8,912 research outputs found

    On Arnold's 14 `exceptional' N=2 superconformal gauge theories

    Get PDF
    We study the four-dimensional superconformal N=2 gauge theories engineered by the Type IIB superstring on Arnold's 14 exceptional unimodal singularities (a.k.a. Arnold's strange duality list), thus extending the methods of 1006.3435 to singularities which are not the direct sum of minimal ones. In particular, we compute their BPS spectra in several `strongly coupled' chambers. From the TBA side, we construct ten new periodic Y-systems, providing additional evidence for the existence of a periodic Y-system for each isolated quasi-homogeneous singularity with c^<2\hat c<2 (more generally, for each N=2 superconformal theory with a finite BPS chamber whose chiral primaries have dimensions of the form N/l).Comment: 73 pages, 7 figure

    Potts q-color field theory and scaling random cluster model

    Full text link
    We study structural properties of the q-color Potts field theory which, for real values of q, describes the scaling limit of the random cluster model. We show that the number of independent n-point Potts spin correlators coincides with that of independent n-point cluster connectivities and is given by generalized Bell numbers. Only a subset of these spin correlators enters the determination of the Potts magnetic properties for q integer. The structure of the operator product expansion of the spin fields for generic q is also identified. For the two-dimensional case, we analyze the duality relation between spin and kink field correlators, both for the bulk and boundary cases, obtaining in particular a sum rule for the kink-kink elastic scattering amplitudes.Comment: 27 pages; 6 figures. Published version, some comments and references adde

    Quantum gauge symmetries in Noncommutative Geometry

    Full text link
    We discuss generalizations of the notion of i) the group of unitary elements of a (real or complex) finite dimensional C*-algebra, ii) gauge transformations and iii) (real) automorphisms, in the framework of compact quantum group theory and spectral triples. The quantum analogue of these groups are defined as universal (initial) objects in some natural categories. After proving the existence of the universal objects, we discuss several examples that are of interest to physics, as they appear in the noncommutative geometry approach to particle physics: in particular, the C*-algebras M_n(R), M_n(C) and M_n(H), describing the finite noncommutative space of the Einstein-Yang-Mills systems, and the algebras A_F=C+H+M_3(C) and A^{ev}=H+H+M_4(C), that appear in Chamseddine-Connes derivation of the Standard Model of particle physics minimally coupled to gravity. As a byproduct, we identify a "free" version of the symplectic group Sp(n) (quaternionic unitary group).Comment: 31 pages, no figures; v2: minor changes, added reference

    On the generation of sequential unitary gates from continuous time Schrodinger equations driven by external fields

    Full text link
    In all the various proposals for quantum computers, a common feature is that the quantum circuits are expected to be made of cascades of unitary transformations acting on the quantum states. A framework is proposed to express these elementary quantum gates directly in terms of the control inputs entering into the continuous time forced Schrodinger equation.Comment: 10 page

    Understanding the nature of FRII optical nuclei: a new diagnostic plane for radio galaxies

    Get PDF
    We extend our study of the nuclei of 3CR FR II radio galaxies through HST optical images up to z=0.3. In the majority of them an unresolved nucleus (central compact core, CCC) is found. We analyze their position in the plane formed by the radio and optical nuclear luminosities in relation to their optical spectral properties. The broad-lined objects (BLO) have the brightest nuclei: they are present only at optical luminosities nu L_nu > 4 X 10^42 erg s^-1 which we suggest might represent a threshold in the radiative efficiency combined to a small range of black hole masses. About 40 % of the high and low excitation galaxies (HEG and LEG) show CCC which resemble those previously detected in FR I galaxies, in apparent contrast to the unification model. The equivalent width of the [OIII] emission line (with respect to the nuclear luminosity) reveals the nature of these nuclei, indicating that the nuclei of HEG are obscured to our line of sight and only scattered radiation is observed. This implies that the population of FR II is composed by objects with different nuclear properties, and only a fraction of them can be unified with quasars.Comment: 11 pages, 6 figures, in press on Astronomy & Astrophysics, minor changes have been mad

    Trade-off between angular resolution and straylight contamination in CMB anisotropy experiments. II. Straylight evaluation

    Get PDF
    Satellite CMB anisotropy missions and new generation of balloon-borne and ground experiments, make use of complex multi-frequency instruments at the focus of a meter class telescope. Between 70 GHz and 300 GHz, where foreground contamination is minimum, it is extremely important to reach the best trade-off between the improvement of the angular resolution and the minimization of the straylight contamination mainly due to the Galactic emission. We focus here, as a working case, on the 30 and 100 GHz channels of the Planck Low Frequency Instrument (LFI). We evaluate the GSC introduced by the most relevant Galactic foreground components for a reference set of optical configurations. We show that it is possible to improve the angular resolution of 5-7% by keeping the overall GSC below the level of few microKelvin. A comparison between the level of straylight introduced by the different Galactic components for different beam regions is presented. Simple approximate relations giving the rms and peak-to-peak levels of the GSC are provided. We compare the results obtained at 100 GHz with those at 30 GHz, where GSC is more critical. Finally, we compare the results based on Galactic foreground templates derived from radio and IR surveys with those based on WMAP maps including CMB and extragalactic source fluctuations.Comment: Submitted to A&A. Quality of the figures was degraded for size-related reason

    High Frequency Peakers: young radio sources or flaring blazars?

