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SMOOTHNESS OF DEFINITE UNITARY EIGENVARIETIES AT
CRITICAL POINTS

JOHN BERGDALL

Abstract. We compute an upper bound for the dimension of the tangent spaces at classical
points of certain eigenvarieties associated with definite unitary groups, especially including
the so-called critically refined cases. Our bound is given in terms of “critical types” and
when our bound is minimized it matches the dimension of the eigenvariety. In those cases,
which we explicitly determine, the eigenvariety is necessarily smooth and our proof also
shows that the completed local ring on the eigenvariety is naturally a certain universal
Galois deformation ring.

1. Introduction

Let p be a prime number. Eigenvarieties, referring to p-adic families of automorphic
forms, first appeared thirty years ago in the work of Hida on p-ordinary elliptic cuspidal
eigenforms. Coleman and Mazur, and Buzzard, removed the ordinary condition in the final
decade of the 20th century, constructing p-adic families passing through all finite slope
cuspidal eigenforms. A number of authors have since given constructions of eigenvarieties
in a wide range of situations. Despite the growing interest in the subject, basic geometric
properties of eigenvarieties remain occluded.1

The goal of this article is to give upper bounds for the dimensions of the tangent spaces at
classical points on eigenvarieties associated with definite unitary groups. These bounds are
given in terms of critical types of triangulations of local Galois representations at the p-adic
places. The more critical a point is, the larger the upper bound.

We also give an exact condition for when our bound is minimized. In that case, our bound
equals the dimension of the corresponding eigenvariety and we get a smoothness statement
as well. For the rest of this introduction we set notation and state the main theorem.

1.1. Critical types of p-refined automorphic representations. Let F/F+ be a CM
extension of number fields such that each p-adic place of F+ splits in F . We will use G to
denote a rank n unitary group associated to this extension. We assume G×F+ F ' GLn/F
and that G is compact at infinity. In the body of the text, we will also make further technical
assumptions that we omit now (see Section 4). If v is a p-adic place of F+ then the choice
of a place ṽ | v in F defines an isomorphism G(F+

v ) ' GLn(Fṽ) = GLn(F+
v ). Thus, the local

components of automorphic representations for G at p-adic places are irreducible smooth
representations of GLn(F+

v ).
Associated with an automorphic representation π for G is a p-adic Galois representation

ρπ : GF → GLn(Qp).

Date: October 19, 2017.
2000 Mathematics Subject Classification. 11F33 (11F80, 11F55).

1For example: it is not known if the tame level 1, 2-adic eigencurve has finitely many connected components.
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The representation ρπ is geometric in the sense of Fontaine and Mazur: ρπ is unramified
except at finitely many places and it is de Rham at the p-adic places.

We now fix an automorphic representation π of G lying in the unramified principal series
at the p-adic places v | p in F+. For such v, we also fix the choice of ṽ | v in F and denote
by ρπ,ṽ its restriction to a decomposition group at ṽ. Since the local component πv at a
place v | p is an unramified principal series, the representation ρπ,ṽ is crystalline. Note that
Fṽ = F+

v and, to emphasize that the choice of ṽ does not matter substantially, we write
F+
v for this p-adic field. Finally, we choose a finite extension L/Qp, inside a fixed algebraic

closure Qp, such that the image of ρπ is contained in GLn(L), and we assume that L contains

the image of any embedding τ : F+
v ↪→ Qp for each v.

Along with π and the distinguished places ṽ, we also fix a collection of triangulations
(Pṽ,•)ṽ. Specifically, we consider the (ϕ,ΓF+

v
)-module Dπ,ṽ := D†rig(ρπ,ṽ) over the Robba ring

RF+
v ,L

(see Section 2), and the triangulation Pṽ,• is a full filtration

Pṽ,• : (0) = Pṽ,0 ( Pṽ,1 ( · · · ( Pṽ,n−1 ( Pṽ,n = Dπ,ṽ

of saturated (ϕ,ΓF+
v

)-submodules. We refer to π together with the choice of triangulations
as a p-refined automorphic representation (the terminology goes back to [36]).

The graded pieces of the triangulation Pṽ,• have rank one and so Pṽ,• defines an ordered
tuple (δṽ,1, . . . , δṽ,n) of continuous characters δṽ,i : (F+

v )× → L× as in [30, Section 6.2] (see
also Section 2.1). For each embedding τ : F+

v ↪→ L there exists an integer si,ṽ,τ (the τ -Hodge–
Tate weight of δṽ,i) such that δṽ,i(z) =

∏
τ τ(z)−si,ṽ,τ for all z in O×

F+
v

. (Our normalization

gives the identity character Hodge–Tate weight −1 at each embedding τ .)
On the other hand, for each embedding τ : F+

v ↪→ L, we also have the (necessarily distinct)
Hodge–Tate weights h1,ṽ,τ < h2,ṽ,τ < · · · < hn,ṽ,τ of Dπ,ṽ. For fixed ṽ and τ , the two sets
{si,ṽ,τ : i = 1, . . . , n} and {hi,ṽ,τ : i = 1, . . . , n} are equal, so we denote by σṽ,τ the unique
permutation defined by si,ṽ,τ = hσṽ,τ (i),ṽ,τ .

2

Definition 1.1. The critical type of the triangulation Pṽ,• of Dπ,ṽ is the collection of per-
mutations (σṽ,τ )τ . The triangulation Pṽ,• is called non-critical if σṽ,τ = id for each τ .

The non-critical case is the most common. For instance, a p-refined automorphic represen-
tation of non-critical slope is non-critical (see [5, Remark 2.4.6(ii)]) and having non-critical
slope is generic on an eigenvariety. Nevertheless, interesting arithmetic phenomena occur
in critical situations (see [4, Theorem 2] for example) and it seems less difficult for a tri-
angulation to be critical as n → ∞. For contrast, if n = 2 and F+

v = Qp then a critical
triangulation at ṽ exists if and only if ρπ,ṽ is abelian.

1.2. Main result. An eigenvariety p-adically interpolates p-refined automorphic represen-
tations (π, (Pṽ,•)). We refer to [20, 24] and Section 4 for details. Here, we fix a minimal
eigenvariety X containing the pair x := (π, (Pṽ,•)). Thus, X is a rigid analytic space over
Qp, equidimensional of dimension (F+ : Q) ·n. It implicitly depends on the choice of a tame
level; second, the minimal condition essentially means that the point x is not lying at the
intersection of two eigenvarieties obtained from smaller tame levels. Our main theorem is
a bound on the dimension of the Zariski tangent space TX,x of X at x in terms of critical
types. To state it, we need two notations.

2It may make sense to replace σṽ,τ by its inverse (for formulae in representation theory to work out cleaner).
The results below (Theorems 1.2 and 1.5) do not depend on this choice.
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The representation ρπ is conjugate self-dual, up to a twist, and if ρπ is absolutely irreducible
then the natural action of GF on the adjoint representation ad ρπ extends to an action of the
absolute Galois groupGF+ (see Section 4.3). We denote byH1

f (GF+ , ad ρπ) the corresponding
Bloch–Kato Selmer group [13].

If σ is a permutation of {1, . . . , n}, we let `(σ) = {(i, j) : i < j and σ(i) > σ(j)}. This is
also the length of a minimal expression of σ as a product of simple transpositions. (A simple
transposition is a transposition interchanging two consecutive integers i and i+ 1.) We also
write c(σ) for the number of orbits of the group generated by σ acting on {1, . . . , n}. For
example, `(id) = 0 and c(id) = n.

In the next theorem, we refer to Definition 3.4 for the notion of a regular generic triangu-
lation. For an idea, “regular” is a simplicity condition on crystalline eigenvalues.

Theorem 1.2 (Theorem 4.7). Suppose that π is an automorphic representation of G which
is unramified at each p-adic place and (Pṽ,•) is a collection of regular generic triangulations
for ρπ at the p-adic places. Assume that ρπ is irreducible and X is the minimal eigenvariety
containing the point x = (π, (Pṽ,•)). Then,

dimTX,x ≤ dimH1
f (GF+ , ad ρπ) +

∑
ṽ,τ

`(σṽ,τ ) + c(σṽ,τ ),

where (σṽ,τ )ṽ,τ are the critical types of the triangulations at x.

We also have the following direct corollary.

Corollary 1.3 (Corollary 4.8). With the notation and assumptions of Theorem 1.2, also
assume that H1

f (GF+ , ad ρπ) = (0) and each σṽ,τ is a product of distinct simple transpositions.
Then, X is smooth at the point x.

The Selmer group is conjectured to vanish;3 it has been proven in many cases, under
hypotheses inherent to the methods of Taylors–Wiles and Kisin (see [1] and [17, Section 4]).
Denote by ρss

π the semi-simplification of any mod p reduction of ρπ. As a concrete version of
Corollary 1.3, the main theorem of [1] implies:

Corollary 1.4. With the notation and assumptions of Theorem 1.2, assume that each σṽ,τ
is a product of distinct simple transpositions, ζp /∈ F , and ρss

π (GF (ζp)) is adequate.4 Then X
is smooth at x.

The main corollary is deduced from the theorem as follows. A short computation shows
that the contribution of the critical types in Theorem 1.2 is minimized, and equal to (F+ :
Q) ·n, exactly when each critical type is a product of distinct simple transpositions. Since X
is equidimensional of dimension (F+ : Q) ·n, this means that X is regular, and thus smooth,
at x in the situation of Corollary 1.3. The proof also gives an “R = T” theorem which we
will partially explain in Section 1.3 below (see Corollary 4.8 for a precise statement).

Examples constructed in [3] by Belläıche show that the irreducibility of ρπ is important in
Theorem 1.2 and Corollary 1.3. Regarding optimality, Breuil, Hellmann and Schraen have
shown that Corollary 1.3 is optimal in that X is singular once one of its critical types is
not a product of distinct simple transpositions. See [15, Theorem 1.2] and compare with the

3In fact, the larger space H1
f (GF , ad ρπ) is conjectured to vanish.

4The definition of adequate is taken from [1, Definition 3.1.1] , which generalizes [44, Definition 2.3].
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earlier result [16, Corollary 5.18]. We expand on these notes following Corollary 4.8 in the
text.

1.3. Sketch of proof. The proof of Theorem 1.2 follows a well-known strategy: we compare
a ring of Hecke operators to a universal deformation ring for a Galois representation. Our ring

of Hecke operators is the completion Ôrig
X,x of the rigid analytic local ring of the eigenvariety

X at the point x, and the deformation ring, denoted RRef,min
ρπ , is a deformation ring for ρπ.

The deformations parameterized by RRef,min
ρπ are weakly-refined at p-adic places and min-

imally ramified (or, unramified in the sense of Bloch and Kato) at the places away from p.
The weakly-refined condition depends on a triangulation (which is suppressed in the nota-
tion). When the triangulation is non-critical, the weakly-refined deformations are the same
as the trianguline deformations studied in [5, Chapter 2].

The interpolation of crystalline periods over eigenvarieties [31, 34] and the minimality of

our eigenvariety implies that there is a natural surjective map RRef,min
ρπ � Ôrig

X,x. In this way,
a bound for the tangent space TX,x is obtained from any bound for the Zariski tangent space
tRef,min
ρπ of the deformation ring RRef,min

ρπ .
Tangent spaces of deformation rings are computed using Galois cohomology. Following an

idea of Belläıche and Chenevier in the non-critical case, we observe that the global tangent
space tRef,min

ρπ is naturally equipped with restriction maps to the tangent spaces tRef
ρπ,ṽ

of the

weakly refined deformation problem at the p-adic places (see Section 3.2). One has a natural
exact sequence

(1) 0→ H1
f (GF+ , ad ρπ)→ tRef,min

ρπ →
⊕
v|p

tRef
ρπ,ṽ

/H1
f (GFṽ , ad ρπ,ṽ).

where H1
f (GFṽ , ad ρπ,ṽ) is the local Bloch-Kato Selmer group parameterizing infinitesimal

crystalline deformations of ρπ,ṽ.
Our main technical result is a bound on the third term in the sequence (1). The following

is a purely local theorem, but we state it here in the global context where it is applied.

