algorithm is utilized to construct the relationship between EMG signals and the impact force. Combining the force prediction model with the position-based impedance controller, the robot can be controlled to track the desired force of the lower limb, and so as to achieve an adaptive and active rehabilitation mode, which is adaptable to the individual muscle strength and movement ability. Finally, the method was validated through experiments on a healthy subject. The results show that the EMG-based SVR model can predict the lower limb force accurately and the robot can be controlled to track the estimated force by using simplified impedance model

    An EMG-based force prediction and control approach for robot-assisted lower limb rehabilitation

    Get PDF
    This paper proposes an electromyography (EMG)-based method for online force prediction and control of a lower limb rehabilitation robot. Root mean square (RMS) features of EMG signals from four muscles of the lower limb are used as the inputs to a support vector regression (SVR) model to estimate the human-robot interaction force. The autoregressive algorithm is utilized to construct the relationship between EMG signals and the impact force. Combining the force prediction model with the position-based impedance controller, the robot can be controlled to track the desired force of the lower limb, and so as to achieve an adaptive and active rehabilitation mode, which is adaptable to the individual muscle strength and movement ability. Finally, the method was validated through experiments on a healthy subject. The results show that the EMG-based SVR model can predict the lower limb force accurately and the robot can be controlled to track the estimated force by using simplified impedance model

    Real-time Hybrid Locomotion Mode Recognition for Lower-limb Wearable Robots

    Get PDF
    Real-time recognition of locomotion-related activities is a fundamental skill that the controller of lower-limb wearable robots should possess. Subject-specific training and reliance on electromyographic interfaces are the main limitations of existing approaches. This study presents a novel methodology for real-time locomotion mode recognition of locomotion-related activities in lower-limb wearable robotics. A hybrid classifier can distinguish among seven locomotion-related activities. First, a time-based approach classifies between static and dynamical states based on gait kinematics data. Second, an event-based fuzzy logic method triggered by foot pressure sensors operates in a subject-independent fashion on a minimal set of relevant biomechanical features to classify among dynamical modes. The locomotion mode recognition algorithm is implemented on the controller of a portable powered orthosis for hip assistance. An experimental protocol is designed to evaluate the controller performance in an out-of-lab scenario without the need for a subject-specific training. Experiments are conducted on six healthy volunteers performing locomotion-related activities at slow, normal, and fast speeds under the zero-torque and assistive mode of the orthosis. The overall accuracy rate of the controller is 99.4% over more than 10,000 steps, including seamless transitions between different modes. The experimental results show a successful subject-independent performance of the controller for wearable robots assisting locomotion-related activities

    Machine Learning in Robot Assisted Upper Limb Rehabilitation: A Focused Review

    Get PDF
    Robot-assisted rehabilitation, which can provide repetitive, intensive and high-precision physics training, has a positive influence on motor function recovery of stroke patients. Current robots need to be more intelligent and more reliable in clinical practice. Machine learning algorithms (MLAs) are able to learn from data and predict future unknown conditions, which is of benefit to improve the effectiveness of robot-assisted rehabilitation. In this paper, we conduct a focused review on machine learning-based methods for robot-assisted upper limb rehabilitation. Firstly, the current status of upper rehabilitation robots is presented. Then, we outline and analyze the designs and applications of MLAs for upper limb movement intention recognition, human-robot interaction control and quantitative assessment of motor function. Meanwhile, we discuss the future directions of MLAs-based robotic rehabilitation. This review article provides a summary of MLAs for robotic upper limb rehabilitation and contributes to the design and development of future advanced intelligent medical devices

    Upper limb soft robotic wearable devices: a systematic review

    Get PDF
    Introduction: Soft robotic wearable devices, referred to as exosuits, can be a valid alternative to rigid exoskeletons when it comes to daily upper limb support. Indeed, their inherent flexibility improves comfort, usability, and portability while not constraining the user’s natural degrees of freedom. This review is meant to guide the reader in understanding the current approaches across all design and production steps that might be exploited when developing an upper limb robotic exosuit. Methods: The literature research regarding such devices was conducted in PubMed, Scopus, and Web of Science. The investigated features are the intended scenario, type of actuation, supported degrees of freedom, low-level control, high-level control with a focus on intention detection, technology readiness level, and type of experiments conducted to evaluate the device. Results: A total of 105 articles were collected, describing 69 different devices. Devices were grouped according to their actuation type. More than 80% of devices are meant either for rehabilitation, assistance, or both. The most exploited actuation types are pneumatic (52%) and DC motors with cable transmission (29%). Most devices actuate 1 (56%) or 2 (28%) degrees of freedom, and the most targeted joints are the elbow and the shoulder. Intention detection strategies are implemented in 33% of the suits and include the use of switches and buttons, IMUs, stretch and bending sensors, EMG and EEG measurements. Most devices (75%) score a technology readiness level of 4 or 5. Conclusion: Although few devices can be considered ready to reach the market, exosuits show very high potential for the assistance of daily activities. Clinical trials exploiting shared evaluation metrics are needed to assess the effectiveness of upper limb exosuits on target users
    • …
    corecore