5,686 research outputs found

    Student-Faculty Partnership: The European Framework and the Experience of the Italian Project Employability & Competences.

    Get PDF
    The article describes the European Framework for Improving Quality of Teaching in Europe and the research carried our at Italian University to explore the student voices in higher education

    Constraints on Radial Migration in Spiral Galaxies - II. Angular momentum distribution and preferential migration

    Get PDF
    The orbital angular momentum of individual stars in galactic discs can be permanently changed through torques from transient spiral patterns. Interactions at the corotation resonance dominate these changes and have the further property of conserving orbital circularity. We derived in an earlier paper an analytic criterion that an unperturbed stellar orbit must satisfy in order for such an interaction to occur i.e. for it to be in a trapped orbit around corotation. We here use this criterion in an investigation of how the efficiency of induced radial migration for a population of disc stars varies with the angular momentum distribution of that population. We frame our results in terms of the velocity dispersion of the population, this being an easier observable than is the angular momentum distribution. Specifically, we investigate how the fraction of stars in trapped orbits at corotation varies with the velocity dispersion of the population, for a system with an assumed flat rotation curve. Our analytic results agree with the finding from simulations that radial migration is less effective in populations with 'hotter' kinematics. We further quantify the dependence of this trapped fraction on the strength of the spiral pattern, finding a higher trapped fraction for higher amplitude perturbations.Comment: 28 pages, 15 figure, accepted for publication in MNRA

    Smoothness of definite unitary eigenvarieties at critical points

    Get PDF
    We compute an upper bound for the dimension of the tangent spaces at classical points of certain eigenvarieties associated with definite unitary groups, especially including the so-called critically refined cases. Our bound is given in terms of "critical types" and when our bound is minimized it matches the dimension of the eigenvariety. In those cases, which we explicitly determine, the eigenvariety is necessarily smooth and our proof also shows that the completed local ring on the eigenvariety is naturally a certain universal Galois deformation ring.Comment: 29 pages. Updated version of 2015 preprint (previously not arXiv'd

    Tuning the Magnetic Ordering Temperature of Hexagonal Ferrites by Structural Distortion Control

    Get PDF
    To tune the magnetic properties of hexagonal ferrites, a family of magnetoelectric multiferroic materials, by atomic-scale structural engineering, we studied the effect of structural distortion on the magnetic ordering temperature (TN). Using the symmetry analysis, we show that unlike most antiferromagnetic rare-earth transition-metal perovskites, a larger structural distortion leads to a higher TN in hexagonal ferrites and manganites, because the K3 structural distortion induces the three-dimensional magnetic ordering, which is forbidden in the undistorted structure by symmetry. We also revealed a near-linear relation between TN and the tolerance factor and a power-law relation between TN and the K3 distortion amplitude. Following the analysis, a record-high TN (185 K) among hexagonal ferrites was predicted in hexagonal ScFeO3 and experimentally verified in epitaxially stabilized films. These results add to the paradigm of spin-lattice coupling in antiferromagnetic oxides and suggests further tunability of hexagonal ferrites if more lattice distortion can be achieved

    Magnetothermodynamics: Measuring equations of state in a relaxed magnetohydrodynamic plasma

    Get PDF
    We report the first measurements of equations of state of a fully relaxed magnetohydrodynamic (MHD) laboratory plasma. Parcels of magnetized plasma, called Taylor states, are formed in a coaxial magnetized plasma gun, and are allowed to relax and drift into a closed flux conserving volume. Density, ion temperature, and magnetic field are measured as a function of time as the Taylor states compress and heat. The theoretically predicted MHD and double adiabatic equations of state are compared to experimental measurements. We find that the MHD equation of state is inconsistent with our data.Comment: 4 pages, 4 figure