Theorem 1.5 (Theorem 3.16). For each v | p,

dim tRef
ρπ,ṽ

/H1
f (GFṽ , ad ρπ,ṽ) ≤

∑
τ :F+

v →L

`(σṽ,τ ) + c(σṽ,τ ).

Combining the bound in Theorem 1.5 with the sequence (1) and the preceding paragraphs,
we get the bound in Theorem 1.2.

In the non-critical case, Theorem 1.5 is proven in [5] by computing the dimension of a
trianguline deformation ring. The key point in our generalization is carefully measuring, in
terms of the critical type, how far weakly-refined deformations are from being trianguline.
For that, we separately study (I) weakly-refined deformations with constant Hodge–Tate
weights and (II) the variation of Hodge–Tate weights in weakly-refined deformations.

Versions of the above results were obtained in low-dimensional cases by the author in his
Ph.D. thesis [8] and later in unpublished notes. The explicit goal was to prove the smoothness
part of Corollary 1.3, but only the second half of the computation, referring to (II), was well
understood (see [9, Section 7] for example).
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The condition of the critical types being products of distinct simple transpositions in
Corollary 1.3 did not occur to the author until hearing in lectures at the Centre Interna-
tional de Rencontres Mathématiques (Luminy) in 2015 that a similar local result was proven
by Breuil, Hellmann and Schraen [16]. Once the condition was noticed, the statement of
Theorem 1.5 and its proof were obtained independently. Compare with [16, Section 4]. The
applications to eigenvarieties in this paper and in [16] are different.

1.4. Organization. We give a brief reminder on (ϕ,Γ)-modules in Section 2. In Section 3
we define the weakly-refined deformations and prove Theorem 1.5. Section 4 is dedicated to
the proofs of Theorem 1.2 and Corollary 1.3.

1.5. Notations and conventions. We fix an algebraic closure Qp and an isomorphism

Qp ' C which is used implicitly throughout. We assume that L is a finite extension of Qp

contained in Qp, and we allow L to change so as to contain the image of any embedding of

a p-adic field into Qp.
Suppose ` is a prime (possibly ` = p) and K/Q` is a finite extension. We write K0 for the

maximal unramified subextension of K and `fK for the number of elements in the residue
field of K. If ρ : GK → GLn(Qp) is a continuous representation which is potentially semi-
stable (this is automatic if ` 6= p) then we write WD(ρ) for the corresponding Weil–Deligne
representation over Qp (see [42, Theorem 4.2.1] if ` 6= p and [25] if ` = p). As an example,
if ` = p and ρ is crystalline then WD(ρ) is unramified and the eigenvalues of a geometric
Frobenius element are the eigenvalues of the crystalline Frobenius ϕfK acting on Dcrys(ρ),
counted with multiplicity.

Let recK : K× → Gab
K be the local Artin reciprocity map, normalized so that the image of

a uniformizer corresponds to a geometric Frobenius element. If π is an irreducible smooth
representation of GLn(K) on a Qp-vector space we denote by rec(π) the n-dimensional

Frobenius semi-simple Weil–Deligne representation over Qp given by the local Langlands
correspondence [26]. We normalize the correspondence as follows. Let T (K) ⊂ GLn(K)
be the diagonal torus and B(K) ⊂ GLn(K) be the upper triangular subgroup. If χ =
χ1⊗· · ·⊗χn is a character of T (K) then rec(π(χ)) = χ1 ◦rec−1

K ⊕ · · ·⊕χn ◦rec−1
K , where π(χ)

is the unique irreducible unramified subquotient of the smooth, non-normalized, induction

Ind
GLn(K)
B(K) (δ

1/2
B(K) · χ). Here, δB(K) = |−|n−1

K ⊗ · · · ⊗ |−|1−nK is the modulus character of B(K).

If ` = p, and δ : O×K → L× is a continuous character then for each embedding τ : K ↪→ L
we write HTτ (δ) for the τ -Hodge–Sen–Tate weight of δ, which is the negative of the weight
defined in [30, Definition 6.1.6].

If n ≥ 1 we let Sn denote the group of permutations on {1, . . . , n}. If σ ∈ Sn we write
`(σ) = {(i, j) : i < j and σ(i) > σ(j)} for its length and c(σ) for the number of orbits in
{1, . . . , n} under the action of the group generated by σ.

1.6. Acknowledgements. The author thanks Christophe Breuil, David Hansen, Eugen
Hellmann and Benjamin Schraen for helpful discussions and comments. The author also
thanks the Centre International de Rencontres Mathématiques for hospitality in June 2015.
Many ideas in this article were developed when the author was a graduate student at Brandeis
University. Thanks are duly given to Joël Belläıche for encouragement, numerous insightful
conversations and comments on an early draft of this paper. The author was partially
supported by NSF award DMS-1402005.
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2. Reminder on (ϕ,Γ)-modules

2.1. (ϕ,ΓK)-modules and triangulations. Let K/Qp be a finite extension. We denote
by RK the Robba ring defined over K, i.e. the ring of series f =

∑
aiT

i defined over
the maximal absolutely unramified extension of K∞ and which converge on an annulus
r(f) < |T | < 1 (see [30, Section 2]). Here K∞ is the field obtained from by adjoining all the
p-power roots of unity to K. If A is an affinoid Qp-algebra then we define RK,A := RK⊗̂QpA.

Recall that if D is a finite free module over a commutative ring R then we say a submodule
P ⊂ D is saturated if D/P is projective as an R-module. If L/Qp is a finite extension then
RK,L is an adequate Bézout domain [10, Proposition 4.12] and so, for R = RK,L, projective
may be replaced for free. The following lemma is [5, Lemma 2.2.3] when K = Qp. The proof
is no different for general K, so we omit it.

Lemma 2.1. Let A be a local Artin L-algebra with residue field L and maximal ideal mA.
Suppose that D is a finite free RK,A-module which contains a rank one free submodule P ⊂ D.
If P/mAP ⊂ D/mAD is saturated as an RK,L-module then P is saturated in D as well.

We equip RK,L with its natural commuting actions of the Frobenius operator ϕ and the
group ΓK = Gal(K∞/K) (see [30, Definition 2.2.2]). A (ϕ,ΓK)-module D over RK,L is a
finite free RK,L-module D equipped with commuting RK,L-semilinear actions of an operator
ϕ and the group ΓK , such that ϕ(D) generates D as an RK,L-module. For coefficients more
general than L (e.g. Artin algebras) see [5, Chapter 2] or [30, Section 2]. The rank of D is
the rank of the underlying RK,L-module. We write D∨ for the dual (ϕ,ΓK)-module.

There is a functor ρ 7→ D†rig(ρ) which defines a fully faithful embedding

{continuous representations ρ : GK → GLn(L)} ↪→ {rank n (ϕ,ΓK)-modules over RK,L} .
Its essential image is the so-called étale (ϕ,ΓK)-modules characterized using the theory

of slope filtrations [28, Theorem 6.10]. Crucially, D†rig(ρ) may contain non-étale (ϕ,ΓK)-
submodules even if ρ is irreducible.

Rank one (ϕ,ΓK)-modules over RK,L are classified by continuous characters δ : K× → L×.
We write RK,L(δ) for the (ϕ,ΓK)-module corresponding to δ by [30, Construction 6.2.4]. If
D is a (ϕ,ΓK)-module over RK,L then we write D(δ) := D⊗RK,L RK,L(δ) for the “twist” of
D by δ.

Important constructions in the theory of Galois representations extend to the category
of (ϕ,ΓK)-modules. For example, a (ϕ,ΓK)-module has Galois cohomology H•(D) concen-
trated in degree at most two ([27, 33]). If δ : K× → L× is a continuous character we write
H•(δ) in lieu of H•(RK,L(δ)). We also have Fontaine’s notions of de Rham, crystalline, etc.
for (ϕ,ΓK)-modules. For example, Dcrys(D) = D[1/t]ΓK where t ∈ RQp is “Fontaine’s p-adic
2πi”. (See [10, 11] for details.)

A triangulation of a (ϕ,ΓK)-module D over RK,L is a filtration

P• : 0 = P0 ( P1 ( · · · ( Pn−1 ( Pn = D

of D by saturated (ϕ,ΓK)-submodules. The parameter of P• is the ordered tuple (δ1, . . . , δn)
of continuous characters δj such that Pj/Pj−1 = RK,L(δj).

Now let D be a crystalline (ϕ,ΓK)-module over RK,L. Thus Dcrys(D) is a finite free
K0⊗QpL-module equipped with a K0-semilinear (but L-linear) operator ϕ and Dcrys(D)K :=
Dcrys(D) ⊗K0 K is equipped with a decreasing, exhaustive and separated filtration Fil• by
K⊗QpL-submodules (the Hodge filtration). The operator ϕfK is K0-linear and we refer to its
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eigenvalues as the crystalline eigenvalues of D. Once L is sufficiently large, every crystalline
eigenvalue lies in L× ⊂ (K0 ⊗Qp L)× (compare with the proof of Lemma 3.3).

If P• is a triangulation of a crystalline (ϕ,ΓK)-module D then Dcrys(Pj) ⊂ Dcrys(D) is
a filtered ϕ-submodule of rank j. Thus, a triangulation defines an ordering (φ1, . . . , φn) of
the crystalline eigenvalues by declaring the first j eigenvalues appear in Dcrys(Pj). If D has
distinct crystalline eigenvalues this defines a bijection (see [11])

(2) {triangulations of D} ←→ {orderings of crystalline eigenvalues for D} .
Let us briefly recall the “matching” of weights in this bijection. If τ : K ↪→ L is an
embedding, the filtration Fil• on Dcrys(D)K equips Dcrys(D)K⊗K,τ L with an exhaustive and
separated filtration by L-subspaces whose jumps are the τ -Hodge–Tate weights h1,τ ≤ h2,τ ≤
· · · ≤ hn,τ . Given an ordering (φ1, . . . , φn) and an embedding τ we write (s1,τ , . . . , sn,τ ) for

the re-ordering of {hi,τ} such that the induced filtration on
∑j

i=1Dcrys(D)ϕ
fK=φi ⊗K0,τ L has

weights {s1,τ , . . . , sj,τ}. On the other hand, a triangulation has its parameter (δ1, . . . , δn)
and each character δi has a τ -Hodge–Tate weight HTτ (δj) (see Section 1.5). The weights
match up in that, through (2), we have HTτ (δj) = sj,τ for all τ and 1 ≤ j ≤ n.

Definition 2.2. Let D be a crystalline (ϕ,ΓK)-module such that the τ -Hodge–Tate weights
{hi,τ} are distinct for each τ and let P• be a triangulation of D with parameter (δ1, . . . , δn).
The critical type of P• is the collection of permutations (στ )τ such that HTτ (δj) = hστ (j),τ

for j = 1, . . . , n. We say P• is non-critical if στ = id for each τ .

Remark 2.3. It may be advantageous to see the critical type of a triangulation as lying in
the Weyl group of ResK/Qp GLn (see [14, 16]).

Example 2.4. Let (δ1, . . . , δn) be an n-tuple of continuous characters δj : Q×p → L× such
that HT(δ1) < · · · < HT(δn). If D =

⊕n
j=1RQp,L(δj) and σ ∈ Sn then the triangulation

(0) ( RK,L(δσ(1)) ( · · · (
j⊕
i=1

RK,L(δσ(i)) ( · · · ( D

has critical type σ. In particular, only one triangulation of D is non-critical.

2.2. Deformation theory. Continue to let L/Qp be a finite extension contained in the fixed
algebraic closure Qp. Denote by ARL the category of local Artin L-algebras with residue
field L. For example, the ring of dual numbers L[ε] = L[u]/(u2) is in ARL. Every element
A ∈ ARL is considered a topological ring with the topology defined by its maximal ideal mA

and, by definition, morphisms are continuous ring morphisms. A functor X : ARL → Set
is (pro)-representable if there exists a complete local noetherian L-algebra RX with residue
field L and Homcont(RX, A) = X(A) for all elements A ∈ ARL.

