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The mutualistic fungus Piriformospora indica protects barley roots from a loss of antioxidant 1 

capacity caused by the necrotrophic pathogen Fusarium culmorum  2 
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ABSTRACT  16 

Fusarium culmorum causes root rot in barley (Hordeum vulgare), resulting in severely 17 

reduced plant growth and yield. Pretreatment of roots with chlamydospores of the mutualistic 18 

root-colonizing basidiomycete Piriformospora indica (Agaricomycotina) prevented 19 

necrotization of root tissues and plant growth retardation commonly associated with Fusarium 20 

root rot. Quantification of Fusarium infections with a real-time PCR assay revealed a 21 

correlation between root rot symptoms and the relative amount of fungal DNA. Fusarium-22 

infected roots showed reduced levels of ascorbate and glutathione (GSH), along with reduced 23 

activities of antioxidant enzymes such as superoxide dismutase (SOD), ascorbate peroxidase 24 

(APX), glutathione reductase (GR), dehydroascorbate reductase (DHAR), and 25 
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monodehydroascorbate reductase (MDHAR). Consistent with this, Fusarium-infected roots 1 

showed elevated levels of lipid hydroperoxides and decreased ratios of reduced to oxidized 2 

forms of ascorbate and glutathione. In clear contrast, roots treated with P. indica prior to 3 

inoculation with F. culmorum showed levels of ascorbate and GSH that were similar to 4 

controls. Likewise, lipid peroxidation and the overall reduction in antioxidant enzyme 5 

activities were largely attenuated by P. indica in roots challenged by F. culmorum. These 6 

results suggest that P. indica protects roots from necrotrophic pathogens at least partly, 7 

through activating the plant’s antioxidant capacity. 8 

 9 

 10 

INTRODUCTION 11 

 12 

Piriformospora indica is a root-colonizing basidiomycete fungus that increases plant 13 

growth of a wide range of crop species (Peškan-Berghöfer et al. 2004; Qiang et al. 2012; 14 

Weiss et al. 2011). The fungus is known to reproduce asexually by generating thick-walled 15 

chlamydospores, and, in clear contrast to arbuscular mycorrhiza, can be cultured on synthetic 16 

media (Varma et al. 1999; Verma et al. 1998). Plants colonized with P. indica exhibit 17 

enhanced tolerance against abiotic stress and resistance to microbial pathogens. Several 18 

studies have demonstrated that P. indica confers salt and drought tolerance to host plants, but 19 

the underlying mechanism is not fully elucidated (Baltruschat et al. 2008; Cruz et al. 2010; 20 

Sherameti et al. 2008; Sun et al. 2010; Waller et al. 2005; Zarea et al. 2012; for review see 21 

Franken 2012).  22 

An important feature of plant responses to environmental stresses is that the balance 23 

between production and scavenging of reactive oxygen species (ROS) is shifted towards 24 

higher ROS levels (Apel and Hirt 2004). Excess ROS subsequently induces lipid peroxidation 25 
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of cell membranes and damage to proteins and nucleic acids. Growing evidence suggests that 1 

endophytic fungi enhance tolerance of host plants to abiotic stress by altering their antioxidant 2 

activity (Hamilton and Bauerle 2012; Rodriguez et al. 2008). Consistent with this, 3 

colonization by P. indica prevents salt- and drought-induced lipid peroxidation in barley and 4 

Chinese cabbage roots, respectively (Baltruschat et al. 2008; Sun et al. 2010). This beneficial 5 

effect is associated with significant changes in plant redox metabolism and accumulation of 6 

high levels of ascorbate due to increased activities in key antioxidant enzymes, such as 7 

dehydroascorbate reductase (DHAR, EC 1.8.5.1) and monodehydroascorbate reductase 8 

(MDHAR, EC 1.6.5.4) (Baltruschat et al. 2008; Waller et al. 2005). Moreover, up-regulation 9 

of DHAR and MDHAR in Arabidopsis thaliana is essential for a mutualistic association with 10 

P. indica (Vadassery et al. 2009). In addition to its role in abiotic stress tolerance, P. indica 11 

confers resistance to a range of microbial pathogens in various crop plants, including barley, 12 

lentil, maize, tomato, and wheat (Deshmukh and Kogel 2007; Dolatabadi et al. 2012; Fakhro 13 

et al. 2010; Kumar et al. 2009; Serfling et al. 2007; Waller et al. 2005). Most of these studies 14 

have been focused on soil-borne diseases such as Fusarium root rot of cereals. It is well 15 

established that F. culmorum utilizes production of ROS to accelerate cell death and facilitate 16 

subsequent infection (Cuzick et al. 2009). Accordingly, an increase in oxidative stress was 17 

observed in barley and wheat seedlings affected by Fusarium head blight and root rot (Boddu 18 

et al. 2006; Desmond et al. 2008; Khoshgoftarmanesh et al. 2010).  19 

We show here that P. indica counteracts root infections by the necrotrophic pathogen 20 

