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Energy dynamics in a simulation of LAPD turbulence
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Energy dynamics calculations in a 3D fluid simulation of drift wave turbulence in the linear Large
Plasma Device [W. Gekelman et al., Rev. Sci. Instrum. 62, 2875 (1991)] illuminate processes that
drive and dissipate the turbulence. These calculations reveal that a nonlinear instability dominates
the injection of energy into the turbulence by overtaking the linear drift wave instability that
dominates when fluctuations about the equilibrium are small. The nonlinear instability drives flute-
like (kk ¼ 0) density fluctuations using free energy from the background density gradient. Through
nonlinear axial wavenumber transfer to kk 6¼ 0 fluctuations, the nonlinear instability accesses the
adiabatic response, which provides the requisite energy transfer channel from density to potential
fluctuations as well as the phase shift that causes instability. The turbulence characteristics in the
simulations agree remarkably well with experiment. When the nonlinear instability is artificially
removed from the system through suppressing kk ¼ 0 modes, the turbulence develops a coherent
frequency spectrum which is inconsistent with experimental data. This indicates the importance of
the nonlinear instability in producing experimentally consistent turbulence. VC 2012 American
Institute of Physics. [http://dx.doi.org/10.1063/1.4759010]

I. INTRODUCTION

It is common practice to study a system’s linear stability
properties to gain insight into turbulent dynamics. It is often
easier to calculate and analyze linear modes and growth rates
than to simulate and analyze nonlinear turbulence. However,
there are several situations in which linear properties can be
misleading in understanding turbulent systems. First, linear
studies of magnetically confined plasmas that neglect stable
branches of the linear dispersion relation often miss details of
nonlinear dynamics. For example, stable eigenmodes can of-
ten impact nonlinear dynamics by providing energy sinks and
sometimes energy sources not found on the most unstable lin-
ear branch.1–10 Stable eigenmodes can shift the energy injec-
tion and dissipation ranges, making the turbulent dynamics
very different from the Kolmogorov picture of hydrodynamic
turbulence.11 Second, systems with non-normal modes (non-
orthogonal eigenvectors) display properties that are unex-
pected from linear calculations.12 In fact, systems with non-
normal modes even make it difficult to predict dynamics
when stable eigenmode branches are included in analyses.8

Third, linear stability analysis can miss crucial nonlinear insta-
bility effects, which come in several varieties.

The most obvious variety of a nonlinear instability effect
is that of subcritical turbulence in which no linear instabil-
ities exist but turbulence is self-sustained given finite-
amplitude seed perturbations. Subcritical turbulence is com-
mon in hydrodynamics.13 While not as well-known in
plasma physics, several cases of subcritical plasma instabil-
ities have been shown in the literature.14–20 The second vari-
ety of nonlinear instability includes cases in which a
particular linear instability is present in a system, but the tur-

bulence is maintained by a nonlinear instability mechanism
with different physical origins than the linear instability
mechanism. This has been explored in tokamak edge simula-
tions in which linear ballooning instability drive is overtaken
in the saturated phase by a nonlinear drift-wave drive.21–25

Finally, it is often found that a particular linear instability is
enhanced, depressed, and/or modified in the saturated phase
by a nonlinear instability with a similar mechanism as the
linear instability. In some of these cases, nonlinear wave-
number transfers can increase or cause drive,26,27 while in
other cases zonal flow effects decrease drive.28,29

In order to avoid the pitfalls of relying too heavily on
linear stability calculations in forming conclusions on turbu-
lence characteristics, it is useful to perform turbulent simula-
tions and diagnose them with energy dynamics analyses.
Energy dynamics analyses track energy input into turbulent
fluctuations and energy dissipation out of them. They also
track conservative energy transfer between different energy
types (e.g., from potential to kinetic energy) and between
different scales, waves, or eigenmodes of a system. In all,
energy dynamics analysis can be used as a post-processing
tool to characterize simulation turbulence in order to gain
insight into underlying physical processes.

In this study, a simulation of a two-fluid Braginskii model
of turbulence in the Large Plasma Device (LAPD)30 is sub-
jected to such an energy dynamics analysis. This reveals that
a nonlinear instability drives and maintains the turbulence in
the steady state saturated phase of the simulation. While a lin-
ear resistive drift wave instability resides in the system, the
nonlinear drift wave instability dominates when the mean
fluctuation amplitude is over a few percent of the equilibrium
value. The primary linear instability is the resistive drift wave
which has a positive linear growth rate for low but finite kk.
However, the saturated state of the simulated turbulence isa)Electronic mail: friedman@physics.ucla.edu.
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strongly dominated by flute-like (kk ¼ 0) fluctuations in den-
sity and potential. The flute-like fluctuation spectrum is gener-
ated by a nonlinear instability. The nonlinear instability is
identified by its energy growth rate spectrum, which varies
significantly from the linear growth rate spectrum. If kk ¼ 0
fluctuations are removed from the simulation (while retaining
zonal flows), the saturated turbulent state is qualitatively and
quantitatively different and much less consistent with experi-
mental measurement.

II. THE DRIFT WAVE MODEL

A Braginskii-based fluid model31 is used to simulate
drift wave turbulence in LAPD using the BOUTþþ code.32

The evolved variables in the model are the plasma density,
N, the electron fluid parallel velocity vke, the potential vortic-
ity - # r? $ ðN0r?/Þ, and the electron temperature Te.
The ions are assumed cold in the model (Ti ¼ 0), which
eliminate ion temperature gradient drive and sound wave
effects are neglected. Details of the simulation code and deri-
vations of the model may be found in previous LAPD verifi-
cation and validation studies,33–36 although electron
temperature fluctuations were not included in those studies.