Let D denote a (ϕ,ΓK)-module over RK,L. A deformation DA of D to A ∈ ARL is a
(ϕ,ΓK)-module over RK,A together with an isomorphism π : DA⊗AL ' D. An isomorphism

between deformations (DA, π) and (D′A, π
′) is a (ϕ,ΓK)-equivariant isomorphism α : DA

'−→
D′A such that π′ ◦ α = π. Thus, we have a functor

XD(A) := {isomorphism classes of deformations of D to A} ,
which we call the universal deformation functor of D. We have that XD(L) = {D} is a single
point, and the universal deformation functor of D admits a well-defined, finite-dimensional,
Zariski tangent space tD := XD(L[ε]) (see [35, Sections 18 and 23] and [22, Proposition 3.4]).
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The tangent space tD admits a canonical description in terms of Galois cohomology.

Namely, a deformation D̃ of D to L[ε] is naturally an extension 0 → D → D̃ → D → 0 in

the category of (ϕ,ΓK)-modules over RK,L, where the submodule is εD̃ and the quotient is

D̃/εD̃. The association of D̃ to its extension class defines a canonical L-linear isomorphism

tD ' Ext1
(ϕ,ΓK)(D,D) ' H1(adD).

See [22, Proposition 3.6(ii)] for a direct construction going from tD to H1(adD).
If X′ ⊂ X is an inclusion of functors on ARL then we recall that there is a notion of X′ being

relatively representable over X (see [35, Section 19]). Subfunctors X′ ⊂ XD are relatively
representable if and only if for every morphism of functors XD → Y with Y representable,
the base change Y′ := X′×XDY is representable. In particular being relatively representable
is stable under products over XD.

2.3. Deformations of algebraic characters. If A is an affinoid Qp-algebra then let
W(A) = Homcont((O×K)n, A×). This defines a rigid analytic space over Qp (a disjoint union of
polydiscs) called the p-adic weight space of GLn/K . SinceW is smooth over Qp, if A ∈ ARL

then the canonical morphism W(A) → W(L) is surjective. Here we explicitly describe the
preimage of Qp-algebraic elements of W(L).

Let h = (hτ )τ be a collection of integers and zh : K× → L× be given by

z
zh7−→
∏
τ

τ(z)hτ .

The character zh has Hodge–Tate weights (−hτ )τ . Every Qp-algebraic character of K× is zh

for some h. We abuse notation and write h for zh as well.5

We now restrict to O×K . We have that O×K = µ × U where µ is the torsion subgroup and
U ⊂ O×K is a finite free Zp-submodule. If α ∈ O×K we write α = ω(α)〈α〉 where 〈α〉 ∈ U and
ω(α) ∈ µ. Let h be as above and suppose A ∈ ARL. Suppose that for each τ we choose
ητ ∈ A such that ητ ≡ hτ mod mA. Then, we define a character η : O×K → A× by

z
η
7−→

∏
τ

τ(z)η :=
∏
τ

exp
(
(ητ − hτ ) · τ(log〈z〉)

)
· τ(z)hτ

(the exponential converges in A× because ητ −hτ ∈ mA). The preimage of h underW(A)→
W(L) is exactly the set of characters η.

Note that h is a character of K×, but extending η to K× requires a choice. After fixing a

uniformizer $K ∈ K×, we denote by η
$K

the character of K× which acts as η on O×K and

sends $K to 1. This defines a rank one (ϕ,ΓK)-module RK,A(η
$K

) over RK,A whose Hodge–

Sen–Tate weights are (−ητ )τ . The character η
$K

depends on $K , but if $′K is another

choice of uniformizer then η
$K
· η−1

$′K
is crystalline.

2.4. Hodge–Tate deformations. Let D be a (ϕ,ΓK)-module over RK,L. We assume D is
Hodge–Tate with distinct Hodge–Tate weights. Let A ∈ ARL and DA be a deformation of
D to A. For each embedding τ : K ↪→ L, the τ -Sen polynomial P Sen,τ

DA
(x) ∈ A[x] has distinct

roots modulo mA and so P Sen,τ
DA

completely factors over A by Hensel’s lemma. Thus for each

5Warning: if D is a (ϕ,ΓK)-module then D(h) is not necessarily a Tate twist.
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τ -Hodge–Tate weight hτ ∈ Z of D there is a unique τ -Hodge–Sen–Tate weight ητ ∈ A of DA

such that ητ ≡ hτ mod mA. We say hτ is a constant weight if ητ = hτ . Then, we define

Xhτ
D (A) = {deformations DA of D to A such that the weight hτ is constant} .

By definition this defines a subfunctor Xhτ
D ⊂ XD. If {hi,τ} is the set of all the Hodge–Tate

weights of D then the Hodge–Tate deformation functor is defined to be

XHT
D :=

⋂
i,τ

X
hi,τ
D .

A deformation DA is Hodge–Tate if and only if its Hodge–Sen–Tate weights are constant
(integers), if and only if it is Hodge–Tate as a (ϕ,ΓK)-module over RK,A.

Proposition 2.5. The subfunctor X
hi,τ
D ⊂ XD is relatively representable for each i, τ . Thus,

XHT
D ⊂ XD is relatively representable as well.

Proof. Being relatively representable is closed under intersection, so only the first statement

needs proving. Observe that DA ∈ X
hi,τ
D (A) if and only if the Sen operator acts semi-

simply on the generalized eigenspace for the eigenvalue hi,τ inside DSen(DA) (viewing DA

over RK,L) . Since this property is closed under subquotients and direct sums, the relative

representability of X
hi,τ
D follows from Ramakrishna’s criterion [35, Section 25]. �

2.5. Crystalline deformations. Throughout this section we denote by D a crystalline
(ϕ,ΓK)-module over RK,L. The fine Selmer group for D, generalizing the corresponding
notion for Galois representations [13], is defined by

H1
f (D) := ker

(
H1(D)→ H1(ΓK , D[t−1])

)
.

The cohomology on the right is the continuous cohomology of the profinite group ΓK . We
refer to [38, Section 3.1] and [7, Section 1] for the facts that follow.

First, by [38, Equation 3-2] the dimension of H1
f (D) is computed by

(3) dimLH
1
f (D) = dimLH

0(D) + dimLDdR(D)/D+
dR(D).

Second, fine Selmer groups arise naturally as tangent spaces to a deformation problem.
Indeed, we define the crystalline deformation functor as

XD,f (A) = {DA ∈ XD(A) : DA is crystalline} .
Since being crystalline is closed under direct sums and subquotients, Ramakrishna’s crite-
rion [35, Section 25] implies that XD,f ⊂ XD is relatively representable. We write tD,f :=
XD,f (L[ε]) for the Zariski tangent space to XD,f .

Since D is crystalline, so is adD and the Galois cohomology H1(adD) contains the sub-
space H1

f (adD). It is explained in [38, Section 3] that an extension class

0→ D → D̃ → D → 0

in Ext1
(ϕ,ΓK)(D,D) ' H1(adD) lies in H1

f (adD) if and only if D̃ is crystalline. If Ext1
f (D,D)

denotes the corresponding subspace of crystalline extensions then the inclusion tD,f ⊂ tD
induces isomorphisms tD,f ' Ext1

f (D,D) ' H1
f (adD).

We record here a property of Selmer groups. If D is a crystalline (ϕ,ΓK)-module then we
write H1

/f (D) := H1(D)/H1
f (D).

9



Lemma 2.6. If 0 → D1 → D2 → D3 → 0 is a short exact sequence of crystalline (ϕ,ΓK)-
modules and H2(D1) = 0 then the canonical morphisms induce a short exact sequence

0→ H1
/f (D1)→ H1

/f (D2)→ H1
/f (D3)→ 0.

Proof. Consider the commuting diagram

H0(D3) // H1
f (D1)
� _

��

// H1
f (D2)
� _

��

// H1
f (D3)
� _

��

// 0

H0(D3) // H1(D1) // H1(D2) // H1(D3) // 0.

The top row is exact by [7, Corollary 1.4.6]. The bottom row is exact because H2(D1) = (0).
From the snake lemma we get a short exact sequence

(4) 0→ coker(H0(D3)→ H1(D1))

coker(H0(D3)→ H1
f (D1))

→ H1
/f (D2)→ H1

/f (D3)→ 0.

Since the first term of (4) equals H1
/f (D1), we are finished. �

3. Weakly-refined deformations

3.1. Deforming crystalline eigenvalues. Let D be a crystalline (ϕ,ΓK)-module over
RK,L. We assume that h1,τ = 0 is the unique least τ -Hodge–Tate weight for each embed-
ding τ : K → L. Following Section 2.4 we let X0

D =
⋂
τ X

0τ
D be the relatively representable

subfunctor of deformations with constant Hodge–Tate weight zero at each embedding.
Suppose that Φ is a crystalline eigenvalue for D (note that it appears in Dcrys(D) =

D+
crys(D) = DΓK ). Now set

(5) X0,Φ
D (A) =

{
DA ∈ X0

D(A) such that D+
crys(DA)ϕ

fK=ΦA is free of rank one

over K0 ⊗Qp A for some ΦA ∈ A× and ΦA ≡ Φ mod mA

}
.

This clearly defines a subfunctor of X0,Φ
D ⊂ XD.

Proposition 3.1. If Φ is a simple crystalline eigenvalue for D then X0,Φ
D ⊂ XD is relatively

representable.

Kisin [31, Proposition 8.13] and Tan [41, Section 5.2] proved Proposition 3.1 for Galois
representations. The rest of this subsection is devoted to a proof in the setting of (ϕ,ΓK)-
modules, adapting [5, Section 2.3]. After twisting D by an unramified character, we may

assume that Φ = 1. To emphasize this we write X0,1
D = X0,Φ=1

D .
If E is a (ϕ,ΓK)-module over RK,L, we set

F (E) =
{
e ∈ EΓK : (ϕfK − 1)ne = (0) for some n ≥ 1

}
⊂ D+

crys(E).

The functor F (−) is left exact, and since Φ = 1 is a simple eigenvalue of D we have
dimL F (D) = (K0 : Qp).

Let A denote an element in ARL. If DA is a (ϕ,ΓK)-module over RK,A and M is an
A-module then we consider DA⊗AM as a (ϕ,ΓK)-module over RK,L with the trivial actions
on M . The L-vector space F (DA ⊗A M) is naturally equipped with the structure of an
A-module. We let `A denote the length function on A-modules.
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Lemma 3.2. Let A ∈ ARL and DA ∈ XD(A). If M is a finite length A-module then
`A(F (DA⊗AM)) ≤ (K0 : Qp)`A(M). In particular, if I ⊂ A is an ideal then `A(F (IDA)) ≤
(K0 : Qp)`A(I).

Proof. The second statement follows from the first since DA is flat over A (it is even free),
so IDA ' DA ⊗A I. The first statement is an immediate dévissage using the left-exactness
of F (−) and the fact explained above that `A(F (D)) = dimL F (D) = (K0 : Qp). �

Lemma 3.3. Let DA ∈ XD(A). The following are equivalent

(a) DA ∈ X0,Φ=1
D (A).

(b) F (DA) is free of rank one over K0 ⊗Qp A.
(c) `A(F (DA)) = (K0 : Qp)`A(A).
(d) The natural map F (DA)/mAF (DA)→ F (D) is an isomorphism.

Proof. First assume that DA ∈ X0,Φ=1
D (A) and let ΦA ∈ A be the deformation of Φ = 1 as

in the definition (5). Then D+
crys(DA)ϕ

fK=ΦA is a free, rank one, K0 ⊗Qp A-submodule of

F (DA). It cannot be proper since that would imply `A(F (DA)) > `A(D+
crys(DA)ϕ

fK=ΦA) =
`A(K0 ⊗Qp A), which would contradict Lemma 3.2 (applied with M = A). Thus, F (DA) =

D+
crys(DA)ϕ

fK=ΦA is free of rank one over K0 ⊗Qp A. This proves (a) implies (b).
We clearly have (b) implies (c). Now we show (c) implies (d). Since F (−) is left exact we

have an exact sequence

(6) 0→ F (mADA)→ F (DA)→ F (D).