F. culmorum, and that this beneficial effect is associated with altered antioxidant activity of 21 

root cells suited to detoxify pathogen-induced excess ROS.  22 

 23 

RESULTS 24 

Quantification of F. culmorum in barley roots  25 
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Consistent with earlier studies, three-week-old P. indica-colonized barley showed enhanced 1 

shoot and root biomass (Fig. 1; see also Deshmukh and Kogel 2007; Waller et al. 2005). In 2 

contrast, shoot and root biomass was strongly reduced by Fusarium culmorum infection 3 

within 2 weeks of inoculation. However, when P. indica-colonized plants were challenge-4 

inoculated with F. culmorum, neither severe root rot symptoms nor growth retardation was 5 

observed (Fig. 1).  6 

 The ratio of F. culmorum DNA to plant DNA was calculated to monitor fungal root 7 

infection by quantitative real-time PCR (qPCR) using primers specific for the fungal Tri12 8 

gene of the trichothecene pathway and for the translation elongation factor1α (EF1α) gene 9 

from barley. The qPCR analysis confirmed that roots were extensively colonized with F. 10 

culmorum two weeks after inoculation (Fig. 2). In contrast, preinoculation with P. indica 11 

resulted in reduced colonization of roots by F. culmorum, which is consistent with less root 12 

rot symptom expression and a reduced loss of biomass. No amplification product of the F. 13 

culmorum-specific Tri12 gene was observed when template DNA was extracted either from 14 

uninoculated or P. indica-colonized roots. 15 

 16 

P. indica protects Fusarium-infected roots from a loss of ascorbate and glutathione  17 

We assessed the antioxidant status of barley roots that were colonized either by P. indica, F. 18 

culmorum, or a combination of these fungi. Colonization by P. indica resulted in a 2.5-fold 19 

increase in ascorbate level and a 70% increase in the ratio of reduced to oxidized ascorbate 20 

(dehydroascorbate, DHA) in 3-week-old plants compared with the controls (Fig. 3). In 21 

contrast, inoculation of roots with F. culmorum caused a 70% reduction in root ascorbate after 22 

2 weeks, although it did not result in a significant accumulation of DHA. Accordingly, the 23 

ratio of ascorbate to DHA decreased by about 70% in Fusarium-infected roots. However, 24 

Page 4 of 32



Harrach, B.D.  MPMI 5 

when roots were inoculated with P. indica one week prior to F. culmorum, root ascorbate and 1 

DHA levels were similar to that in control plants (Fig. 3).  2 

To extend this analysis, we measured the concentration of reduced glutathione (GSH) 3 

in infected and uninfected barley roots. Three weeks after inoculation with P. indica, GSH 4 

was slightly, but not significantly, higher in colonized roots as compared to the uncolonized 5 

controls (Fig. 4). In contrast, F. culmorum infection resulted in about 40% reduction in the 6 

GSH level 2 weeks after inoculation (Fig. 4). Unlike DHA, the content of oxidized 7 

glutathione (GSSG) increased significantly (about 2.6-fold) in response to F. culmorum 8 

infection. Accordingly, the ratio of reduced to oxidized glutathione decreased substantially 9 

(about 4-fold; Fig. 4). As in the case of ascorbate and DHA, depletion of the GSH content and 10 

the ratio of GSH to GSSG were prevented by preinoculation with P. indica.  11 

 12 

Ascorbate-glutathione cycle enzymes 13 

We addressed the question of whether activities of antioxidant enzymes were changed in 14 

infected roots and thus may contribute to infection-related changes in the redox state of 15 

ascorbate and glutathione. Elevated cellular ascorbate and GSH levels suggest that enzymes 16 

involved in the regeneration of the two antioxidants show increased activities. Consistent with 17 

this, P. indica-colonized barley roots exhibited approximately 35% increase in both DHAR 18 

and MDHAR activities (Table 1) while ascorbate peroxidase (APX, EC 1.11.1.11) and 19 

glutathione reductase (GR, EC 1.6.4.2) were only slightly (insignificantly) enhanced. On the 20 

contrary, inoculation of plants with F. culmorum resulted in a marked reduction in the 21 

activities of all the enzymes of the ascorbate-glutathione cycle (APX, 60%; GR, 28%; DHAR, 22 

44%; MDHAR; 60%) as compared with controls (Table 1). This reduction of antioxidative 23 

enzymes was abolished in P. indica preinoculated plants where activities of APX, GR, 24 