The equations are developed with Bohm normalizations:
Lengths are normalized to the ion sound gyroradius qs, times
to the ion cyclotron time x'1

ci , velocities to the sound speed
cs, densities to the equilibrium peak density, and electron
temperatures and potentials to the equilibrium peak electron
temperature. These normalizations are constants (not func-
tions of radius) and are calculated from these reference val-
ues: The magnetic field is 1 kG, the ion unit mass is 4, the
peak density is 2:86( 1012 cm'3, and the peak electron tem-
perature is 6 eV. The equations are

@tN ¼ 'vE $rN0 ' N0rkvke þ lNr2
?N þ SN þ f/;Ng;

(1)

@tvke ¼'
mi

me

Te0

N0
rkN ' 1:71

mi

me
rkTe

þ mi

me
rk/' !evke þ /; vke

! "
; (2)

@t- ¼ 'N0rkvke ' !in-þ l/r2
?-þ f/;-g; (3)
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2

3
Te0rkvke þ

2

3N0
jker2

kTe

' 2me

mi
!eTe þ lTr2

?Te þ ST þ /; Tef g: (4)

In these equations, lN; lT , and l/ are artificial diffusion and
viscosity coefficients used for subgrid dissipation. They are
large enough to allow saturation and grid convergence,36 but
small enough to allow for turbulence to develop. In the simu-
lations, they are all given the same value of 1:25( 10'3 in
Bohm-normalized units. This is the only free parameter in
the simulations. All other parameters, such as the electron
collisionality !e, ion-neutral collisionality !in, parallel elec-
tron thermal conductivity jke, and mass ratio mi

me
are calcu-

lated from the experimental parameters. There are two
sources of free energy: The density gradient due to the equi-

librium density profile N0, and the equilibrium electron tem-
perature gradient in Te0, both of which are taken from
experimental fits. N0 and Te0 are the functions of only the ra-
dial cylindrical coordinate r, and they are shown in Fig. 1.

The terms in Poisson brackets are the E( B advective
nonlinearities, which are the only nonlinearities used in the
simulations. The numerical simulations are fully spatial in
all three dimensions (as opposed to spectral) and use cylin-
drical annular geometry (12 < r < 40 cm). The radial extent
used in the simulation encompasses the region where fluctua-
tions are above a few percent in the experiment. The simula-
tions use periodic boundary conditions in the axial (z)
direction and Dirichlet boundary conditions in the radial (r)
direction for the fluctuating quantities.

Simulations also use density and temperature sources
(Sn and ST) in order to keep the equilibrium profiles from
relaxing away from their experimental shapes. These sources
suppress the azimuthal averages (m¼ 0 component of the
density and temperature fluctuations) at each time step. The
azimuthal average of the potential / is allowed to evolve in
the simulation, allowing zonal flows to arise. The parallel
current, which is often found explicitly in these equations is
replaced here by Jk ¼ 'N0vke.

Some basic statistical properties of the density fluctua-
tions of the simulation are shown in Fig. 2 and are compared
to the corresponding results from the experiment on which
this simulation is based. The simulation reproduces these
characteristics of experimental measurements with rather
good qualitative and quantitative accuracy.

III. ENERGETICS MACHINERY

In order to perform an energy dynamics analysis on the
simulation, expressions for the energy and energy evolution
must be derived from Eqs. (1)–(4). To start, an expression
for the normalized energy of the wave fluctuations in the
drift wave model is defined as

FIG. 1. The profiles of density N0 and electron temperature Te0 used in the
simulations normalized to their peak values of 2:86( 1012 cm'3 and 6 eV,
respectively.
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E ¼ 1

2

ð

V
ðN2 þ 3

2
T2

e þ
me

mi
v2
ke þ N0ðr?/Þ2ÞdV: (5)

The N2 contribution is the potential energy due to den-
sity fluctuations, 3

2 T2
e is the electron temperature fluctuation

potential energy, me
mi

v2
ke is the parallel electron kinetic energy,

and N0ðr?/Þ2 is the E( B perpendicular kinetic energy.
These energy-like expressions are defined in this way so that
they are conserved individually by their respective advective
nonlinearities. While the physical energy contains extra fac-
tors of N0 and Te0, the physical energy does not preserve the
property of conservative nonlinearities of Eqs. (1)–(4) and
therefore produces a more complicated analysis. Analyzing
an energy-like expression, such as that in Eq. (5), however,
can be just as illuminating, and in this case simpler, than ana-

lyzing the physical energy. The expression in Eq. (5) will
henceforth be referred to simply as the energy.

Furthermore, it is often most instructive to analyze the
spectrally decomposed energy dynamics. To do this, each
fluid field ðN; Te; vke;/Þ at a given time is Fourier decom-
posed as Fðr; h; zÞ ¼

P
~k f~kðrÞe

iðmhþkzzÞ, where the subscript
~k represents the spectral wavenumbers, (m, n). m is the azi-
muthal wavenumber while n is the axial integer wavenumber
such that kz # kk ¼ 2pn=lz. Note that the radial direction is
not spectrally decomposed because the radial dependence of
the profiles and differential operators complicates the analy-
sis. With this, the energy of each Fourier ~k ¼ ðm; nÞ mode is

Etotð~kÞ ¼
1

2

$
jn~k j

2 þ 3

2
jt~k j

2 þ me

mi
jv~k j

2 þ N0

%%%%
@/~k

@r

%%%%
2

þ N0
m2

r2
j/~k j

2

&
; (6)

where the brackets hi represent the radial integral:
Ð rb

ra
rdr.