Under the assumption (c), considering the lengths in (6), Lemma 3.2 implies that F (DA)→
F (D) is surjective. But then it follows that F (DA)/mAF (DA)→ F (D) is onto as well. Since
the two A-modules have the same length, we’ve proven (d).

It remains to prove (d) implies (a) (we will simultaneously show (d) implies (b)). First,
we can choose a vector v ∈ F (DA) such that the image in F (D) is a K0⊗Qp L-module basis.
It follows that the K0 ⊗Qp A-module spanned by v inside F (DA) is free of rank one.6 By
considering lengths, Lemma 3.2 implies that the containment (K0 ⊗Qp A) · v ⊂ F (DA) is
necessarily an equality. This shows (d) implies (b) and since F (DA) is ϕ-stable, ϕ(v) = xv
for some x ∈ K0 ⊗Qp A. But then, ϕfK (v) = xϕ(x) · · ·ϕfK−1(x)v where the ϕ on the right-
hand side is the natural A-linear Frobenius on K0 ⊗Qp A. Since xϕ(x) · · ·ϕfK−1(x) lies in
A× ⊂ K0⊗Qp A we will call it ΦA. Note that since v spans F (D) modulo mA, we know that

ΦA ≡ 1 mod mA. Finally, since v ∈ F (DA) ⊂ DΓK
A = D+

crys(DA) as well, we’ve shown that

v ∈ Dcrys(DA)ϕ
fK=ΦA . But then we have (K0 ⊗Qp A) · v = D+

crys(DA)ϕ
fK=ΦA = F (DA) and

we’ve shown (d) implies (a). �

We are now ready to prove Proposition 3.1. If DA ∈ XD(A) and A → A′ is an arrow in
ARL then we write DA′ := DA ⊗A A′.

Proof of Proposition 3.1 with Φ = 1. To show X0,Φ=1
D ⊂ XD is relatively representable we

will use Schlessinger’s criterion [35, Section 23], labeled by conditions (1), (2), and (3) in loc.

6This is a minor modification of an argument given by Belläıche and Chenevier in the proof of [5, Proposition
2.3.9]. To reduce to their argument, use that the image of v is non-zero in F (D)⊗K0,τ L for each embedding
τ : K0 ↪→ L.
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cit. Condition (1) is clear. Given (1) and (3) in loc. cit. it is enough to check condition (2)
with C = L, but that it is also clear (compare with [31, Propositions 8.13 and 8.7]).

It remains to check condition (3): if A ⊂ A′ is an inclusion in ARL, DA ∈ XD(A) and

DA′ ∈ X0,Φ=1
D (A′) then DA ∈ X0,Φ=1

D (A). We start with the assumptions of condition (3) and
consider the exact sequence 0→ F (DA)→ F (DA′)→ F (DA⊗AA′/A). Computing lengths,

`A(F (DA′))− (K0 : Qp)`A(A′/A) ≤ `A(F (DA′))− `A(F (DA ⊗A A′/A))(7)

≤ `A(F (DA))

Here we used Lemma 3.2 for the first inequality. Since DA′ ∈ X0,Φ=1
D (A′) we have that F (DA′)

is free of rank one over K0 ⊗Qp A
′ and thus (7) implies (K0 : Qp)`A(A) ≤ `A(F (DA)). The

reverse inequality is also try by Lemma 3.2. So, we have shown that `A(F (DA)) = (K0 :

Qp)`A(A) = `A(K0 ⊗Qp A). But then DA ∈ X0,Φ=1
D (A) by Lemma 3.3. �

3.2. Weakly-refined deformations. We temporarily fix a uniformizer $K ∈ K×. We also
assume D is a crystalline (ϕ,ΓK)-module over RK,L and that for each embedding τ : K ↪→ L
there is a unique least τ -Hodge–Tate weight h1,τ .

If A ∈ ARL and DA is a deformation of D to A we write η1,τ for the Hodge–Sen–Tate
weight of DA satisfying η1,τ ≡ h1,τ mod mA (cf. Section 2.4). Then, by Section 2.3 we can
construct a character η1$K

: K× → A× whose value on $K is 1 and whose τ -Hodge–Sen–

Tate weight is η1,τ for each embedding τ : K ↪→ L. The twisting operation DA 7→ DA(η1$K
)

defines a natural transformation XD → X0
D(h1$K

). (Fixing $K makes the twisting functorial.)

Continue with the assumptions of the previous paragraphs. If φ is a simple crystalline
eigenvalue for D then Φ := φ

∏
τ τ($K)−h1,τ is a simple eigenvalue for D(h1$K

). Note that

the least Hodge–Tate weight of D(h1$K
) is zero at each embedding τ . We now define a

functor Xφ
D as a fibered product

Xφ
D

��

// XD

DA 7→DA(η1$K
)

��

X0,Φ
D(h1$K

)
// X0

D(h1$K
)

where the bottom arrow is the natural inclusion.
Since being relatively representable is stable under base change, Proposition 3.1 implies

that Xφ
D ⊂ XD is relatively representable. Furthermore, Xφ

D is independent of $K : the
twisting DA 7→ DA(η1$K

) and Φ depend on the choice but the dependencies cancel.7

For the rest of this subsection, we assume that D is a crystalline (ϕ,ΓK)-module over
RK,L with distinct Hodge–Tate weights and distinct crystalline eigenvalues. We also equip
D with a triangulation P• whose parameter we write (δ1, . . . , δn). We denote by (φ1, . . . , φn)
the corresponding list of crystalline eigenvalues given by (2).

If 1 ≤ j ≤ n then consider the jth exterior power ∧jD of D. If DA is a deformation of
D to A then ∧jDA is a (ϕ,ΓK)-module over RK,A which deforms ∧jD. If the τ -Hodge–Tate

7As we mentioned at the end of Section 2.3, if $K and $′
K are two different uniformizers then η1$K

and

η1$′
K

differ by a crystalline character. Moreover, the crystalline eigenvalue exactly matches the difference

between Φ and the corresponding Φ′.
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weights of D are h1,τ < h2,τ < · · · < hn,τ then the τ -Hodge–Tate weight h1,τ + · · · + hj,τ
for ∧jD is the unique least τ -Hodge–Tate weight for each τ . Moreover, if 1 ≤ j ≤ n then
φ1 · · ·φj is an eigenvalue for ϕfK acting on Dcrys(∧jD).

Definition 3.4. A triangulation P• is called regular if φ1 · · ·φj is a simple crystalline eigen-
value in Dcrys(∧jD) for 1 ≤ j ≤ n. We say P• is regular generic if P• is regular and in
addition H2(δiδ

−1
j ) = (0) for all 1 ≤ i, j ≤ n.

Remark 3.5. If P• is a regular triangulation as in Definition 3.4 then the crystalline eigenval-
ues of D are necessarily distinct. Since H0(δiδ

−1
j ) ⊂ Dcrys(RK,L(δiδ

−1
j ))ϕ=1, it follows that

H0(δiδ
−1
j ) = (0) when i 6= j.

Definition 3.6. Let D be a crystalline (ϕ,ΓK)-module with distinct Hodge–Tate weights. If
P• is a regular triangulation then the weakly-refined deformation functor with respect to P•
is the fibered product XRef

D,P• given by

XRef
D,P•

//

��

XD

DA 7→(∧jDA)j

��∏n
j=1 X

φ1···φj
∧jD

//
∏n

j=1 X∧jD

where the bottom horizontal arrow is the natural inclusion.

When P• is a regular triangulation, Proposition 3.1 implies that each arrow X
φ1···φj
∧jD → X∧jD

is relatively representable. Thus, so is XRef
D,P• ⊂ XD.

3.3. A constant weight tangent space. Our goal for the rest of Section 3 is to compute
the Zariski tangent spaces tRef

D,P• to functors of the form XRef
D,P• . This particular subsection

concerns the constant weight subfunctor XRef,HT
D,P•

:= XRef
D,P• ∩ XHT

D , which admits a simpler
description: if DA is a Hodge–Tate deformation of D then the twisting character(s) denoted

η1$K
are crystalline, and thus the points of XRef,HT

D are given by

(8)

XRef,HT
D (A) =

 DA ∈ XHT
D (A) such that for some collection φj,A ≡ φj mod mA,

Dcrys(∧jDA)ϕ
fK=φ1,A···φj,A is free of rank one over K0 ⊗Qp A for

each 1 ≤ j ≤ n.

 .

From the description (8) it is clear that XRef,HT
D,P•

contains the crystalline deformation functor
XD,f for any P•. In Theorem 3.12 below we compute a bound for the dimension of quotient

spaces of the form tRef,HT
D,P•

/tD,f . Let us preview our theorem by remarking on the non-critical
case.

Remark 3.7. Suppose that D is a crystalline (ϕ,ΓK)-module equipped with a regular generic
triangulation P• which is non-critical. Then, every weakly-refined deformation is triangu-
line [5, Theorem 2.5.6] and every trianguline deformation of constant Hodge–Tate weight is

crystalline [5, Theorem 2.5.1]. Thus tRef,HT
D,P•

/tD,f = (0) in this case.

The next three lemmas expand on the previous remark for triangulations that are possibly
critical, and our proof of Theorem 3.12 gives a new proof of the remark.
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Lemma 3.8. Suppose that D is a (ϕ,ΓK)-module over RK,L and ι : P1 ↪→ D is a saturated
(ϕ,ΓK)-submodule. Let Q1 := coker(ι). Consider the canonical morphisms

Ext1
(ϕ,ΓK)(Q1, D)

h
��

f
// Ext1

(ϕ,ΓK)(D,D)

Ext1
(ϕ,ΓK)(Q1, Q1).

(a) If D̃ = f(X) for some X ∈ Ext1
(ϕ,ΓK)(Q1, D) then there exists a saturated embedding

P1 ⊗RK,L RK,L[ε]
ι̃
↪→ D̃ such that ι̃ ≡ ι mod ε.

(b) If dimL Hom(ϕ,ΓK)(P1, D) = 1 and D̃ = f(X) for some X ∈ Ext1
(ϕ,ΓK)(Q1, D) then ι̃

in part (a) is unique up to a scalar 1 + µε ∈ L[ε]× and h(X) = coker(ι̃).

Proof. We first recall the definitions of f and h. Let

0→ D
jX−→ X

πX−→ Q1 → 0

be an extension in Ext1
(ϕ,ΓK)(Q1, D). Then, the embedding ι : P1 ↪→ D induces an embedding

jX ◦ ι : P1 ↪→ X and h(X) := coker(jX ◦ ι). If θ : D → Q1 is the quotient map then f(X) is
defined by

f(X) := ker
(
X ⊕D (πX ,−θ)−→ Q1

)
= {(x, d) ∈ X ⊕D : πX(x) = θ(d)} .

The (ϕ,ΓK)-module structure on f(X) is coordinate-wise, and the structure of multiplication
by ε on f(X) is given by ε · (x, d) = (jX(d), 0).

Now let’s prove (a). Let X ∈ Ext1
(ϕ,ΓK)(Q1, D) and D̃ = f(X). We have a canonical

(ϕ,ΓK)-equivariant embedding P1 ↪→ D ↪→ X ⊕D given by ι̃0(p) = (0, ι(p)). Since πX(0) =

0 = θι(p) we see that ι̃0(P1) ⊂ D̃. We define ι̃ on P1 ⊗RK,L RK,L[ε] by ι̃(p) = ι̃0(p) and
ι̃(εp) = (jX(ι(p)), 0) for each p ∈ P1. Note that this is well-defined because

ει̃(p) = ε · (0, ι(p)) = (jX(ι(p)), 0) = ι̃(εp).

Moreover, ι̃ is injective because im(ι̃0) ∩ εD̃ = (0). It is clear that ι̃ mod ε = ι and im(ι̃) is
saturated by Lemma 2.1.

We now prove part (b). A general ι̃ is determined by ι̃(p) with p ∈ P1 by L[ε]-linearity.
Since ι̃ ≡ ι mod ε we may write ι̃(p) = (jX(β(p)), ι(p)) where β : P1 → D is a (ϕ,ΓK)-
equivariant map. By assumption, β is of the form µ · ι for some µ ∈ L and so ι̃(p) =
(1 + µε) · ι̃0(p). This shows that ι̃ is unique up to a scalar 1 + µε ∈ L[ε]×.

