230,531 research outputs found
Glyphosate inhibition of ferric reductase activity in iron deficient sunflower roots
Iron (Fe) deficiency is increasingly being observed in cropping systems with frequent glyphosate applications. A likely reason for this is that glyphosate interferes with root uptake of Fe by inhibiting ferric reductase in roots required for Fe acquisition by dicot and nongrass species.
This study investigated the role of drift rates of glyphosate (0.32, 0.95 or 1.89 mM glyphosate corresponding to 1, 3 and 6% of the recommended herbicidal dose, respectively) on ferric reductase activity of sunflower (Helianthus annuus) roots grown under Fe deficiency conditions.
Application of 1.89 mM glyphosate resulted in almost 50% inhibition of ferric
reductase within 6 h and complete inhibition 24 h after the treatment. Even at lower rates of glyphosate (e.g. 0.32 mM and 0.95 mM), ferric reductase was inhibited. Soluble sugar concentration and the NAD(P)H oxidizing capacity of apical roots were not decreased by the glyphosate applications.
To our knowledge, this is the first study reporting the effects of glyphosate on ferric reductase activity. The nature of the inhibitory effect of glyphosate on ferric reductase could not be identified. Impaired ferric reductase could be a major reason for the increasingly observed Fe deficiency in cropping systems associated with widespread glyphosate usage
Mitochondrial Thioredoxin System as a Modulator of Cyclophilin D Redox State
The mitochondrial thioredoxin system (NADPH, thioredoxin reductase, thioredoxin) is a major redox regulator. Here we have investigated the redox correlation between this system and the mitochondrial enzyme cyclophilin D. The peptidyl prolyl cis-trans isomerase activity of cyclophilin D was stimulated by the thioredoxin system, while it was decreased by cyclosporin A and the thioredoxin reductase inhibitor auranofin. The redox state of cyclophilin D, thioredoxin 1 and 2 and peroxiredoxin 3 was measured in isolated rat heart mitochondria and in tumor cell lines (CEM-R and HeLa) by redox Western blot analysis upon inhibition of thioredoxin reductase with auranofin, arsenic trioxide, 1-chloro-2,4-dinitrobenzene or after treatment with hydrogen peroxide. A concomitant oxidation of thioredoxin, peroxiredoxin and cyclophilin D was observed, suggesting a redox communication between the thioredoxin system and cyclophilin. This correlation was further confirmed by i) co-immunoprecipitation assay of cyclophilin D with thioredoxin 2 and peroxiredoxin 3, ii) molecular modeling and iii) depleting thioredoxin reductase by siRNA. We conclude that the mitochondrial thioredoxin system controls the redox state of cyclophilin D which, in turn, may act as a regulator of several processes including ROS production and pro-apoptotic factors release
Fragment-based discovery of a regulatory site in thioredoxin glutathione reductase acting as "doorstop" for NADPH entry
Members of the FAD/NAD-linked reductase family are recognized as crucial targets in drug development for cancers, inflammatory disorders, and infectious diseases. However, individual FAD/NAD reductases are difficult to inhibit in a selective manner with off target inhibition reducing usefulness of identified compounds. Thioredoxin glutathione reductase (TGR), a high molecular weight thioredoxin reductase-like enzyme, has emerged as a promising drug target for the treatment of schistosomiasis, a parasitosis afflicting more than 200 million people. Taking advantage of small molecules selected from a high-throughput screen and using X-ray crystallography, functional assays, and docking studies, we identify a critical secondary site of the enzyme. Compounds binding at this site interfere with well-known and conserved conformational changes associated with NADPH reduction, acting as a doorstop for cofactor entry. They selectivity inhibit TGR from Schistosoma mansoni and are active against parasites in culture. Since many members of the FAD/NAD-linked reductase family have similar catalytic mechanisms the unique mechanism of inhibition identified in this study for TGR broadly opens new routes to selectively inhibit homologous enzymes of central importance in numerous diseases
Functional and Biogenetical Heterogeneity of the Inner Membrane of Rat-Liver Mitochondria
Rat liver mitochondria were fragmented by a combined technique of swelling, shrinking, and sonication. Fragments of inner membrane were separated by density gradient centrifugation. They differed in several respects: electronmicroscopic appearance, phospholipid and cytochrome contents, electrophoretic behaviour of proteins and enzymatic activities.