The energy evolution for each Fourier mode of each field has
the form

@Ejð~kÞ
@t

¼ Qjð~kÞ þ Cjð~kÞ þ Djð~kÞ þ
X

~k
0

Tjð~k; ~k
0Þ: (7)

The index j stands for each field, (n; t; v;/), and the sum
over j gives the total energy evolution. Note that with the
conventions used, the symbol n denotes both the axial mode
number as well as the Fourier coefficient of the density fluc-
tuation. The differences should be clear in context. The deri-
vation of Eq. (7) is given in the Appendix along with the full
expressions for each of the parts. Tjð~k; ~k

0
Þ is the nonlinear

energy transfer function that comes from the advective nonli-
nearities. It describes the nonlinear energy transfer rate of
modes ~k

0
¼ ðm0; n0Þ and ~k ' ~k

0
¼ ðm' m0; n' n0Þ to the

mode ~k ¼ ðm; nÞ. In other words, a positive value of
Tjð~k; ~k

0Þ indicates that fluctuations at wavenumber ~k gain
energy from gradient fluctuations at wavenumber ~k

0
and

flow fluctuations at wavenumber ~k ' ~k 0. When summed over
~k
0

as in Eq. (7), the result is the total nonlinear energy trans-
fer into mode ~k. Note that

P
~k ;~k

0 Tjð~k; ~k
0
Þ ¼ 0 because the

nonlinearities conserve energy individually in each of Eqs.
(1)–(4). This is easily proven by the following identity:

ð

X
qfp; qg dX ¼

ð

X
pfp; qg dX ¼ 0; (8)

which holds when boundary conditions are periodic or zero
value as they are in the simulation. The fact that the advec-
tive nonlinearities conserve energy means that they can
transfer energy between different Fourier modes but they
cannot change the energy of the volume-averaged fluctua-
tions as a whole. Only the linear terms can change the total
energy of the fluctuations. Other possible nonlinearities that
do not conserve energy are not included in the model equa-
tion set or in the simulations for simplicity of the energy
analysis. Furthermore, it is convenient for the simulations to
employ an energy conserving finite difference scheme for

FIG. 2. (a) The power spectral density of the density fluctuations, showing
the results from simulation versus experiment, (b) the probability distribu-
tion function of the density fluctuations, and (c) the RMS amplitude of the
density fluctuations as a function of radius.
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the advective nonlinearities to reflect this analytic property
of the equations. However, most common numerical advec-
tion schemes do not conserve energy for finite grid spacing.
Therefore, an Arakawa advection scheme37 that conserves
energy of the advected quantity is used for the nonlinear
advection terms in the simulations.

The linear terms in Eqs. (1)–(4) do not conserve energy
individually or as a whole. The linear terms are broken up
into three contributions in Eq. (7). Djð~kÞ represents noncon-
servative energy dissipation due to collisions, artificial diffu-
sion and viscosity, and the density and temperature sources.
Each contribution to Djð~kÞ is negative, and the exact expres-
sions are given in the Appendix. Cjð~kÞ contains the linear
terms dubbed “transfer channels.”23 They are rewritten here

Cnð~kÞ ¼ Refh'ikzN0v~k n)~kig; (9)

Cvð~kÞ ¼ Refh'ikzN0n~kv
)
~k
þ ikzN0/~kv

)
~k
' 1:71ikzTe0t~kv

)
~k
ig;
(10)

C/ð~kÞ ¼ RefhikzN0v~k/
)
~k
ig; (11)

Ctð~kÞ ¼ Refh'1:71ikzTe0v~k t)~kig: (12)

Notice that Cnð~kÞ þ Cvð~kÞ þ C/ð~kÞ þ Ctð~kÞ ¼ 0, which
is most clearly seen upon conjugation of Cvð~kÞ inside the
real part operator. This is the reason why these terms are
called transfer channels. They represent the transfer between
the different types of energy of the different fields
(N;/; Te $ vke), but taken together, they do not create or
dissipate total energy from the system. The only energy field
transfer in this system occurs through the parallel electron
velocity (parallel current) dynamics. There is no direct trans-
fer between the state variables N;/, and Te. Altogether, the
coupling through the parallel current is called the adiabatic
response. It is an essential part of both the linear and nonlin-
ear drift wave mechanisms.23,25 The adiabatic response
moves energy from the pressure fluctuations to the perpen-
dicular flow through the parallel current.

Finally, the Qjð~kÞ terms represent the nonconservative
energy sources. They are rewritten here

Qnð~kÞ ¼ Re

$
' im

r
@rN0/~k n)~k

&( )
; (13)

Qvð~kÞ ¼Re

$
ikz

N2
0 ' Te0

N0
n~kv
)
~k
þ ikzð1' N0Þ/~kv

)
~k

(

þ 1:71ikzðTe0 ' 1Þt~kv
)
~k

&)
; (14)

Q/ð~kÞ ¼ 0; (15)

Qtð~kÞ ¼ Re ' 3

2

im

r
@rTe0/~k t)~k

$ &( )
: (16)

Qnð~kÞ is the energy extraction from the equilibrium den-
sity profile into the density fluctuations. This term may have
either sign depending on the phase relation between /~k and
n~k , so it can in fact dissipate fluctuation potential energy

from the system as well as create it at each ~k. Qtð~kÞ is com-
pletely analogous to Qnð~kÞ but for the temperature rather
than the density. Qvð~kÞ is parallel kinetic energy extraction
or dissipation. The sources of these terms are the equilibrium
gradients, which are evident because if the profiles were flat
(N0 ¼ Te0 ¼ 1), all Qð~kÞ would vanish. Moreover, the partic-
ular normalization of Eqs. (1)–(4) combined with the choice
of energy definition (Eq. (5)) causes the non-zero Qvð~kÞ. The
energy dynamics of the physical energy does not have a fi-
nite Qvð~kÞ. However, with the energy-like expression ana-
lyzed here Qvð~kÞ is small compared to the parallel velocity
dissipation Dvð~kÞ, meaning that there is no net energy enter-
ing the system directly through the parallel velocity as
expected. The energy expression used here is therefore a
good proxy for the physical energy with the added benefit
that the expression used here conserves the nonlinearities.