It remain to show h(X) = coker(ι̃). By the previous paragraph, we may assume ι̃ is

explicitly given as in the proof of (a). First note the map D̃ = f(X)→ X given by (x, d) 7→ x
is surjective. Furthermore, if p, q ∈ P1 then ι̃(p+qε) = (jXι(q), ι(p)) 7→ jXι(q) ∈ (jX ◦ι)(P1).

Thus we have a well-defined (ϕ,ΓK)-equivariant surjection α : D̃/ im(ι̃) � X/(jX ◦ ι)(P1).

Suppose that d̃ ∈ ker(α) and write d̃ = (jX(ι(p)), d) for some p ∈ P1 and d ∈ D. Since

θ(d) = πX(jX(ι(p))) = 0 we may write d = ι(p′) for some p′ ∈ P1. But then d̃ = ι̃(p′ + εp) ∈
im(ι̃). This shows α is injective and so h(X) = X/(jX ◦ ι)(P1) = coker(ι̃). �

Lemma 3.9. Let D be a crystalline (ϕ,ΓK)-module over RK,L and let RK,L(δ1) ⊂ D be
a saturated rank one (ϕ,ΓK)-submodule. Let φ1 be the crystalline eigenvalue appearing in
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Dcrys(RK,L(δ1)), assume that φ1 is simple in Dcrys(D) and let h1 = (h1,τ ) be the Hodge–Tate

weights of δ1. Let tφ1,h1D be the Zariski tangent space to Xφ1,h1
D := Xφ1

D ∩
⋂
τ X

h1,τ
D as in Sections

2.4 and 3.2.

(a) The composition tφ1,h1D ↪→ H1(adD)→ H1
/f (adD)→ H1

/f (D(δ−1
1 )) is zero.

(b) If Q1 = coker(RK,L(δ1)→ D) and H2(D⊗Q∨1 ) = (0) then there is a natural embedding

tφ1,h1D /tD,f ↪→ H1
/f (D ⊗Q∨1 ).

Proof. Suppose that D̃ ∈ tφ1,h1D . The least Hodge–Tate weight h1,τ is constant in D̃ for each

embedding τ : K ↪→ L. Thus there exists a φ̃1 ∈ L[ε]× deforming φ1 such thatDcrys(D̃)ϕ
fK=φ̃1

is free of rank one over K0 ⊗Qp L[ε] (compare with (8)). By [9, Lemma 7.2], the image of D̃

under the natural map Ext1
(ϕ,ΓK)(D,D)→ Ext1

(ϕ,ΓK)(RK,L(δ1), D) lands inside the subspace

Ext1
f (RK,L(δ1), D) of crystalline extensions (the reference is valid because we have assumed

that φ1 is a simple eigenvalue in Dcrys(D)). This proves part (a).
To prove part (b), we apply Lemma 2.6 to the short exact sequence

(9) 0→ D ⊗Q∨1 → adD → D(δ−1
1 )→ 0

of (ϕ,ΓK)-modules. The hypotheses of Lemma 2.6 are satisfied because D, and thus each
term in (9), is crystalline and H2(D⊗Q∨1 ) = (0) by assumption in this lemma. We conclude
from Lemma 2.6 that there is a natural short exact sequence

(10) 0→ H1
/f (D ⊗Q∨1 )→ H1

/f (adD)→ H1
/f (D(δ−1

1 ))→ 0.

The subspace tφ1,h1D /tD,f ⊂ H1
/f (adD) maps to zero in the final term of (10) by part (a) of

this lemma. This proves (b). �

Lemma 3.10. Let D be a crystalline (ϕ,ΓK)-module equipped with a regular generic trian-
gulation P• and let RK,L(δ1) = P1. Set Q1 = coker(RK,L(δ1)→ D) and let P ′• be the induced
triangulation on Q1. The composition

tRef,HT
D,P•

/tD,f ↪→ H1
/f (D ⊗Q∨1 )→ H1

/f (adQ1)

has image inside the subspace tRef,HT
Q1,P ′•

/tQ1,f ⊂ H1
/f (adQ1).

Remark 3.11. There are minor clarifications needed for the lemma. First, the composition in
Lemma 3.10 is well-defined by Lemma 3.9(b) and the inclusion tRef,HT

D,P•
⊂ tφ1,h1D (the notation

as in Lemma 3.9). Second, the induced triangulation P ′• on Q1 is regular generic because P•
itself is regular generic. This gives content to the conclusion of Lemma 3.10.

Proof of Lemma 3.10. First note that H2(δjδ
−1
i ) = (0) for each i, j because P• is assumed to

be regular generic. In particular, by the long exact sequence in cohomology we deduce that
H2(D ⊗Q∨1 ) = (0).

Write α for the composition tRef,HT
D,P•

/tD,f → H1
/f (D ⊗ Q∨1 ) → H1

/f (adQ1). Now suppose

that [D̃] ∈ tRef,HT
D,P•

/tD,f . The tangent space tRef,HT
D,P•

is contained in the tangent space tφ1,h1D as

in Lemma 3.9. Since H2(D⊗Q∨1 ) = (0), we may use Lemma 3.9(b) to choose a representative

D̃ ∈ tRef,HT
D,P•

such that D̃ is in the image of H1(D ⊗Q∨1 )→ H1(adD).

By Lemma 3.8(a) there exists a constant deformation ι̃ : RK,L[ε](δ1) ↪→ D̃ which is a direct
summand over RK,L[ε]. The space H0(D(δ−1

1 )) is one-dimensional since P• is regular (see the
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remark following Definition 3.4) and so Lemma 3.8(b) implies that

α([D̃]) = coker(ι̃) mod H1
f (adQ1).

If Q̃1 := coker(ι̃) ∈ H1(adQ1) then Q̃1 has constant Hodge–Tate weights because D̃ has

constant Hodge–Tate weights. It suffices now to show that Q̃1 is a weakly-refined deformation
with respect to the triangulation P ′•.

Let φ̃1, . . . , φ̃n be the elements of L[ε]× witnessing D̃ as being weakly-refined (see (8)).

Note φ̃1 must be equal to φ1 because φ1 is a simple eigenvalue in Dcrys(D) and ι̃ witnesses

φ1 appearing in Dcrys(D̃). Now consider 2 ≤ m ≤ n and the short exact sequence of (ϕ,ΓK)-
modules over RK,L[ε]

0→ ∧m−1(Q̃1)⊗RK,L[ε]
RK,L[ε](δ1)→ ∧mD̃ → ∧mQ̃1 → 0.

Recall that Dcrys(−) is left exact. Since the eigenvalue φ1 . . . φm appearing in Dcrys(∧mD)
does not appear in Dcrys(∧mQ1), by the regular condition on P•, we conclude that for m =
2, . . . , n there is a natural equality

Dcrys

(
∧m−1(Q̃1)⊗RK,L[ε]

RK,L[ε](δ1)
)ϕfK=φ1φ̃2···φ̃m ∼=−→ Dcrys

(
∧m(D̃)

)ϕfK=φ1φ̃2···φ̃m
.

Twisting the left hand side by the constant crystalline (ϕ,ΓK)-module RK,L[ε](δ
−1
1 ) we have

shown that Q̃1 ∈ tRef
Q1,P ′•

. �

We now give an upper bound for the constant weight, weakly-refined, deformations, up to
the crystalline deformations. We restate our hypotheses for clarity.

Theorem 3.12. If D is a crystalline (ϕ,ΓK)-module over RK,L equipped with a regular
generic triangulation P• with parameter (δ1, . . . , δn) then

(11) dimL t
Ref,HT
D,P•

/tD,f ≤
∑

1≤i<j≤n

dimLH
1
/f (δiδ

−1
j ).

Proof. We argue by induction on n. If n = 1 then tRef
D,P• = tD and tRef,HT

D,P•
= tD,f . Thus the

bound is true (and an equality) in this case.
Now suppose that n > 1 and let Q1 = coker(RK,L(δ1) → D). Then H2(Q∨1 (δ1)) = (0)

because P• is regular generic. By Lemmas 2.6 and 3.9 we have a diagram with exact rows

0 // U //

��

tRef,HT
D,P•

/tD,f //

� _

��

V

��

// 0

0 // H1
/f (Q

∨
1 (δ1)) // H1

/f (D ⊗Q∨1 ) // H1
/f (adQ1) // 0

where U and V are defined by the diagram itself. We separately bound dimL U and dimL V .
By Lemma 3.10, V ⊂ tRef,HT

Q1,P ′•
/tQ1,f where P ′• is the triangulation induced on Q1 from P•.

Thus by induction we have

dimL V ≤ dimL t
Ref,HT
Q1,P ′•

/tQ1,f ≤
∑

2≤i<j≤n

dimLH
1
/f (δiδ

−1
j ).

16



On the other hand, U ⊂ H1
/f (Q

∨
1 (δ1)) and so

dimL U ≤ dimLH
1
/f (Q

∨
1 (δ1))

Lemma 2.6
=

n∑
j=2

dimLH
1
/f (δ1δ

−1
j ).

Putting the two upper bounds together we get the result. �

Finally we translate Theorem 3.12 into an upper bound in terms of critical types.

Lemma 3.13. If δ : K× → L× is a crystalline character and H2(δ) = (0) then dimLH
1
/f (δ) =

# {τ : K ↪→ L : HTτ (δ) ≥ 0}.

Proof. By the formula (3) we have that

dimLH
1
f (δ) = dimLH

0(δ) + dimLDdR(RK,L(δ))/D+
dR(RK,L(δ)).

On the other hand, since H2(δ) = (0), the Euler–Poincaré characteristic formula [33, Theo-
rem 1.2(a)] implies that dimLH

1(δ) = (K : Qp) + dimLH
0(δ). Thus,

dimLH
1
/f (δ) = (K : Qp)− dimLDdR(RK,L(δ))/D+

dR(RK,L(δ))

= (K : Qp)−# {τ : HTτ (δ) < 0} .
The result is now clear. �

Recall that if σ ∈ Sn then its length is given by `(σ) = # {(i, j) : i < j and σ(i) > σ(j)}.

Corollary 3.14. Suppose that D is a crystalline (ϕ,ΓK)-module over RK,L equipped with a
regular generic triangulation P• and let (στ )τ be the critical type of P•. Then

dimL t
Ref,HT
D,P•

/tD,f ≤
∑
τ

`(στ ),

Proof. Write (δ1, . . . , δn) for the parameter of P•. By Theorem 3.12 we have

dimL t
Ref,HT
D,P•

/tD,f ≤
∑

1≤i<j≤n

dimLH
1
/f (δiδ

−1
j ).

Since the Hodge–Tate weights of D are distinct and the triangulation P• is regular generic,
Lemma 3.13 above implies that if i 6= j, then dimLH

1
/f (δiδ

−1
j ) = # {τ : HTτ (δi) > HTτ (δj)}.

Thus Theorem 3.12 gives us

dimL t
Ref,HT
D,P•

/tD,f ≤
∑

1≤i<j≤n

dimLH
1
/f (δiδ

−1
j ) =

∑
τ

# {(i, j) : i < j and HTτ (δi) > HTτ (δj)}

=
∑
τ

# {(i, j) : i < j and στ (i) > στ (j)}︸ ︷︷ ︸
`(στ )

.

The final equality was the definition of the critical type (see Definition 2.2). �

3.4. The relative tangent space for weakly-refined deformations. Suppose that D
is a crystalline (ϕ,ΓK)-module over RK,L with distinct crystalline eigenvalues and distinct
Hodge–Tate weights. We assume throughout this section that D is also equipped with a
regular generic triangulation P• whose parameter we denote by (δ1, . . . , δn). We write tRef

D,P•
for the tangent space to the weakly-refined deformations with respect to P•.
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If D̃ ∈ tD then the uniqueness of the Hodge–Tate weights means D̃ has Hodge–Sen–Tate

weights {ηi,τ}i,τ in L[ε] such that ηi,τ = hi,τ +εdηi,τ , where dηi,τ ∈ L. The map D̃ 7→ (dηi,τ )i,τ
defines an L-linear map

tD
dη−→
⊕
τ

L⊕n

and by definition of Hodge–Tate weights we have an exact sequence

(12) 0→ tRef,HT
D,P•

/tD,f → tRef
D,P•/tD,f →

⊕
τ

L⊕n

of L-vector spaces.