    The Minimal Length of a Lagrangian Cobordism between Legendrians

    Get PDF
    To investigate the rigidity and flexibility of Lagrangian cobordisms between Legendrian submanifolds, we investigate the minimal length of such a cobordism, which is a 11-dimensional measurement of the non-cylindrical portion of the cobordism. Our primary tool is a set of real-valued capacities for a Legendrian submanifold, which are derived from a filtered version of Legendrian Contact Homology. Relationships between capacities of Legendrians at the ends of a Lagrangian cobordism yield lower bounds on the length of the cobordism. We apply the capacities to Lagrangian cobordisms realizing vertical dilations (which may be arbitrarily short) and contractions (whose lengths are bounded below). We also study the interaction between length and the linking of multiple cobordisms as well as the lengths of cobordisms derived from non-trivial loops of Legendrian isotopies.Comment: 33 pages, 9 figures. v2: Minor corrections in response to referee comments. More general statement in Proposition 3.3 and some reorganization at the end of Section

    Flipping the roles: Analysis of a university course where students become co-creators of curricula

    Get PDF
    In this paper I present the transformation of a university course inspired by the theoretical background of the student voice approach (Fielding, 2004a and 2004b; Cook-Sather, 2006) and, in particular, the ways students are encouraged to be \u201cco-creators of curricula\u201d through partnership with faculty (Bovill, Cook\u2010Sather & Felten, 2011). I introduce active learning practices centered on \u201cstudent generated content\u201d (Sener, 2007; Bates et al., 2012), allowing a new rendering of the traditional lesson cycle: frontal lesson, individual study, and final exam. The change in students\u2019 attitude towards study and final exam support the effectiveness of this methodology

    Energy dynamics in a simulation of LAPD turbulence

    Get PDF
    Energy dynamics calculations in a 3D fluid simulation of drift wave turbulence in the linear Large Plasma Device (LAPD) [W. Gekelman et al., Rev. Sci. Inst. 62, 2875 (1991)] illuminate processes that drive and dissipate the turbulence. These calculations reveal that a nonlinear instability dominates the injection of energy into the turbulence by overtaking the linear drift wave instability that dominates when fluctuations about the equilibrium are small. The nonlinear instability drives flute-like (k=0k_\parallel = 0) density fluctuations using free energy from the background density gradient. Through nonlinear axial wavenumber transfer to k0k_\parallel \ne 0 fluctuations, the nonlinear instability accesses the adiabatic response, which provides the requisite energy transfer channel from density to potential fluctuations as well as the phase shift that causes instability. The turbulence characteristics in the simulations agree remarkably well with experiment. When the nonlinear instability is artificially removed from the system through suppressing k=0k_\parallel=0 modes, the turbulence develops a coherent frequency spectrum which is inconsistent with experimental data

    Ordinary Modular Forms and Companion Points on the Eigencurve

    Get PDF
    We give a new proof of a result due to Breuil and Emerton which relates the splitting behavior at p of the p-adic Galois representation attached to a p-ordinary modular form to the existence of an overconvergent p-adic companion form for f.Comment: 12 pages. Final version. Changes from previous version: expanded on an argument in section 2.3 and minor correction of typos/languag

    Generalized Gauss maps and integrals for three-component links: toward higher helicities for magnetic fields and fluid flows, Part 2

    Get PDF
    We describe a new approach to triple linking invariants and integrals, aiming for a simpler, wider and more natural applicability to the search for higher order helicities of fluid flows and magnetic fields. To each three-component link in Euclidean 3-space, we associate a geometrically natural generalized Gauss map from the 3-torus to the 2-sphere, and show that the pairwise linking numbers and Milnor triple linking number that classify the link up to link homotopy correspond to the Pontryagin invariants that classify its generalized Gauss map up to homotopy. This can be viewed as a natural extension of the familiar fact that the linking number of a two-component link in 3-space is the degree of its associated Gauss map from the 2-torus to the 2-sphere. When the pairwise linking numbers are all zero, we give an integral formula for the triple linking number analogous to the Gauss integral for the pairwise linking numbers, but patterned after J.H.C. Whitehead's integral formula for the Hopf invariant. The integrand in this formula is geometrically natural in the sense that it is invariant under orientation-preserving rigid motions of 3-space, while the integral itself can be viewed as the helicity of a related vector field on the 3-torus. In the first paper of this series [math.GT 1101.3374] we did this for three-component links in the 3-sphere. Komendarczyk has applied this approach in special cases to derive a higher order helicity for magnetic fields whose ordinary helicity is zero, and to obtain from this nonzero lower bounds for the field energy.Comment: 22 pages, 8 figures. arXiv admin note: text overlap with arXiv:1101.337
    corecore