DHAR, and MDHAR were 3.9-fold, 2-fold, 1.4-fold, and 1.9-fold higher, respectively, 25 
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compared with roots infected only with F. culmorum (Table 1). When compared to controls, 1 

dually inoculated roots showed 60% and 40% higher APX and GR activities, respectively, 2 

while DHAR activity was not significantly different and MDHAR activity was 25% lower. 3 

Together, these data demonstrate that the mutualistic, root-colonizing fungus P.indica 4 

abolishes detrimental effects on the host plant`s antioxidant system caused by the 5 

necrotrophic pathogen F. culmorum.  6 

 7 

P. indica protects Fusarium-infected roots from loss of superoxide dismutase activities 8 

Compared to control plants, total activity of superoxide dismutase (SOD, EC 1.15.1.1) was 9 

increased by 62% in P. indica-colonized 3-week-old plants, whereas it was reduced by 56% 10 

in roots inoculated with F. culmorum. Yet, when P. indica-colonized seedlings were 11 

challenged with F. culmorum, the pathogen-induced reduction in SOD activity was 12 

completely abolished (Table 1). 13 

Similarly, activity of catalase (CAT, EC 1.11.1.6) increased significantly in response 14 

to P. indica (Table 1). We found that P. indica elevated the CAT activity by 46% in roots as 15 

compared to uncolonized control plants. However, unlike SOD, CAT activity did not change 16 

significantly upon inoculation with F. culmorum (Table 1). 17 

 18 

P. indica protects Fusarium-infected roots from extensive lipid peroxidation 19 

Next, we assessed levels of lipid peroxides (LOOH) in roots of 3-week-old plants using the 20 

ferrous oxidation xylenol orange (FOX) assay (Do et al. 1996). Roots colonized with P. 21 

indica, as well as roots of control plants, contained low amounts of LOOHs (approx. 70 nmol 22 

g
-1

 FW; Fig. 5). In contrast, 5-fold higher amounts of LOOHs were found after inoculation 23 

with F. culmorum. Notably, pretreatement with P. indica at least partially protected roots 24 
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against lipid peroxidation induced by infection with F. culmorum (approx. 160 vs. 330 nmol 1 

g
-1

 FW (Fig. 5). 2 

 3 

DISCUSSION  4 

Abiotic environmental stress and infections by microbial pathogens cause oxidative 5 

stress in plants via enhanced generation of ROS (Apel and Hirt 2004). High levels of ROS 6 

trigger cellular injury and cell death. To avoid this damage, plants have evolved enzymatic 7 

and nonenzymatic antioxidant mechanisms acting in concert to detoxify ROS (Foyer and 8 

Noctor 2005). Ascorbate is the major low molecular weight antioxidant compound playing a 9 

central role in the cellular defense against oxidative damage (Conklin et al. 1996; Eltayeb et 10 

al. 2007; Zhang et al. 2011). P. indica-induced abiotic stress tolerance was shown to be 11 

associated with elevated levels of ascorbate and a high ascorbate/DHA ratio, along with 12 

increased DHAR and MDHAR enzyme activities in plant roots (Baltruschat et al. 2008; 13 

Vadassery et al. 2009; Waller et al. 2005). Moreover, systemic resistance mediated by the 14 

root-colonizing endophyte against powdery mildew disease is associated with an increased 15 

level of leaf GSH and GR enzyme activity (Waller et al. 2005).  16 

In the present study, we analyzed the size and redox state of total ascorbate and 17 

glutathione pools in barley roots inoculated with P. indica and the necrotrophic fungus F. 18 

culmorum. The observed decrease in the level of reduced forms of ascorbate and glutathione 19 

along with the decrease in the ratios of reduced to oxidized forms in F. culmorum infected 20 

roots (single infection) suggests that the necrotrophic fungus causes detrimental oxidative 21 

stress. Our data show that P. indica could abolish the adverse effect of Fusarium infection on 22 

ascorbate and glutathione in barley roots, as it has previously been demonstrated for salinity-23 

induced stress.  24 
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Lipid peroxidation in living organisms subjected to oxidative stress has been widely 1 

accepted as an indication of early damage by ROS (Halliwell and Chirico 1993). We observed 2 

a 5-fold increase in peroxide content of Fusarium-infected barley roots. This observation is 3 

consistent with previous studies that detected oxidative stress during infection of wheat roots 4 

by various Fusarium species (Desmond et al. 2008; Khoshgoftarmanesh et al. 2010). We 5 

found that P. indica robustly attenuated the F. culmorum-induced accumulation of peroxides.  6 