Lemma 3.15. Let (στ )τ be the critical type of P•. The image of dη is contained in the
subspace

⊕
τ Vστ ⊂

⊕
τ L
⊕n where

Vστ :=
{

(vi) ∈ L⊕n : vστ (i) = vi for i = 1, . . . , n
}
.

Proof. The lemma states ηστ (i),τ − ηi,τ is constant for each i, τ . This follows from [9, Lemma
7.2] (compare with the proofs of Lemma 3.9 and [9, Theorem 7.1]). �

Recall that if σ ∈ Sn then we write c(σ) for the number of orbits in {1, . . . , n} under the
action of the cyclic group generated by σ.

Theorem 3.16. Suppose that D is a crystalline (ϕ,ΓK)-module over RK,L equipped with a
regular generic triangulation P• with critical type (στ )τ . Then

dim tRef
D,P•/tD,f ≤

∑
τ

`(στ ) + c(στ ).

Proof. It is easy to see that dimL Vστ = c(στ ) for each embedding τ . By Lemma 3.15 and
Corollary 3.14 we deduce that

dimL t
Ref
D,P•/tD,f ≤ dimL t

Ref,HT
D,P•

/tD,f +
∑
τ

c(στ ) ≤
∑
τ

`(στ ) + c(στ ),

as we wanted. �

To end this section we briefly explain the upper bound we have produced. If σ ∈ Sn then
let ord(σ) be its order as an element of Sn. We leave the following lemma for the reader.

Lemma 3.17. If σ ∈ Sn is a cycle then `(σ) + 1 ≥ ord(σ) with equality if and only if σ is a
product of distinct simple transpositions.

Proposition 3.18. Let σ ∈ Sn. Then `(σ) + c(σ) ≥ n with equality if and only if σ is a
product of distinct simple transpositions.

Proof. Write σ = σ1 · · ·σr where the σi are disjoint cycles. In particular, σ is a product of
distinct simple transpositions if and only if each σi is. Next, we note that

• `(σ) =
∑
`(σi) and

• c(σ) = n+ r −
∑

ord(σi).

Thus we have

`(σ) + c(σ) = n+
r∑
i=1

(`(σi) + 1− ord(σi)) .

18



Lemma 3.17 implies that the terms in the sum are all non-negative. This shows `(σ)+c(σ) ≥
n always. Moreover, we have equality if and only if `(σi)+1−ord(σi) = 0 for all i = 1, . . . , r.
But Lemma 3.17 also implies that this is equivalent to σi being a product of distinct simple
tranpositions for each i = 1, . . . , r, so we are done. �

Corollary 3.19. Suppose that D is a crystalline (ϕ,ΓK)-module over RK,L equipped with a
regular generic triangulation P• with critical type (στ )τ . If each στ is a product of distinct
simple transpositions then dimL t

Ref
D,P•/tD,f ≤ (K : Qp) · n.

Proof. Combine Proposition 3.18 and Theorem 3.16. �

Remark 3.20. Ostroff showed the author an easy argument that the number of σ ∈ Sn which
are products of distinct simple transpositions is given by F2n where Fm is the Fibonacci se-
quence starting with F1 = 0 and F2 = 1. In particular, the proportion F2n/n! of permutations
which are products of distinct simple transpositions tends to zero as n→ +∞.

4. Application to eigenvarieties

4.1. Unitary groups and Galois representations. Our goal in this subsection is to spec-
ify notations and conventions for unitary groups, automorphic representations, and Galois
representations. We do not strive for the greatest generality; our goal is to illustrate how
the local deformation calculation in Section 3 can be used to bound dimensions of tangent
spaces on eigenvarieties. Our hypotheses may be weakened in various directions, especially
as progress is made in constructing Galois representations and Langlands functoriality.

Let F/F+ be a CM extension of number fields with F+ totally real and F a totally
imaginary quadratic extension of F+. We assume F/F+ is unramified everywhere and each
p-adic place of F+ splits in F .

Fix an integer n ≥ 1 which is either odd or if n is even then assume that n(F+ : Q) ≡
0 mod 4. With this, we let G denote a unitary group in n variables over F+ such that

• G is split over F . We fix an isomorphism G×F+ F ' GLn/F .
• G is quasi-split at each finite place of F+.
• G(F+ ⊗Q R) is a finite product of copies of the compact real unitary group U(n).

We refer to G as a definite unitary group associated to F/F+.
If w is a place of F+ then let F+

w denote the corresponding local field (and similarly
for places of F ). If w splits in F then the choice of w̃ | w determines an isomorphism
G(F+

w ) ' GLn(Fw̃) = GLn(F+
w ) which implicitly depends on w̃.

We fix a compact open subgroup Up =
∏

w-p Uw ⊂ G(Ap∞
F+). Here, Ap∞

F+ is the finite

adeles of F+ away from p. We assume throughout that Uw is maximal hyperspecial compact
at every inert place of F+. Finally, we also write S for a finite set of finite places of F+

such that S contains all the p-adic places and all the places w such that Uw is not maximal
hyperspecial compact. In particular, each place in S is split in F . We will also use S for the
set of places w̃ of F such that w̃ | w with w ∈ S.

Choose an isomorphism C ' Qp. Then, each complex embedding v∞ : F+ ↪→ C corre-

sponds uniquely to a pair (v, τ) where v is a p-adic place of F+ and τ : F+
v ↪→ Qp is an

embedding. Given the pair (v, τ) we write (v, τ)∞ for the corresponding infinite place of F+.
Automorphic representations are irreducible direct summands in the space of complex-

valued functions on G(F+)\G(AF+) which are smooth andG(F+⊗QR)-finite (see [5, Section
19



6.2.3] for example). Every automorphic representation π may be factored as π = π∞ ⊗ πf ,
where πf =

⊗′ πw is a representation of G(A∞F+) and π∞ is the weight of π, which is
an algebraic representation of G(F+ ⊗Q R). The weight π∞ factors as a tensor product⊗

v∞
πv∞ of irreducible algebraic representations of U(n) indexed by infinite places v∞ of

F+. Let kv∞ = (k1,v∞ ≥ k2,v∞ ≥ · · · ≥ kn,v∞) be the dominant weight associated to πv∞ . If
(v, τ) is a pair as in the previous paragraph we write ki,v,τ := ki,(v,τ)∞ and for fixed v, τ we
stress that k1,v,τ ≥ k2,v,τ ≥ · · · ≥ kn,v,τ . We say that π has tame level Up if πU

p

f 6= 0.
By the work of many authors, for each automorphic representation π of tame level Up

there is a unique n-dimensional continuous semi-simple representation ρπ : GF,S → GLn(Qp)

such that:8

(LCG-I) ρπ conjugate self-dual up to a twist, i.e. ρ⊥π ' ρπ(n−1) where ρ⊥ is the conjugate
dual representation g 7→ tρ(c̃gc̃)−1 (c̃ ∈ GF+ is any order two lift of the non-trivial
element in Gal(F/F+); see [6]).

(LCG-II) If w - p is a place of F+ and w̃ | w is a place of F then WD(ρπ,w̃) = rec(πw̃w |det|
1−n
2 ),

where πw̃w is either the irreducible smooth representation of GLn(Fw̃) associated
to πw via the isomorphism G(F+

w ) ' GLn(Fw̃) if w is split in F , or πw̃w is the
base change (see [37], for example) from G(F+

w ) to GLn(Fw̃) of the necessarily
unramified representation πw of G(F+

w ) if w is inert (and thus w /∈ S).
(LCG-III) If v is a p-adic place of F+ and ṽ | v is a place of F then the representation ρπ,ṽ

is potentially semi-stable and WD(ρπ,ṽ) = rec(πṽv |det|
1−n
2 ) (with the notation as

above). If πv is unramified then ρπ,ṽ is crystalline.
The Hodge–Tate weights are as follows. If τ : Fṽ ↪→ Qp is an embedding then

the natural equality F+
v = Fṽ defines a pair (v, τ) of a p-adic place v of F+

together with an embedding τ : F+
v ↪→ Qp. Then, the τ -Hodge–Tate weights of

ρπ,ṽ are given by hi,ṽ,τ = −ki,v,τ + i− 1.

Generally, the representations ρπ are constructed in two steps. The first, requiring that G
is quasi-split at each finite place, is to apply the base change theorems of Labesse to [32]
to transfer to automorphic representations for GLn/F . (We used that F/F+ is everywhere
unramified to not have to address ramified primes in (LCG-II).)

The second step is the vast collection of works on constructing Galois representations for
regular algebraic essentially conjugate self-dual representations of GLn/F along with their
local properties. See [40, 23] for further references (along with [2, 18, 19] for the various
compatibilities, especially the compatibility at w ∈ S with w - p given by [18]).

4.2. Refinements and eigenvarieties. An eigenvariety p-adically interpolates automor-
phic representations π for G, together with triangulations of the corresponding crystalline
Galois representation (or orderings of crystalline eigenvalues).

Let us be more precise. Write H (Up)sph for the spherical Hecke algebra of tame level Up.
For the next two paragraphs, fix an automorphic representation π for G of tame level Up.
Then, π naturally gives rise to a ring homomorphism λπ : H (Up)sph → Qp. By (LCG-II)
and the Cebotarev density theorem, ρπ is determined by λπ.

8The notations and conventions may be found in Section 1.5. Below, if w̃ is a place of F , we write ρπ,w̃ for
the restriction of ρπ to a decomposition group of w̃. Everything depends the isomorphism C ' Qp.
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For each p-adic place v of F+ we now choose a distinguished place ṽ | v in F .9 Thus
we have an identification G(F+

v ) = GLn(F+
v ) that remains set throughout the rest of this

section. We let T (F+
v ), respectively B(F+

v ), denote the subgroups of G(F+
v ) corresponding

to the diagonal matrices, respectively the Borel subgroup of upper triangular matrices, and
also the actual subgroups of GLn(F+

v ).
If v is a p-adic place of F+ and πv is unramified then we may also choose a smooth

unramified character ϑṽ : T (F+
v ) → Q

×
p such that πv ↪→ Ind

GLn(F+
v )

B(F+
v )

(δ
1/2

B(F+
v )
ϑṽ) (recall the

notations from Section 1.5). Note that ϑṽ actually depends on ṽ, as the identification of
GLn(F+

v ) with G(F+
v ) does. Following [5, Chapter 6], we call ϑṽ an accessible refinement

for πv. We also denote by ψṽ : T (F+
v ) → Q

×
p the highest weight of the unique irreducible

algebraic representation ResF+
v /Qp

GLn over Qp with weight given by the tuple (ki,v,τ )i,τ .

Explicitly, if z ∈ (F+
v )× then ψṽ(diag(1, 1, . . . , z, . . . , 1, 1)) =

∏
τ τ(z)ki,v,τ where z appears

in the ith spot on the left-hand side of that equation.

Now let T =
∏

v T (F+
v ) and T̂ be the rigid analytic space over Qp parameterizing contin-

uous character of T . Then, for each automorphic representation π of tame level Up which

is unramified at the p-adic places we have a point χπ := (δ
−1/2

B(F+
v )
ψṽϑṽ)v|p in T̂ , depending on

the choice of accessible refinements ϑṽ. The eigenvariety XUp of tame level Up is coarsely
defined as the rigid analytic closure of the points

Zcl := {(λπ, χπ)} ⊂ Hom(H (Up)sph,Qp)× T̂
where the collection runs over automorphic representations π of tame level Up, unramified
at the p-adic places, together with the choice of an accessible refinement at each p-adic
places. We call Zcl the set of “classical points”. The rigid analytic closure does not literally
make sense, but we refer to [20, 24] for details and precisions on the construction. For the
remainder of this section, we summarize the properties that we will need.

The natural map χ : XUp → T̂ is written x 7→ χx. By way of comparison with other
sources, the map χ contains the data that may usually be included in the presence of the
Atkin–Lehner algebra (in the style of [20, 5] for example).