IV. NONLINEAR ENERGY DYNAMICS

A. Energy spectra

Figure 3 shows the time evolution of the total energy of
the fluctuations. The simulation starts with a random initial
perturbation, and the fluctuations grow exponentially due to
the linear drift wave instability until the energy level reaches
about 0.01, where the energy is fairly equally divided
between n¼ 0 and n ¼ 61 modes. Then, the nonlinear insta-
bility takes over and the fluctuation energy continues to
grow until reaching saturation. All analysis shown below is
done by time averaging over the saturated (turbulent) stage.
The turbulent spectral energy, defined in Eq. (6) is shown in
Fig. 4. The energy is broken up into its different types (e.g.,
perpendicular kinetic energy: E/). There are a few clear non-
linear properties seen in these figures. The first is that the
energy is located in different spectral regions for the differ-
ent energy types. This has to be a nonlinear effect because
the linear eigenmodes are Fourier modes in the azimuthal
and axial directions and all fields grow at the same rate for
an eigenmode. Another property unexpected from linear sta-
bility analysis is that most of the potential and perpendicular
kinetic energy (En; Et, and E/) is contained in n¼ 0 (kk ¼ 0)
structures, which are often called flute modes. Previous

FIG. 3. Time evolution of the volume-averaged total energy. Each time step
is 400=xci * 170 ls.
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studies pointed out this flute mode dominance in LAPD sim-
ulations.35,38 The study by Rogers et al.,38 however, used a
momentum source that produced a large radial electric field,
possibly leading to a dominating Kelvin-Helmoltz instability
at kk ¼ 0. Such a feature is unexpected in this study because
there is no n¼ 0 linear instability present in the system,
which is confirmed by eigenvalue calculations.33 The only
linear instability of the system is the linear resistive drift
wave instability, which requires finite n to provide the phase
shift and state variable coupling to drive the waves unstable.
Perhaps, equally unexpected is the complete lack of parallel
kinetic energy in the n¼ 0 range. The Ev spectrum looks like
a traditional linear drift wave spectrum, but does not match
the other fields, which is atypical of linear drift waves.

B. Description and evidence for the nonlinear
instability

The flute mode dominance has to be a nonlinear effect
because linear drift waves require finite n. However, the
cause of the flute dominance is not simple cascade dynamics,
a secondary instability, nor a flow-driven flute-like instabil-
ity, such as Kelvin-Helmholtz or interchange. Rather, the
cause is a primary nonlinear instability as has been reported
in previous simulations of plasma edge turbulence.16,26 This
nonlinear instability is a multi-step process that is outlined in
Fig. 5. In the first step, n¼ 0 density and potential fluctua-
tions nonconservatively draw energy from the equilibrium
density gradient as prescribed by Qnðm; n ¼ 0Þ defined in
Eq. (13), and feed this energy into the n¼ 0 density fluctua-
tions only. The nonconservative linear terms, after all, can
only inject, dissipate, or transfer energy at one wavenumber
at a time, so it takes n¼ 0 fluctuations to nonconservatively

inject energy into n¼ 0 fluctuations. Note also that the tem-
perature fluctuations work in the same way as the density
fluctuations, and one could replace n(m, n) (the spectral den-
sity component) with t(m, n) (the spectral temperature com-
ponent) in the diagram. The density and temperature are
analogous and work in parallel, however, the temperature
fluctuations are a few times smaller than the density fluctua-
tions and provide weaker drive because parallel heat conduc-
tion strongly dissipates the temperature fluctuations. This is
why the diagram highlights the density contribution (this ob-
servation is consistent with other work in edge turbulence22).

FIG. 4. (a) Enð~kÞ, (b) Etð~kÞ, (c) E/ð~kÞ,
and (d) Evð~kÞ in the m – n plane averaged
over time during the saturated turbulent
phase. Note the different scales used on
each figure and also that the vertical
white lines at m¼ 0 in (a) and (b) are due
to the density and temperature sources
which subtract out this component of the
fluctuations. The zonal flow, defined as
the n¼ 0, m¼ 0 component of the E( B
velocity, has an energy of magnitude of
1:4( 10'4 as seen in (c).

FIG. 5. Diagram of the nonlinear instability process that drives flute modes.
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This nonconservative injection does not occur for infinitesi-
mal perturbations; a finite-amplitude n¼ 0 seed perturbation
is required. In the simulations, this seed is provided by non-
linear transfer from n¼ 1 drift wave fluctuations which dom-
inate the linear phase of the turbulence simulation.

In the second step of the diagram, these n¼ 0 density
fluctuations conservatively transfer energy to n 6¼ 0 density
fluctuations by the nonlinear Tnð~k; ~k

0Þ transfer process. The
third step involves the transfer at finite n from the density
fluctuations to the potential fluctuations by way of the paral-
lel current in the adiabatic response. The Cjð~kÞ terms
describe this adiabatic response. Fourth and finally, the
T/ð~k; ~k

0Þ interaction conservatively transfers energy from
n 6¼ 0 to n¼ 0 potential / fluctuations in inverse fashion, pro-
viding the necessary potential flute structures for the first
step.

The evidence for the dominance of this mechanism is
best shown with help from the energy dynamics machinery
derived in Sec. III. Figure 6 summarizes the effects of the
nonconservative linear terms, which are fully responsible for
injecting energy into the fluctuations. Figure 6(a) shows the
En dynamics separated into different parallel wavenumbers
and plotted against the azimuthal wavenumber m. Clearly,
most of the energy is injected into n¼ 0 density structures,
while only a small amount of energy is injected into n ¼ 61
structures despite the fact that the linear instability is active
only at n 6¼ 0. The large positive Qn þ Dn (injection plus dis-
sipation) at n¼ 0 provides evidence for the first step of the
diagram in Fig. 5. Note however that the dissipation from the
source, which acts entirely at m¼ 0, is neglected in this figure

because it is so large (about 5( 10'5) that it would compress
the other lines too much. Modes with jnj + 2, on the other
hand, play a negligible role in density injection, dissipation,
and transfer. Furthermore, all of the net energy injected into
the density fluctuations (Qn þ Dn) is transferred out (Cn) to
the parallel current (electron velocity), which only occurs at
finite n, almost entirely at n ¼ 61. The net change of En,
which is the sum Qn þ Dn þ Cn over all m and n is approxi-
mately zero because this analysis is averaged over the steady
state turbulence, although this is not so evident in Fig. 6(a)
without the source dissipation. The necessary balance implies,
as will be proven later, that the nonlinearities transfer energy
from n¼ 0 to n ¼ 61 modes, where that energy can then be
transferred to the parallel current.

