1,446 research outputs found

    Understand spiciness: mechanism of TRPV1 channel activation by capsaicin.

    Get PDF
    Capsaicin in chili peppers bestows the sensation of spiciness. Since the discovery of its receptor, transient receptor potential vanilloid 1 (TRPV1) ion channel, how capsaicin activates this channel has been under extensive investigation using a variety of experimental techniques including mutagenesis, patch-clamp recording, crystallography, cryo-electron microscopy, computational docking and molecular dynamic simulation. A framework of how capsaicin binds and activates TRPV1 has started to merge: capsaicin binds to a pocket formed by the channel's transmembrane segments, where it takes a "tail-up, head-down" configuration. Binding is mediated by both hydrogen bonds and van der Waals interactions. Upon binding, capsaicin stabilizes the open state of TRPV1 by "pull-and-contact" with the S4-S5 linker. Understanding the ligand-host interaction will greatly facilitate pharmaceutical efforts to develop novel analgesics targeting TRPV1

    Reactive oxygen species mediate TNFR1 increase after TRPV1 activation in mouse DRG neurons

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Transient receptor potential vanilloid subtype 1 (TRPV1) is activated by low pH/protons and is well known to be involved in hyperalgesia during inflammation. Tumor necrosis factor α (TNF-α), a proinflammatory cytokine, is involved in nociceptive responses causing hyperalgesia through TNF receptor type 1 (TNFR1) activation. Reactive oxygen species (ROS) production is also prominently increased in inflamed tissue. The present study investigated TNFR1 receptors in primary cultured mouse dorsal root ganglion (DRG) neurons after TRPV1 activation and the involvement of ROS. C57BL/6 mice, both TRPV1 knockout and wild type, were used for immunofluorescent and live cell imaging. The L4 and L5 DRGs were dissected bilaterally and cultured overnight. TRPV1 was stimulated with capsaicin or its potent analog, resiniferatoxin. ROS production was measured with live cell imaging and TNFR1 was detected with immunofluorescence in DRG primary cultures. The TRPV1 knockout mice, TRPV1 antagonist, capsazepine, and ROS scavenger, N-tert-Butyl-α-phenylnitrone (PBN), were employed to explore the functional relationship among TRPV1, ROS and TNFR1 in these studies.</p> <p>Results</p> <p>The results demonstrate that TRPV1 activation increases TNFR1 receptors and ROS generation in primary cultures of mouse DRG neurons. Activated increases in TNFR1 receptors and ROS production are absent in TRPV1 deficient mice. The PBN blocks increases in TNFR1 and ROS production induced by capsaicin/resiniferatoxin.</p> <p>Conclusion</p> <p>TRPV1 activation increases TNFR1 in cultured mouse DRG neurons through a ROS signaling pathway, a novel sensitization mechanism in DRG neurons.</p

    A 1,3-Dipolar Cycloaddition Approach to the Synthesis of Resiniferatoxin

    Get PDF
    The Rh(I)-catalyzed allenic cyclocarbonylation reaction is a formal [2 + 2 + 1] cycloaddition process that has been used to gain access to 4-alkylidenecyclopentenones. Incorporation of a six-membered ring on the tether between the allene and the alkyne components allows access to a variety of [6-7-5] ring structures featured in the skeletons of various natural products, including resiniferatoxin. This thesis describes the development of two systems, each with a future synthesis of resiniferatoxin in mind. First, a model system was designed to demonstrate the compatibility of the isoxazoline moiety with the Rh(I)-catalyzed cyclocarbonylation reaction. The second investigation involved the synthesis of an asymmetrically functionalized 2-cyclohexenone in order to attempt a stereoselective 1,3-dipolar cycloaddition. The first model system successfully led to the synthesis of the unfunctionalized [6-7-5] core of resiniferatoxin via cyclocarbonylation of an isoxazoline-containing allene-yne. Unfortunately, under numerous conditions, the functionalized cyclohexenone synthesized for the second study failed to undergo [2 + 3] cycloaddition with a nitrile oxide

    Resiniferatoxin mediated ablation of TRPV1+ neurons removes TRPA1 as well

    Get PDF
    Resiniferatoxin, the most potent agonist of inflammatory pain/vanilloid receptor/cation channel (TRPV1) can be used for neuron subtype specific ablation of pain generating cells at the level of the peripheral nervous system by Ca(2+)-excytotoxicity. Molecular neurosurgery is an emerging technology either to alleviate severe pain in cancer or treat/prevent different local neuropathies. Our aim was determining sensory modalities that may be lost after resiniferatoxin treatment.status: publishe

    Molecular surgery concept from bench to bedside: a focus on TRPV1+ pain-sensing neurons