We briefly observe the role of our normalizations. If (λπ, χπ) is a classical point, and if

v | p is a p-adic place we write χ1,v,π⊗ · · ·⊗χn,v,π : T (F+
v )→ Q

×
p for the local component at

v of χπ. Then, (LCG-III) implies that the crystalline eigenvalues of ρπ,ṽ are given by the list

(13)

(
χ1,v,π($v) ·

∏
τ

τ($v)
h1,v,τ , . . . , χn,v,π($v) ·

∏
τ

τ($v)
hn,v,τ

)
for some/any choice of uniformizer $v ∈ F+

v . In particular, each classical point (with distinct
crystalline eigenvalues) is naturally equipped with triangulations at the p-adic places.

The classical points Zcl are Zariski dense and accumulating in XUp [5, Theorem 7.3.1(v)].
The p-adic analytic variation of pseudocharacters may be used to construct a global pseu-
docharacter T : GF,S → GLn(O(XUp)) which interpolates x 7→ tr(ρx) at classical points [20,
Proposition 7.1.1]. Specializing T to a point x, [43, Theorem 1(2)] also gives a continuous
semi-simple representation

ρx : GF,S → GLn(Qp)

9This choice is ultimately inconsequential. See the remark preceding Proposition 4.5.
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which is conjugate self-dual and satisfies apparent compatibility over XUp at unramified
places (by interpolation). If x ∈ X we let L(x) denote its residue field.

Lemma 4.1. If x ∈ XUp and ρx is absolutely irreducible and defined over L(x) then there
exists an affinoid neighborhood Y = Sp(B) ⊂ X and a continuous representation ρY : GF,S →
GLn(B) such that ρY ⊗B L(y) = ρy for all y ∈ Y .

Proof. Let A be the rigid local ring A = Orig
X,x. Since A is Henselian ([12, Theorem 2.1.5])

and ρx is absolutely irreducible, ρx lifts uniquely to a continuous representation ρA : GF,S →
GLn(A) [39, Corollarie 5.2]. The existence of Y = Sp(B) and ρY such that tr(ρy) = tr(ρY ⊗B
L(y)) for all y ∈ Y follows from [5, Lemma 4.3.7]. But, the locus of points y ∈ Y for
which ρy is absolutely irreducible is a rigid open subspace ([20, Section 7.2.1]), so we can
shrink Y and assume that ρy is absolutely irreducible for all y. In that case the equality
tr(ρy) = tr(ρY ⊗B L(y)) implies that ρy = ρY ⊗B L(y), finishing the proof. �

Remark 4.2. The representations ρx for classical x satisfy the hypothesis of the lemma, i.e.
they are defined over their residue fields.

Instead of working with the whole tame level Up eigenvariety, we will instead consider a
minimal eigenvariety. We briefly explain, but see [5, Example 7.5.1] for further information
(see also [21, Section 3.6]). Fix an automorphic representation π, unramified at the p-adic
places, and the choice of an accessible refinement giving rise to a point xπ ∈ XUp . The places
w ∈ S with w - p are all split. Fix a choice w̃ | w for each such w. Then the representation
πw̃w of G(F+

w ) ' GLn(F+
w ) has a K-type ([5, Section 6.5]), which gives rise to idempotents

ew (independent of w̃) commuting with H (Up)sph inside the space of compactly supported
continuous complex-valued functions C 0

c (G(Ap
F+)). The minimal eigenvariety X for x = xπ

is then the idempotent-type eigenvariety ([5, Section 7.3]) obtained from the idempotents
(ew)w∈S,w-p. This defines a closed rigid subvariety X ↪→ XUp . The corresponding classical
points are those (λπ, χπ) ∈ Zcl above such that ew(π) 6= 0 for w ∈ S, w - p.

We will need a property of X relating to Galois representations at the ramified places
S. Let w ∈ S and w̃ be a place of F above w. If (r,N) and (r′, N ′) are two Weil–Deligne
representations of the Weil group WFw̃ then we will use the notation N ≺w̃ N ′ for the “less
monodromy” notation N ≺Iw̃ N ′ introduced in [5, Definition 7.8.18] and N ∼w̃ N ′ for the
obvious equal version. We note two things:

(i) If N ∼w̃ N ′ then r
∣∣
Iw̃
' r′

∣∣
Iw̃

. This is by definition of the relation ≺.

(ii) Let x ∈ XUp be classical and X be its minimal eigenvariety. If z is a classical point on
X then Nz,w̃ ≺w̃ Nx,w̃ for all w ∈ S, where (rz,w̃, Nz,w̃) = WD(ρz,w̃) is the Weil–Deligne
representation associated to ρz,w̃. This follows from (LCG-II) and the definition of the
idempotents ew (compare with [5, Section 6.5]).

We now summarize the rest of the properties of the minimal eigenvariety:

Proposition 4.3. Let x ∈ XUp be a classical point and X its minimal eigenvariety.

(a) X is equidimensional of dimension (F+ : Q) · n.

(b) If ρx is absolutely irreducible then there exists a canonical lifting ρ̂x to Orig
X,x, and for

each w̃ | w with w ∈ S and w - p, we have ρ̂x
∣∣
Iw̃
' ρx

∣∣
Iw̃
⊗L(x) Orig

X,x.
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(c) If ρx is absolutely irreducible, ρ̂x is as in part (b), and Hx denotes the image of

H (Up)sph in the local ring Orig
X,x then Hx is contained in the the sub-algebra of Orig

X,x

generated by tr∧iρ̂x(GF,S) for i = 1, 2, . . . , n.

Proof. The statement (a) is a general property of eigenvarieties of idempotent-type attached
to definite unitary groups [5, Theorem 7.3.1(a)].

The lifting in (b) is deduced from Lemma 4.1. The constancy of inertia acting is deduced
from [5, Corollary 7.5.10]. This is explained in the proof of [5, Proposition 7.6.10], but since
it is where we use the minimal eigenvariety (specifically comment (ii) above), we include

the argument for convenience. Let Kx be the total ring of fractions of Orig
X,x and write

Kx =
∏
Ks(x) where each Ks(x) is a field corresponding to an irreducible component s(x).

Let ρgen
x : GF,S → GLn(Ks(x)) be the corresponding Galois representation and ρgen

s(x),w̃ be its

restriction to the local group GFw̃ . This representation admits a Weil–Deligne representation
(rgen
s(x),w̃, N

gen
s(x),w̃) (see [5, Section 7.8.4]). In general, Nz,w̃ ≺w̃ Ngen

s(x),w̃ for all z on s(x) with

∼w̃ on a Zariski-dense subset. For instance, Nz,w̃ ∼w̃ Ngen
s(x),w̃ for a set of classical z on s(x)

accumulating at x. Thus (ii) above implies Ngen
s(x),w̃ ≺w̃ Nx,w̃. The reverse is always true,

so we conclude Ngen
s(x),w̃ ∼w̃ Nx,w̃. Since s(x) is arbitrary, we see that the hypothesis of [5,

Corollary 7.5.10] is satisfied.10 We conclude that N̂x,w̃ ∼w̃ Nx,w̃ where (r̂x,w̃, N̂x,w̃) is the
Weil–Deligne representation associated to ρ̂x,w̃ (see the references just prior to [5, Corollary

7.5.10]). By definition then ρ̂x
∣∣
IFw̃
' ρx

∣∣
IFw̃
⊗L(x) Orig

X,x (see (i) above).

Part (c) follows from applying (LCG-II) to the places w /∈ S. Indeed, the Satake isomor-
phism and (LCG-II) implies that H (Up)sph is generated as an algebra by elements whose
specialization at any classical point z are the coefficients of the characteristic polynomial of
ρz,w̃(Frobw̃). In particular, the image Hx in Orig

X,x is naturally generated by the characteristic
polynomials of ρ̂x(Frobw) with w /∈ S. �

4.3. Upper bounds for tangent spaces via deformation theory. We continue to use
the notations and conventions of the previous two sections. We also assume:

(4.3-A) π is an automorphic representation of tame level Up, unramified above p, and (ϑṽ)ṽ
is a list of accessible refinements for the representations πv at the p-adic places v of
F+.

(4.3-B) The global Galois representation ρπ is absolutely irreducible.
(4.3-C) By (LCG-III) the choices in (4.3-A) define orderings of the crystalline eigenvalues

for each ρπ,ṽ (see (13)). We assume that these eigenvalues are all distinct and denote

by Pṽ,• the corresponding triangulation of the (ϕ,ΓF+
v

)-module D†rig(ρπ,ṽ).
(4.3-D) We further assume that Pṽ,• is regular generic for each v | p.
We now denote by X ⊂ XUp the minimal eigenvariety containing the point x = xπ. By
assumption (4.3-B), ρx is absolutely irreducible and so the universal deformation functor
Xρx on ARL(x) is (pro-)representable by a complete local noetherian L(x)-algebra Runiv

ρx

with residue field L(x). Denote by Xcsd
ρx ⊂ Xρx the representable subfunctor parameterizing

conjugate self-dual deformations ρ (i.e. ρ⊥ ' ρ(n− 1)).

10The embedded reference to Proposition 7.5.8 in loc. cit is valid because we’ve assume that each place of S
splits in F .
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At places w̃ - p of F , we may consider the local Galois representation ρx,w̃ and its universal
deformation functor Xρx,w̃ . There is a natural subfunctor Xρx,w̃,f ⊂ Xρx,w̃ parameterizing
deformations which are minimally ramified. That is, if A ∈ ARL(x) then

Xρx,w̃,f (A) =
{
ρA ∈ Xρx,w̃(A) : ρA

∣∣
Iw̃
' ρx,w̃

∣∣
Iw̃
⊗L(x) A

}
.

For example, if w̃ /∈ S then ρA ∈ Xρx,w̃,f (A) if and only if ρA is trivial on inertia at w̃. The
arrow Xρx,w̃,f ↪→ Xρx,w̃ is relatively representable (e.g. by Schlessinger’s criterion).

For v | p in F+, we let XRef
ρx,ṽ

:= XRef

D†rig(ρx,ṽ),Pṽ,•
be the weakly-refined deformations of

D†rig(ρx,ṽ) with respect to the triangulation Pṽ,• arising from (4.3-C). We now let XRef,min
ρx

denote the fibered product defined by the diagram

XRef,min
ρx

��

// Xcsd
ρx

��∏
w̃-pXρπ,w̃,f ×

∏
v|pX

Ref
ρx,ṽ

//
∏

w̃-pXρx,w̃ ×
∏

v|pXρx,ṽ .

Since the bottom arrow is relatively representable and Xcsd
ρx is itself (pro-)representable, we

deduce that XRef,min
ρx is a (pro-)representable functor on ARL(x). We denote the universal

ring representing XRef,min
ρx by RRef,min

ρx .

Remark 4.4. The conjugate self-dual property of the deformations in XRef,min
ρx implies that it

is sufficient to consider only one place of F above each place of F+. This is why, for example,
we only specify the deformation problem at the fixed p-adic places ṽ of F .

Let Orig
X,x denote the rigid analytic local ring of x at X and Ôrig

X,x denote its completion.

Proposition 4.5. There is a canonical surjective ring homomorphism f : RRef,min
ρx � Ôrig

X,x.

Proof. Since ρx is absolutely irreducible, Proposition 4.3(b) implies that we can canonically

lift ρx to a deformation ρ̂x : GF,S → GLn(Orig
X,x) ⊂ GLn(Ôrig

X,x). Since Ôrig
X,x is a complete

local Noetherian L(x)-algebra with residue field L(x), this defines a map f : Runiv
ρx → Ôrig

X,x.

To show that f factors through RRef,min
ρx , we need to show that ρ̂x defines a point in the

subfunctor XRef,min
ρx ⊂ Xρx . For that, we need to check:

(i) ρ̂x is conjugate self-dual.
(ii) ρ̂x is minimally ramified away from p.

(iii) If v | p then the representation ρ̂x,ṽ is a weakly-refined deformation of ρx,ṽ.