Figure 6(b) shows the temperature potential energy dy-
namics. Again flute structures inject energy into the fluctua-
tions, but unlike in the density case, n ¼ 61 modes dissipate
more energy than they inject. Moreover, the small value of
Ct reveals that the temperature fluctuations inject only a
small amount of energy into the parallel current compared to
the density fluctuations. Despite the fact that the equilibrium
temperature gradient is nearly as steep as the density gradient
at its steepest point, its free energy is not used efficiently by
the waves in the sense that it is largely dissipated before
being transferred to the electrostatic potential. The reason for
the difference between the density and temperature
responses is the extra dissipation routes for the temperature
fluctuations, namely, the parallel heat conduction and
electron-ion heat exchange. One should therefore be careful
in assuming that adding free energy sources to an analysis

FIG. 6. (a) The solid curves quantify the
energy dynamics of the density potential
energy averaged over time during the sat-
urated turbulent phase. The notation n61
represents the summation over the n¼ 1
and n¼' 1 curves. (b) The energy dy-
namics of the temperature potential
energy, (c) the perpendicular kinetic
energy, and (d) the parallel dynamics (ad-
iabatic response). The contributions to
Cvð~kÞ in (d) are broken up with
Cvð~kÞ ¼ 'Cnð~kÞ ' Ctð~kÞ ' C/ð~kÞ. The
density and temperature sources are
neglected in (a) and (b), respectively.
They only contribute at m¼ 0.
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will automatically increase instability drive. The same type
of result was seen in a study of tokamak edge turbulence,22

although there, the temperature fluctuations were even more
dissipative than in this study in that they actually drew
energy from the parallel current.

Next, Fig. 6(c) illustrates the perpendicular kinetic energy
dynamics provided by the electrostatic potential /. Since
there is no free energy source for the potential (Q/ ¼ 0), the
potential fluctuations derive their energy from the parallel cur-
rent through the C/ transfer channel, which are positive
everywhere and only finite for finite n. Otherwise, ion-neutral
collisions and viscosity dissipate energy from the potential
fluctuations as shown by the D/ curves. An interesting detail
seen in this figure is that modes with jnj > 1 actually contrib-
ute to the transfer channel and dissipation, whereas these
modes are negligible for the other fields.

The last piece, the parallel dynamics, also called the adi-
abatic response, is displayed in Fig. 6(d). The primary effect
of the adiabatic response is to take energy from the density
fluctuations and transfer it to the potential fluctuations, which
only occurs at finite parallel wavenumber. This effect corre-
sponds to the third step in Fig. 5. Moreover, resistivity dissi-
pates a substantial portion of this parallel kinetic energy and,
although not evident from this figure, provides the primary
phase shift mechanism between the density and the potential
that allows for instability. The temperature fluctuations also
provide energy to the potential fluctuations through this
response ('Ct), although it is much weaker than the density
fluctuation route.

Steps 2 and 4 in Fig. 5 come not from the nonconserva-
tive linear terms in the equations but from the conservative
nonlinear advective terms. The interactions described by the
advective nonlinearities are in the nonlinear transfer func-
tions: Tjð~k; ~k

0Þ in Eq. (7). It is difficult to study the Tjð~k; ~k
0Þ

functions because they are four dimensional functions of
ðm; n; n0;m0Þ, which make visualization challenging. It is
therefore convenient to sum over various transfers or look at
specific wavenumber transfers of interest. The most easily
decipherable results that complement the results of Fig. 6 are
shown in Fig. 7. First, Fig. 7(a) sums the transfer functions
over ðn;m0; n0Þ, leaving only a function of m, which illus-
trates the aggregate azimuthal mode number transfers. Note
that the sum of each individual curve over m is zero because

the nonlinearities are conservative. Positive values in Fig.
7(a) indicate energy transfer into structures with azimuthal
mode number m, while negative values indicate energy trans-
fer out of structures with corresponding mode number m.
The density and temperature nonlinearities are qualitatively
similar in that they cause both forward and inverse transfer
out of the wavenumbers that nonconservatively inject the
most energy. The potential (polarization) and parallel veloc-
ity nonlinearities cause inverse transfer to low wavenumbers.

Figure 7(b) displays the conservative transfers summed
over ðm;m0; n0Þ, leaving only a function of n, which describe
transfer into and out of different parallel modes. This is the
figure that provides evidence for steps 2 and 4 of the instabil-
ity diagram. Now, as expected from step 2 of the diagram and
foreshadowed by Fig. 6(b), density potential energy is aggre-
gately transferred from n¼ 0 flute modes into n 6¼ 0 modes,
specifically n ¼ 61. This can be called a direct transfer in
analogy with the terminology used for hydrodynamic wave-
number cascades. The temperature fluctuations have the same
transfer trends as the density fluctuations, while the parallel
velocity exhibits direct transfer, although from jnj ¼ 1 to
higher modes since there is never any n¼ 0 energy in the par-
allel velocity. The potential fluctuations, on the other hand,
exhibit inverse parallel wavenumber transfer (step 4 of the
diagram), populating n¼ 0 potential structures. This nonlinear
transfer is the only way to drive energy into n¼ 0 potential
structures because Q/ ¼ 0. That completes the evidence for
the nonlinear instability picture along with further details of
both the conservative and nonconservative energy dynamics.