Three types of inner membrane fractions were isolated. The first type is characterized by a high activity of metal chelatase, low activities of succinate-cytochrome c reductase and of glycerolphosphate dehydrogenase, as well as by a high phospholipid content and low contents of cytochromes aa3 and b.
The second type displays maximal activities of glycerolphosphate dehydrogenase and metal chelatase, but contains relatively little cytochromes and has low succinate-cytochrome c reductase activity.
The third type exhibits highest succinate-cytochrome c reductase activity, a high metal chelatase activity and highest cytochrome contents. However, this fraction was low in both glycerolphosphate dehydrogenase activity and phospholipid content. This fraction was also richest in the following enzyme activities: cytochrome oxidase, oligomycin-sensitive ATPase, proline oxidase, 3-hydroxybutyrate dehydrogenase and rotenone-sensitive NADH-cytochrome c reductase.
Amino acid incorporation in vitro and in vivo in the presence of cycloheximide occurs predominantly into inner membrane fractions from the second type.
These data suggest that the inner membrane is composed of differently organized parts, and that polypeptides synthesized by mitochondrial ribosomes are integrated into specific parts of the inner membrane
Subcellular localization of the five members of the human steroid 5α-reductase family
In humans the steroid 5a-reductase (SRD5A) family comprises five integral membrane enzymes that carry out reduction of a double bond in
lipidic substrates: D4-3-keto steroids, polyprenol and trans-enoyl CoA. The best-characterized reaction is the conversion of testosterone into the
more potent dihydrotestosterone carried out by SRD5A1-2. Some controversy exists on their possible nuclear or endoplasmic reticulum
localization.
We report the cloning and transient expression in HeLa cells of the five members of the human steroid 5a-reductase family as both N- and Cterminus
green fluorescent protein tagged protein constructs. Following the intrinsic fluorescence of the tag, we have determined that the
subcellular localization of these enzymes is in the endoplasmic reticulum, upon expression in HeLa cells. The presence of the tag at either end of
the polypeptide chain can affect protein expression and, in the case of trans enoyl-CoA reductase, it induces the formation of protein aggregates
The mutualistic fungus Piriformospora indica protects barley roots from a loss of antioxidant capacity caused by the necrotrophic pathogen Fusarium culmorum
Fusarium culmorum causes root rot in barley (Hordeum vulgare), resulting in severely reduced plant growth and yield. Pretreatment of roots with chlamydospores of the mutualistic root-colonizing basidiomycete Piriformospora indica (Agaricomycotina) prevented necrotization of root tissues and plant growth retardation commonly associated with Fusarium root rot. Quantification of Fusarium infections with a real-time PCR assay revealed a correlation between root rot symptoms and the relative amount of fungal DNA. Fusarium-infected roots showed reduced levels of ascorbate and glutathione (GSH), along with reduced activities of antioxidant enzymes such as superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione reductase (GR), dehydroascorbate reductase (DHAR), and monodehydroascorbate reductase (MDHAR). Consistent with this, Fusarium-infected roots showed elevated levels of lipid hydroperoxides and decreased ratios of reduced to oxidized forms of ascorbate and glutathione. In clear contrast, roots treated with P. indica prior to inoculation with F. culmorum showed levels of ascorbate and GSH that were similar to controls. Likewise, lipid peroxidation and the overall reduction in antioxidant enzyme activities were largely attenuated by P. indica in roots challenged by F. culmorum. These results suggest that P. indica protects roots from necrotrophic pathogens at least partly, through activating the plant’s antioxidant capacity
Sampling of conformational ensemble for virtual screening using molecular dynamics simulations and normal mode analysis
Aim: Molecular dynamics simulations and normal mode analysis are
well-established approaches to generate receptor conformational ensembles
(RCEs) for ligand docking and virtual screening. Here, we report new fast
molecular dynamics-based and normal mode analysis-based protocols combined with
conformational pocket classifications to efficiently generate RCEs. Materials
\& methods: We assessed our protocols on two well-characterized protein targets
showing local active site flexibility, dihydrofolate reductase and large
collective movements, CDK2. The performance of the RCEs was validated by
distinguishing known ligands of dihydrofolate reductase and CDK2 among a
dataset of diverse chemical decoys. Results \& discussion: Our results show
that different simulation protocols can be efficient for generation of RCEs
depending on different kind of protein flexibility
- …