The first point is clear because the Galois representation ρy is conjugate self-dual for all
y ∈ X. The condition (ii) follows from Proposition 4.3(b), which is valid by assumption (4.3-
B) and the minimality of X. The point (iii) is the crucial p-adic interpolation of crystalline
eigenvalues over eigenvarieties as we now explain (see [31, 5, 34, 30]).

Let Y be an affinoid open of X, containing x, as in Lemma 4.1. Fix a place v | p in F+

and form the family D†rig(ρY,ṽ) of (ϕ,ΓK)-modules over Y (see [29]). Consider the natural

map χ : Y → T̂ as the universal character χ : T → O(Y )×.11 Write χv : T (F+
v ) → O(Y )×

11Here and below we are using O(−) to denote the ring of rigid analytic functions on a rigid space.
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for the local component at v, and we further write χv = χ1,v ⊗ · · · ⊗ χn,v, with each χj,v a
character of (F+

v )×. Set ∆j,v := χ1,v · · ·χj,v : (F+
v )× → O(Y )×.

Choose a uniformizer $F+
v
∈ (F+

v )× and use $F+
v

to write (F+
v )× = $Z

F+
v
× O×

F+
v

. Let

ηj,v := ∆j,v

∣∣
O×
F+
v

, but then use the same notation to denote what we called (ηj,v)$K in

Section 2.3, i.e. set ηj,v($K) = 1. With these notations, [34] implies that for j = 1, . . . , n

the space D+
crys(∧jD

†
rig(ρY,ṽ)(η

−1
j,v ))

ϕfK=∆j,v($
F+
v

)
is a coherent sheaf of generic rank one on Y

(see the comments preceding [34, Theorem 0.3.4] and note the consistency with (13)).
We can say more. By assumption (4.3-D), the triangulations Pṽ,• at the point x are all

regular generic and thus [34, Proposition 4.3.5] implies that after shrinking Y we may assume

that each D+
crys(∧jD

†
rig(ρY,ṽ)(η

−1
j,v ))

ϕfK=∆j,v($
F+
v

)
is free of rank one, and satisfies base change,

on Y . In particular, this shows that ρ̂x,ṽ is a weakly-refined deformation of ρx,ṽ.
We now give the standard argument that the map f is surjective. By compactness of the

ring RRef,min
ρx , it is enough to see that dense subring Orig

X,x ⊂ Ô
rig
X,x is contained in the image

of f . By construction of X, Orig
X,x is topologically generated by H (Up)sph over O(T̂ ) inside

Orig
X,x (compare with the proof of [5, Proposition 7.6.10]). The image of the algebra H (Up)sph

in Orig
X,x is in the image of f by Proposition 4.3(c).

The image of Orig

T̂ ,χx
in Orig

X,x is generated by {∆j,v, ηj,v} for v | p and j = 1, . . . , n as

above (meaning the values of these characters as function on Y ). Let ρuniv
x be the universal

deformation to RRef,min
ρx . If I ⊂ RRef,min

ρx is a co-finite length ideal, we apply the defini-
tion of being weakly-refined with the choice of uniformizer $F+

v
as above, and deduce that

D+
crys(∧jD

†
rig(ρuniv

x,ṽ /I)(η−1
univ,j,v))

ϕfK=∆univ,j,v($
F+
v

)
is free of rank one over RRef,min

ρx /I⊗L(x)(F
+
v )0,

were ∆univ,j,v and ηuniv,j,v are the universal characters of (F+
v )× → (RRef,min

ρx )× associated to

ρuniv
x . Since ρuniv

x induces ρ̂x under the map f , we see that the corresponding compositions

(F+
v )× → (RRef,min

ρx /I)× → (Orig
X,x/IO

rig
X,x)

× are equal to ∆j,v mod I and ηj,v mod I, respec-
tively (we are carefully using that ηuniv,j,v and ηj,v are both defined to be trivial on $F+

v
). Now

we take the limit over I being powers of the maximal ideal in Orig
X,x and conclude {∆j,v, ηj,v}

are in the image of f by Krull’s intersection theorem. �

Now denote by TX,x the tangent space to X at the point x. Let tRef,min
ρx denote the tangent

space for the ring RRef,min
ρx . If dimL(x) t

Ref,min
ρx = g then RRef,min

ρx is a quotient of a power series
ring L(x)[[u1, . . . , ug]] in g variables (this goes back to Mazur).

Since ρ⊥x ' ρx(n−1), there is a matrixAx ∈ GLn(L(x)) such that ρ⊥x (g) = Axρx(g)A−1
x χn−1

cycl (g)
for all g ∈ GF . The main theorem of [6] implies that Ax is symmetric and unique up to
scalar because ρx is absolutely irreducible. We recall that this allows us to extend the action
of GF on ad ρx to an action of GF+ (see the introduction of [1], for example). Specifically,
we write ad ρx = GL(Mn(L(x))), and if c ∈ GF+ denotes the choice of a complex conju-
gation for F/F+ then we let c act by B 7→ −A−1

x · tB · Ax for all B ∈ Mn(L). This is
well-defined and completely canonical. Let H1

f (ad ρx)
+ = H1

f (GF+ , ad ρx) denote the global
adjoint Bloch–Kato Selmer group [13].
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Lemma 4.6. The restriction map ρx 7→ (ρx,ṽ) induces a natural map tRef,min
ρx →

⊕
v|p t

Ref
ρx,ṽ

and this induces an exact sequence

0→ H1
f (ad ρx)

+ → tRef,min
ρx →

⊕
v|p

tRef
ρx,ṽ

/tρx,ṽ ,f

of vector spaces over L(x).

Proof. The fact that the natural map exists is clear. Next, Gal(F/F+) = {1, c} acts on
H1(GF , ad ρx) by the paragraph preceding this lemma, and the inflation-restriction sequence
implies that H1(GF+ , ad ρx) = H1(GF , ad ρx)

c=1. It is an elementary calculation that a
deformation ρ̃ ∈ H1(GF , ad ρx) of ρx to L(x)[ε] is conjugate self-dual if and only if ρ̃ ∈
H1(GF , ad ρx)

c=1. Thus H1
f (ad ρx)

+ is contained in the kernel of the restriction maps. The

reverse inclusion follows from the minimal condition since every deformation ρ̃ ∈ tRef,min
ρx has

the property that the restriction ρ̃w̃ to a place w̃ - p lies in H1
f (ad ρx,w̃) = tρx,w̃,f already. �

We now summarize the situation. We have fixed a classical point x on an eigenvariety
corresponding to the choices (4.3-A)-(4.3-D), and we restricted to the minimal eigenvariety
X containing x. By (4.3-C) the point x comes naturally equipped with triangulations Pṽ,•
of the local Galois representation D†rig(ρx,ṽ) at a set of distinguished p-adic places ṽ of F .

Theorem 4.7. With the above notation and assumptions, for each p-adic place v of F+ let
(σv,τ )τ be critical type of the triangulation Pṽ,• at the point x. Then

dimL(x) TX,x ≤ dimL(x) t
Ref,min
ρx ≤ dimL(x) H

1
f (ad ρx)

+ +
∑
v|p

∑
τ :F+

v →L(x)

`(σv,τ ) + c(σv,τ ).

Proof. The surjection f : RRef,min
ρx � Ôrig

X,x in Proposition 4.5 gives rise to a canonical injection

TX,x ↪→ tRef,min
ρx . This proves the first inequality. For the second inequality, Lemma 4.6 implies

that

(14) dimL(x) t
Ref,min
ρx ≤ dimL(x) H

1
f (ad ρx)

+ +
∑
v|p

dimL(x) t
Ref
ρx,ṽ

/tρx,ṽ ,f .

If v | p then Pṽ,• is regular generic by assumption (4.3-D) and so Theorem 3.16 implies that

(15) dimL(x) t
Ref
ρx,ṽ

/tρx,ṽ ,f ≤
∑

τ :F+
v →L(x)

`(σv,τ ) + c(σv,τ ).

The second inequality in the statement of the theorem now follows from summing (15) over
v | p and inserting it into (14). �

Corollary 4.8. In the situation of Theorem 4.7, suppose that

(a) σv,τ is a product of distinct simple transpositions for all v and all τ , and
(b) H1

f (ad ρx)
+ = (0).

Then X is smooth at x and the map f : RRef,min
ρx → Ôrig

X,x is an isomorphism.

Proof. By Proposition 3.18, the assumption (a) implies that for each v,∑
τ :F+

v →L(x)

`(σv,τ ) + c(σv,τ ) =
∑

τ :F+
v →L(x)

n = (F+
v : Qp) · n.
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Thus Theorem 4.7 implies that

dimL(x) TX,x ≤ dimL(x) t
Ref,min
ρπ ≤

∑
v|p

(F+
v : Qp) · n = (F+ : Q) · n.

Let g = (F+ : Q)·n. Then RRef,min
ρx is a quotient of a power series ring over L(x) in g variables.

On the other hand, Ôrig
X,x is equidimensional of dimension g by Proposition 4.3(a). Krull’s

Hauptidealsatz then implies that the surjection f : RRef,min
ρπ � Ôrig

X,x is an isomorphism and

that RRef,min
ρx and Ôrig

X,x are both power series rings in g variables. �

We finish with a number of remarks.

Remark 4.9. The technical hypothesis on the vanishing of the Selmer group in Corollary 4.8
is expected to always hold. The current status is discussed following Corollary 1.3.

Remark 4.10. The irreducibility of the global Galois representation ρx plays a role, even if
under-emphasized, in the proof of Theorem 4.7. Indeed, if we only take as input the inequality
dimL(x) TX,x ≤ dimL(x) H

1
f (ad ρx)

+ +
∑

v|p · · · in Theorem 4.7, and the assumptions (a) and

(b) in Corollary 4.8, then we would still be able to prove that dimL(x) TX,x = (F+ : Q) · n,
meaning X would be smooth at x. But, in [3], Belläıche has given an example of a classical
point on an eigenvariety whose critical type is a 3-cycle (hence a product of distinct simple
transpositions) and which is a singular point on every irreducible component it lies on. But,
ρx is a direct sum of two representations in this case.

Remark 4.11. In [15], Breuil, Hellmann and Schraen have shown that Corollary 4.8 is optimal
in the sense that X is singular at classical points whose critical types are not all products of
distinct simple transpositions. (They had previously shown this in [16, Section 5] assuming
certain modularity conjectures.)

Remark 4.12. The astute reader may have noticed that the classicality hypothesis in Theorem
4.7 may be relaxed. Surely we used classicality to know that the local representations at
the p-adic places were crystalline. But, we also used it in writing the sum in Theorem 4.7
over the p-adic places in terms of the critical type. Even the basic idea of the critical type
requires an a priori reasonable ordering of Hodge–Tate weights. This ordering arises in the
classical setting as the corresponding dominant weight.

But, Theorem 4.7 holds also for (sufficiently generic) crystalline points (with globally irre-
ducible Galois representations) on the eigenvarieties, provided we replace the sum

∑
v|p
∑

τ · · ·
by a sum related to the Bloch–Kato Selmer dimensions as in Theorem 3.12, i.e. a dimension
depending on the parameter of the corresponding point on the eigenvariety. Doing this, it
seems likely that the corresponding bounds will not always be tight.

The easiest examples we have in mind are companion points on the Coleman–Mazur eigen-
curve. For concreteness, we may consider an overconvergent p-adic cuspform g of negative
weight 2 − k, such that θk−1(g) is the critical p-stabilization of a p-ordinary CM form of
weight k. The analog of Theorem 4.7 only produces an upper bound of two for the size of
the tangent space to the one-dimensional eigencurve at the point corresponding to g.

However, we learned from Belläıche (in a preprint which is no longer publicly available)
that if one could prove that g lies on a union of CM components then in fact g lies on a
unique component and is smooth. We can sketch our own proof as well. If g lies on a union
of CM components then the infinitesimal deformations of the Galois representation on the
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eigencurve would all be locally split at p. The locally split condition is certainly not implied
by the weakly-refined condition and thus imposing it would bring the bound of two which
Theorem 4.7 gives down to a bound of one, which proves g is a smooth point. It bears
mentioning that we do not know whether or not such forms g must a priori lie on a union
of CM components, but it would be remarkable if that condition was never satisfied.
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