C. The global energy injection and dissipation picture

The details of the energy dynamics given above are im-
portant but can obscure the most significant results. Specifi-
cally, Fig. 6 contains a lot of details that can be contracted
by summing over the different energy types. Figure 8 does
this, showing the total spectral nonconservative energy dy-
namics. Figure 8(a), which is a plot of the nonconservative
rate of change of the total energy, @Eð~kÞ

@t jNC
¼
P

j Qjð~kÞ þ Cjð~kÞ þ Djð~kÞ, reveals a global picture in
wavenumber space of where the total energy is injected into
the system and where it is dissipated. Namely, energy injec-
tion occurs on average at ðn ¼ 0; 3 < m < 45Þ, while it is

FIG. 7. (a) Conservative nonlinear energy
transfer functions Tjð~k ; ~k

0Þ summed over
~k
0

and n. The line labeled / represents
the function

P
~k
0
;n

T/ð~k; ~k
0Þ, which is a

function of m. The line labeled
P

j is the
total energy transfer (the sum over the
other lines). (b) Transfer functions
summed over ~k

0
and m. Note that

Tvð~k ; ~k
0Þ is multiplied by 20 in both fig-

ures to make it visibly different from
zero.
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dissipated everywhere else, including at n ¼ 61 for all m. It
is obvious that the nonlinear wavenumber transfers must
take energy from the injection region to the dissipation
region on average, and that is consistent with what was

shown in Fig. 7. This further reveals a picture quite different
than what one would expect from the standard picture of
plasma turbulence in which energy is injected where the lin-
ear growth rate is positive and dissipated where it is nega-
tive. The picture here is quite the opposite—energy is
injected where there is no linear instability and dissipated in
part where there is one. To clarify this point, the linear
growth rate cLð~kÞ versus turbulent growth rate cTð~kÞ spectra
are shown in Fig. 8(b). The growth rates are calculated using

cð~kÞ ¼
X

j

Qjð~kÞ þ Cjð~kÞ þ Djð~kÞ

 !*
2
X

j

Ejð~kÞ

 !

:

(17)

The turbulent growth rate spectrum, simply means that
Eq. (17) is calculated using the terms from the saturated
turbulent phase of the simulation. Note that the linear growth
rate is positive for ðn ¼ '1; 35 < m < 95Þ and negative
everywhere else. The turbulent growth rate is positive only
for ðn ¼ 0; 3 < m < 45Þ. The linear and turbulent spectral
injection regions do not even overlap. Seemingly, the linear
physics is completely washed out in the turbulent state.

V. LINEAR VERSUS NONLINEAR INSTABILITY DRIVE

Although the nonlinear flute mode dynamics present a
clear case of nonlinear instability, the n 6¼ 0$ n ¼ 0 energy
path is not a necessary feature of nonlinear drift wave instabil-
ities, which is clear in tokamak studies of drift wave turbu-
lence.21–25 Furthermore, the periodic axial boundary
conditions used in the LAPD turbulence simulation are obvi-
ously unphysical, and more realistic boundary conditions
may change the parallel dynamics disallowing an exact n 6¼ 0
$ n ¼ 0 path.

In essence, it is interesting to test the robustness of non-
linear instability in this system. In particular, how important
are the idealized flute modes to the nonlinear instability?
They are after all, not essential to the otherwise similar non-
linear drift-like instabilities in the tokamak edge simula-
tions.21–25 Now, there are a few ways to eliminate the flute
modes in the simulation, such as eliminating one of the non-
linearities that is essential to the nonlinear instability process

FIG. 8. (a) The total spectral nonconservative energy injection @Eð~kÞ
@t jNC and

(b) the spectral nonconservative growth rate spectrum cTð~kÞ of the turbu-
lence compared to the linear growth rate spectrum, cLð~kÞ. The solid lines
represent cTð~kÞ which is calculated using Eq. (17) averaged over the satu-
rated turbulent phase, while the dashed lines represent cLð~kÞ and are calcu-
lated with the same equation using the linear phase of the simulation.

FIG. 9. (a) The turbulent growth rate
spectrum cTð~kÞ with n¼ 0 density and
potential components removed from the
simulation compared to the linear growth
rate spectrum cLð~kÞ. (b) The solid lines
are the same cTð~kÞ spectrum as the solid
lines in (a), but the dashed lines are the
turbulent growth rate spectrum when the
zonal flows are retained in the simulation.
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described in Fig. 5. However, simply subtracting out the
n¼ 0 components of the density and potential at each simu-
lation time step retains more of the physics that may be
essential to cause nonlinear instability. The energy dynamics
of such a simulation, which are succinctly summarized by
the growth rate spectrum, are shown in Fig. 9. Interestingly,
with no n¼ 0 fluctuations, the turbulent growth rate spec-
trum cTð~kÞ is nearly identical to the linear growth rate spec-
trum cLð~kÞ, as seen in Fig. 9(a). It is noted that subtracting
out the n¼ 0 potential component removes the zonal flow
(m¼ n¼ 0) from the system, providing a possible explana-
tion for the large change in behavior of the turbulent growth
rate spectrum. However, this hypothesis is dispelled by the
analysis of a simulation in which only the n¼ 0, m 6¼ 0
potential components are removed while the zonal flow is
left intact. The growth rate spectrum of this simulation,
shown in Fig. 9(b), reveals that the zonal flow plays a mini-
mal role in the nonlinear instability dynamics. The zonal
flow simply decreases the growth rates by a small amount,
causing no change to the qualitative picture.