    Get PDF
    “Molecular neurosurgery” is emerging as a new medical concept, and is the combination of two partners: (i) a molecular neurosurgery agent, and (ii) the cognate receptor whose activation results in the selective elimination of a specific subset of neurons in which this receptor is endogenously expressed. In general, a molecular surgery agent is a selective and potent ligand, and the target is a specific cell type whose elimination is desired through the molecular surgery procedure. These target cells have the highest innate sensitivity to the molecular surgery agent usually due to the highest receptor density being in their plasma membrane. The interaction between the ligand and its receptor evokes an overactivity of the receptor. If the receptor is a ligand-activated non-selective cation channel, the overactivity of receptor leads to excess Ca2+ and Na+ influx into the cell and finally cell death. One of the best known examples of such an interaction is the effect of ultrapotent vanilloids on TRPV1- expressing pain-sensing neurons. One intrathecal resiniferatoxin (RTX) dose allows for the receptor-mediated removal of TRPV1+ neurons from the peripheral nervous system. The TRPV1 receptor-mediated ion influx induces necrotic processes, but only in pain-sensing neurons, and usually within an hour. Besides that, target-specific apoptotic processes are also induced. Thus, as a nano-surgery scalpel, RTX removes the neurons responsible for generating pain and inflammation from the peripheral nervous system providing an option in clinical management for the treatment of morphine-insensitive pain conditions. In the future, the molecular surgery concept can also be exploited in cancer research for selectively targeting the specific tumor cell

    Impact of Central and Peripheral TRPV1 and ROS Levels on Proinflammatory Mediators and Nociceptive Behavior

    Get PDF
    Background: Transient receptor potential vanilloid 1 (TRPV1) channels are important membrane sensors on peripheral nerve endings and on supportive non-neuronal synoviocytes in the knee joint. TRPV 1 ion channels respond with activation of calcium and sodium fluxes to pH, thermal, chemical, osmotic, mechanical and other stimuli abundant in inflamed joints. In the present study, the kaolin/carrageenan (k/c) induced knee joint arthritis model in rats, as well as primary and clonal human synoviocyte cultures were used to understand the reciprocal interactions between reactive nitroxidative species (ROS) and functional TRPV1 channels. ROS generation was monitored with ROS sensitive dyes using live cell imaging in vitro and in spinal tissue histology, as well as with measurement of ROS metabolites in culture media using HPLC. Results: Functional responses in the experimental arthritis model, including increased nociceptive responses (thermal and mechanical hyperalgesia and allodynia), knee joint temperature reflecting local blood flow, and spinal cord ROS elevations were reduced by the ROS scavenger PBN after intraperitoneal pretreatment. Increases in TRPV1 and ROS, generated by synoviocytes in vitro, were reciprocally blocked by TRPV1 antagonists and the ROS scavenger. Further evidence is presented that synoviocyte responses to ROS and TRPV1 activation include increases in TNFalpha and COX-2, both measured as an indicator of the inflammation in vitro. Cconclusions: The results demonstrate that contributions of ROS to pronociceptive responses and neurogenic inflammation are mediated both centrally and peripherally. Responses are mediated by TRPV1 locally in the knee joint by synoviocytes, as well as by ROS-induced sensitization in the spinal cord. These findings and those of others reported in the literature indicate reciprocal interactions between TRPV1 and ROS play critical roles in the pathological and nociceptive responses active during arthritic inflammation

    Az erekben expresszálódó vanilloid receptor-1 (TRPV1) jellemzése = Characterization of vanilloid receptor-1 (TRPV1) located in blood vessels

    Get PDF
    Kutatásaink legfontosabb eredménye, hogy sikerült a transient receptor potential 1 (TRPV1) csatorna funkcionális arteriális expresszióját kimutatnunk. További kísérleteinkben felismertük, hogy a vaszkuláris TRPV1 farmakológiai tulajdonságai eltérnek a neuronális, fájdalomérzetért felelős receptorétól. Eredményeink arra utalnak, hogy a vaszkuláris TRPV1 egy független gyógyszergyári célpont lehet az erek összahúzására irányuló erőfeszítések esetében, továbbá, hogy a TRPV1 fájdalomcsillapítás érdekében történő gátlása nem kívánt vaszkuláris hatásokhoz vezethet. | The main finding of our research is that functional transient receptor potential 1 (TRPV1) channel expression is present in arterial smooth muscle cells. Further studies revealed that the pharmacological properties of the vascular TRPV1 are different from the TRPV1 expressed in sensory neuronal cells, responsible for sensory irritation. Our research pinpoints vascular TRPV1 as a potential pharmaceutical target to evoke arteriolar constriction in diseases where it is desired (e.g. shock) and suggests that inhibition of TRPV1 to antagonize pain may lead to unwanted vascular side effects

    Molecular cloning and expression pattern of rpr-1, a resiniferatoxin-binding, phosphotriesterase-related protein, expressed in rat kidney tubules1The sequence of rpr-1 has the EMBL accession number X99477.1

    Get PDF
    AbstractBacterial phosphotriesterases are enzymes that hydrolyse phosphotriester-containing organophosphate pesticides. Resiniferatoxin is a vanilloid that desensitises nociceptive neurons. By screening a rat cDNA library with labelled resiniferatoxin, we unexpectedly isolated a novel rat phosphotriesterase homologue, here named rpr-1, that encodes a 349 amino acid, 39 kDa protein (confirmed by in vitro translation). Northern blotting and in situ hybridisation show expression primarily in proximal tubules of the kidney, in which rpr-1 distribution correlates with resiniferatoxin-binding activity. These results suggest an unsuspected link between the phosphotriesterase enzyme family and resiniferatoxin toxicity and pharmacology
    corecore