    Get PDF
    We present new, simultaneous, multifrequency observations of 45 out of the 55 candidate High Frequency Peakers (HFP) selected by Dallacasa et al. (2000), carried out 3 to 4 years after a first set of observations. Our sub-sample consists of 10 galaxies, 28 stellar objects (``quasars'') and 7 unidentified sources. Both sets of observations are sensitive enough to allow the detection of variability at the 10% level or lower. While galaxies do not show significant variability, most quasars do. Seven of them no longer show the convex spectrum which is the defining property of Gigahertz Peaked Spectrum (GPS)/HFP sources and are interpreted as blazars caught by Dallacasa et al. (2000) during a flare, when a highly self-absorbed component dominated the emission. In general, the variability properties (amplitude, timescales, correlation between peak luminosity and peak frequency of the flaring component) of the quasar sub-sample resemble those of blazars. We thus conclude that most HFP candidates identified with quasars may well be flaring blazars.Comment: 20 pages, 18 figures, accepted for publication in Astronomy & Astrophysic

    Probing the nuclear obscuration in radio-galaxies with near infrared imaging

    Get PDF
    We present the first near-infrared (K'-band) homogeneous observations of a complete sub-sample of the 3CR radio catalogue comprising all High Excitation Galaxies (HEGs) at z<0.3. After showing that the surface brightness decomposition technique to measure central point-like sources is affected by significant uncertainties for the objects in the studied sample, we present a new, more accurate method based on the R-K' color profile. Via this method we find a substantial nuclear K'-band excess in all but two HEGs -- most likely directly associated to their nuclear emission -- and we measure the corresponding 2.12 ÎĽ\mum nuclear luminosities. Within the frame of the unification scheme for radio-loud active galactic nuclei, it appears that obscuration alone is not able to account for the different nuclear properties of the majority of the HEGs and Broad Line Radio Galaxies (BLRGs), and also scattering of the (optically) hidden nuclear light from a compact region must be invoked. More precisely, for ~70% of the HEGs the observed point-like optical emission is dominated by the scattered component, while in the K'-band both scattered and direct light passing through the torus contribute to the observed nuclear luminosity. The estimated fraction of scattered light ranges from a few tenths to a few percent, while the torus extinction is between 15<A_{V,torus}<50 mag with only a few exceptions with lower obscuration.Comment: Accepted for publication in A&A; high resolution version can be downloaded at http://www.astro.yale.edu/danilom

    The Universal Rotation Curve of Spiral Galaxies. II The Dark Matter Distribution out to the Virial Radius

    Get PDF
    In the current LambdaCDM cosmological scenario, N-body simulations provide us with a Universal mass profile, and consequently a Universal equilibrium circular velocity of the virialized objects, as galaxies. In this paper we obtain, by combining kinematical data of their inner regions with global observational properties, the Universal Rotation Curve (URC) of disk galaxies and the corresponding mass distribution out to their virial radius. This curve extends the results of Paper I, concerning the inner luminous regions of Sb-Im spirals, out to the edge of the galaxy halos.Comment: In press on MNRAS. 10 pages, 8 figures. The Mathematica code for the figures is available at: http://www.novicosmo.org/salucci.asp Corrected typo

    Primordial black hole formation in the early universe: critical behaviour and self-similarity

    Full text link
    Following on after three previous papers discussing the formation of primordial black holes during the radiative era of the early universe, we present here a further investigation of the critical nature of the process involved, aimed at making contact with some of the basic underlying ideas from the literature on critical collapse. We focus on the intermediate state, which we have found appearing in cases with perturbations close to the critical limit, and examine the connection between this and the similarity solutions which play a fundamental role in the standard picture of critical collapse. We have derived a set of self-similar equations for the null-slicing form of the metric which we are using for our numerical calculations, and have then compared the results obtained by integrating these with the ones coming from our simulations for collapse of cosmological perturbations within an expanding universe. We find that the similarity solution is asymptotically approached in a region which grows to cover both the contracting matter and part of the semi-void which forms outside it. Our main interest is in the situation relevant for primordial black hole formation in the radiative era of the early universe, where the relation between the pressure pp and the energy density ee can be reasonably approximated by an expression of the form p=wep = we with w=1/3w=1/3. However, we have also looked at other values of ww, both because these have been considered in previous literature and also because they can be helpful for giving further insight into situations relevant for primordial black hole formation. As in our previous work, we have started our simulations with initial supra-horizon scale perturbations of a type which could have come from inflation.Comment: 23 pages, 8 figures, new abstract, submitted to Classical and Quantum Gravity. This new version of the paper has been completely rewritten with respect the previous one, with several changes and substantial additional wor
    • …
    corecore