The flute modes are therefore necessary for a nonlinear
instability to overtake the linear instability in driving the tur-
bulence, making this qualitatively different from the tokamak
edge studies. Furthermore, it is clear from this result that a 2D
simplification using a fixed parallel wavelength like the 2D
Hasegawa-Wakatani model39 does not support a nonlinear
instability. Nevertheless, one indication that the nonlinear
flute-driven instability is important in reproducing experimen-
tally consistent turbulence is that the turbulence of the simula-
tion with the n¼ 0 components removed becomes overly
coherent.30 This can be seen in the frequency spectrum, which
is shown in Fig. 10 compared with the experimental spectra
and the spectra of the standard nonlinear-instability-domi-
nated simulation. While the standard simulation with the
n¼ 0 modes retained compares well with experimental data,
the spectrum of the simulation with n¼ 0 modes removed
does not. It is not broadband, having a large peak, which is
inconsistent with experimental spectrum. Apparently, the

n¼ 0 modes and the nonlinear instability are important for
reproducing experimentally relevant turbulence. A more
direct test with realistic axial boundary conditions is left for a
future study.

VI. CONCLUSION

In contrast to experiments, simulations provide vast
quantities of spatial information and can therefore be useful
in illuminating physical processes responsible for driving
and saturating turbulence. It is possible to get more than
fluctuation levels, flux values, diffusivities, and spectra
from simulations. The kind of energy analysis used in this
study is one way in which detailed physics can be drawn
from a turbulence simulation. Here, energy dynamics anal-
ysis shows a complex picture of turbulent energy injection,
transfer, and dissipation. Such a picture was certainly not
evident a priori. Other more advanced procedures, such as
eigenmode decompositions1 or proper orthogonal decompo-
sitions (POD),10 which are extensions of this procedure,
can reveal even more physical processes, especially those
involving saturation.

In this study, a partial spectral decomposition and
energy dynamics analysis was sufficient to reveal the domi-
nance of a nonlinear instability in driving and maintaining
the turbulence. The nonlinear instability works by driving
kk ¼ 0 pressure fluctuations using kk ¼ 0 pressure and poten-
tial fluctuations to access the free energy pressure gradients.
These kk ¼ 0 pressure fluctuations are not driven by conserv-
ative nonlinear energy transfer from linear drift waves nor
by some primary linear flow-driven instability. The kk ¼ 0
potential fluctuations are driven through the finite kk adia-
batic response in combination with forward and reverse axial
wavenumber transfers. Not only does the nonlinear instabil-
ity require the kk ¼ 0$ kk 6¼ 0 transfer path to operate, but
the simulation requires this to produce experimentally con-
sistent broadband turbulence. In the future, this study will be
expanded to include different and more realistic axial bound-
ary conditions—including conducting plate boundaries—to
further test the importance of the flute modes in creating
broadband turbulence. Furthermore, different operating con-
ditions in LAPD, including those that produce large mean
flows will be simulated and studied to test for the emergence
of new dominant instabilities, possibly nonlinear ones.

Understanding nonlinear instabilities is important
because they can invalidate the use of quasilinear flux esti-
mates and linear mixing length arguments of turbulent trans-
port levels when linear instabilities are insignificant in the
turbulent state. Simple rules for when nonlinear instabilities
will act or overtake linear ones are needed, and one attempt
at such a rule has been made elsewhere for drift wave turbu-
lence.25 That rule states that nonlinear instabilities will over-
take linear instabilities when cL < x), which is true for the
parameters used in this study. However, more study of this
rule and others is warranted, and will be important as long as
linear calculations are used to inform predictions of turbu-
lence. Nevertheless, full nonlinear simulations and energy
dynamics analyses are most informative and should be used
to obtain details of plasma turbulence mechanisms.

FIG. 10. Comparison of the frequency spectra. Notice the spectra with n¼ 0
components removed is not broadband, but has a clear peak, which is incon-
sistent with experiment.
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APPENDIX: EXPLICIT CALCULATION OF THE
ENERGY EVOLUTION OF A FOURIER MODE

The energy evolution for each Fourier mode can be
obtained by Fourier decomposing each of Eqs. (1)–(4) and
then multiplying the density, electron parallel velocity, vortic-
ity, and electron temperature equations by the complex conju-
gates of the density, velocity, potential, and temperature,
respectively, and integrating over space. Adding the resulting
equations gives the energy evolution of each Fourier mode.

Take the density equation as an example for this proce-
dure. The decomposition for the density is

Nðr; h; z; tÞ ¼
X

~k

n~k ðr; tÞe
iðmhþkzzÞ: (A1)

Recall that the subscript ~k is short for (m, n) as the
decomposition is a 2D Fourier decomposition in the azi-
muthal and axial directions, making the sum over ~k truly a
double sum over m and n. Furthermore, positive and negative
m and n are included in the sums to ensure reality of N,
which also requires that n'~k ¼ n)~k . Similar decompositions
are used for vke and /. The density source is azimuthally
symmetric, so it is decomposed as

SNðr; z; tÞ ¼
X

kz

SNkzðr; tÞeikzz: (A2)

Substituting this decomposition into Eq. (1) gives

X

~k

@n~k
@t eiðmhþkzzÞ ¼

X

kz

SNkz e
ikzz þ

X

~k

' im

r
@rN0/~k ' ikzN0v~k þ lNð@2

r n~k þ
1

r
@rn~k '

m2

r2
n~kÞ

+ ,
eiðmhþkzzÞ

þ 1

r

X

~k ;~k
0

ðimn~k@r/~k
0 ' im0@rn~k/~k

0Þeiðmþm0Þhþiðkzþk0zÞz: (A3)

Multiplying through by n)
~k
00e'im00h'ik00z z and integrating over space (and permuting primes) gives

$
@n~k
@t

n)~k

&
¼ hSNkz n

)
m¼0;kz

iþ
$
'im

r
@rN0/~k n)~k ' ikzN0v~k n)~kþlNð@2

r n~k þ
1

r
@rn~k '

m2

r2
n~kÞn

)
~k

&

þ
$

1

r

X

~k
0

-
im0n~k 0@r/~k'~k 0n

)
~k
' iðm' m0Þ@rn~k 0/~k'~k 0n

)
~k

.&
: (A4)

Finally, taking the real part of this equation results in

$
1

2

@jn~k j
2

@t

&
¼ RefhSNkz n

)
m¼0;kz

igþ Re

$
' im

r
@rN0/~k n)~k ' ikzN0v~k n)~k þ lNð@2

r n~k þ
1

r
@rn~k '

m2

r2
n~kÞn

)
~k

&( )

þRe

$
1

r

X

~k
0

-
im0n~k 0@r/~k'~k 0n

)
~k
' iðm' m0Þ@rn~k 0/~k'~k 0n

)
~k

.&
8
<

:

9
=

;: (A5)

Note that taking the real part of the equation produces
the expected energy-like term on the left hand side because

1

2

@jn~k j
2

@t
¼ Re

@n~k
@t

n)~k

( )
: (A6)

Breaking the result into explicit parts

@Enð~kÞ
@t

¼ Qnð~kÞ þ Cnð~kÞ þ Dnð~kÞ þ
X

~k
0

Tnð~k; ~k
0Þ; (A7)

Enð~kÞ ¼
1

2
hjn~k j

2i; (A8)

Qnð~kÞ ¼ Re

$
' im

r
@rN0/~k n)~k

&( )
; (A9)

Cnð~kÞ ¼ Re
!/
' ikzN0v~k n)~k

0"
; (A10)

Dnð~kÞ¼Re

$
lN @2

r n~kþ
1

r
@rn~k'

m2

r2
n~k

1 2
n)~kþSNkz n

)
m¼0;kz

&( )
;

(A11)
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Tnð~k; ~k
0
Þ ¼Re

$
1

r

-
im0n~k 0@r/~k'~k 0n

)
~k

(

' iðm' m0Þ@rn~k 0/~k'~k 0n
)
~k

.&)
: (A12)

Qnð~kÞ is the energy injection, Cnð~kÞ is the transfer
channel, Dnð~kÞ is dissipation, and Tnð~k; ~k

0Þ is spectral
energy transfer. The same type of procedure may be applied
to Eqs. (2)–(4). However, the double primed conjugate mul-
tiplications (as in the step between Eqs. (A3) and (A4))
must be done with the Fourier fields, me

mi
v~k 00 ; '/~k

00 , and 3
2 t~k 00

rather than v~k 00 ; -~k
00 , and t~k 00 . These produce the correct

energy terms, and most importantly still conserve the nonli-
nearities. The corresponding expressions for the perpendic-
ular kinetic energy are

@E/ð~kÞ
@t

¼ Q/ð~kÞ þ C/ð~kÞ þ D/ð~kÞ þ
X

~k
0

T/ð~k; ~k
0
Þ; (A13)

E/ð~kÞ ¼
1

2

$
N0

%%%%
@/~k

@r

%%%%
2

þ N0
m2

r2
j/~k j

2

&
; (A14)

Q/ð~kÞ ¼ 0; (A15)

C/ð~kÞ ¼ RefhikzN0v~k/
)
~k
ig; (A16)

D/ð~kÞ ¼Re

$
'l/ð@2

r -~k þ
1

r
@r-~k

(

'm2

r2
-~kÞ/

)
~k
' !inE/ð~kÞ

&)
; (A17)

T/ð~k; ~k
0
Þ ¼Re

$
' 1

r

-
im0-~k

0@r/~k'~k 0/
)
~k

(

'iðm' m0Þ@r-~k
0/~k'~k 0/

)
~k

.&)
; (A18)

and for the electron temperature potential energy

@Etð~kÞ
@t

¼ Qtð~kÞ þ Ctð~kÞ þ Dtð~kÞ þ
X

~k
0

Ttð~k; ~k
0
Þ; (A19)

Etð~kÞ ¼
3

4
hjt~k j

2i; (A20)

Qtð~kÞ ¼ Re

$
' 3

2

im

r
@rTe0/~k t)~k

&( )
; (A21)

Ctð~kÞ ¼ Refh'1:71ikzTe0v~k t)~kig; (A22)

Dtð~kÞ¼Re

$
'

jke
N0

k2
z jt~k j

2'3me

mi
!ejt~k j

2þ3

2
lT

(

(
1
@2

r t~kþ
1

r
@rt~k'

m2

r2
t~k

2
t)~kþ

3

2
STkz t

)
m¼0;kz

&)
; (A23)

Ttð~k;~k
0
Þ¼Re

$
3

2r

-
im0t~k 0@r/~k'~k 0 t

)
~k
' iðm'm0Þ@rt~k 0/~k'~k 0 t

)
~k

.&( )
;

(A24)

and for the parallel kinetic energy

@Evð~kÞ
@t

¼ Qvð~kÞ þ Cvð~kÞ þ Dvð~kÞ þ
X

~k
0

Tvð~k; ~k
0Þ; (A25)

Evð~kÞ ¼
1

2

me

mi
jv~k j

2
D E

; (A26)

Qvð~kÞ ¼Re

$
ikz

N2
0 ' Te0

N0
n~kv
)
~k
þ ikzð1' N0Þ/~kv

)
~k

(

þ 1:71ikzðTe0 ' 1Þt~kv
)
~k

&)
; (A27)

Cvð~kÞ ¼ Refh'ikzN0n~kv
)
~k
þ ikzN0/~kv

)
~k
' 1:71ikzTe0t~kv

)
~k
ig;

(A28)

Dvð~kÞ ¼ Re

$
'!e

me

mi
jv~k j

2

&( )
; (A29)

Tvð~k; ~k
0Þ ¼Re

me

mi

$
1

r

-
im0v~k 0@r/~k'~k 0v

)
~k

(

'iðm' m0Þ@rv~k 0/~k'~k 0v
)
~k

.&)
: (A30)

The transfer channel Cvð~kÞ is specifically set so that
Cnð~kÞ þ Ctð~kÞ þ C/ð~kÞ þ Cvð~kÞ ¼ 0. The source Qvð~kÞ is
the left over quantity, which can have any sign and contrib-
utes to the overall energy evolution.
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