The present study also confirms that the shift in the redox status to a more oxidizing 7 

cellular environment (decreased ascorbate/DHA and GSH/GSSG ratios) in Fusarium-infected 8 

barley roots is accompanied by a significant reduction in the activities of antioxidative 9 

enzymes SOD, APX, GR, DHAR, and MDHAR. Significantly, preinoculation of roots with 10 

P. indica almost completely abolishes the Fusarium-induced decrease in antioxidant capacity. 11 

Conflicting results were reported by Kumar et al. (2009), who found that activities of SOD, 12 

CAT, GR, and GST increased markedly in maize roots upon inoculation with F. 13 

verticillioides, while P. indica attenuated the pathogen-induced increase in CAT, GR, and 14 

GST activities. The reason for this discrepancy is not yet clear but may be explained by 15 

differences in the severity of disease symptoms, and in the modulation of the plant’s 16 

antioxidant system by various mycotoxins with different modes of action produced by F. 17 

culmorum and F. verticillioides in roots of barley and maize, respectively. Maize roots 18 

colonized with F. verticillioides showed dramatic increases (3.2- to 43-fold over uninoculated 19 

control) in enzyme activities depending on the particular antioxidant enzyme (Kumar et al. 20 

2009). This is in sharp contrast to our results, in which F. culmorum infection of barley roots 21 

resulted in a decrease in SOD, APX, GR, DHAR, and MDHAR activities. We observed the 22 

same tendency in tomato roots, where a decrease in antioxidant capacity in response to 23 

Fusarium oxysporum f. sp. lycopersici was prevented by preinoculation with P. indica 24 

(unpublished results of the authors). In line with our findings, Li et al. (2010) reported that 25 
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SOD activity and ascorbate content decreased in roots of strawberry plants after inoculation 1 

with F. oxysporum f. sp. fragariae, while preinoculation with the arbuscular mycorrhiza 2 

fungus (AMF) Glomus mosseae prevented the decline in antioxidants. Similar results were 3 

obtained with SOD and ascorbate extracted from stem bases, when strawberry plants were 4 

inoculated with Colletotrichum gloeosporioides causing anthracnose as well as crown and 5 

root rot (Li et al. 2010). Furthermore, level of reduced ascorbate and activities of GR, APX, 6 

and DHAR decreased in roots of St. John’s wort (Hypericum perforatum) after inoculation 7 

with C. gloeosporioides (Richter et al. 2011). In accordance with our finding, the detrimental 8 

effect of C. gloeosporioides on the antioxidative defense systems in H. perforatum roots was 9 

completely abolished by AMF (Richter et al. 2011). Taken together, these data suggest that 10 

necrotrophic fungi inhibit the antioxidant activity in attacked plant tissues, and that root-11 

colonizing mutualistic fungi protect roots from necrotrophic microbes through activation / 12 

protection of the plants’ antioxidant system.  13 

P. indica does not inhibit the mycelial growth of F. culmorum in vitro (Waller et al. 2005), 14 

but its effect on the growth of F. culmorum in roots had not been quantified. Real-time PCR 15 

quantification of the relative abundance of F. culmorum and barley DNA was performed in 16 

root tissues using specific fungal and plant genomic DNA primers (Nielsen et al. 2012). 17 

Reduced relative amounts of F. culmorum DNA indicated a significantly lower level of 18 

Fusarium infection in dually inoculated barley roots as compared to roots with single F. 19 

culmorum infections. Similar findings were reported for wheat roots inoculated with P. indica 20 

and F. graminearum (Deshmukh et al. 2007), suggesting that P. indica does not exert a direct 21 

antifungal activity but induces resistance against Fusarium infections. However, caution is 22 

required in interpreting the qPCR data because the ratio of F. culmorum DNA to plant DNA 23 

in root samples reflects both fungal abundance and presence of intact plant cells. F. culmorum 24 

causes extensive cell death in barley roots which ultimately results in root rot symptoms. 25 
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Therefore, the qPCR method might overestimate the abundance of Fusarium in necrotized 1 

root tissues which contain less intact plant DNA. Using the qPCR method in greenhouse 2 

studies, Strausbaugh et al. (2005) found significant correlations between percent infected root 3 

area and Fusarium DNA quantities in F. culmorum-inoculated wheat and barley roots. 4 

However, in plants from field studies, they found no correlation between root-rot severities 5 

and amounts of Fusarium DNA. Another recent field study showed that development of 6 

Fusarium crown rot symptoms in wheat often, but not always, correlates with actual Fusarium 7 

colonization (Hogg et al. 2007). These studies show that qPCR results must be verified by 8 

independent methods to detect the fungus in roots. Accordingly, our microscopic analysis 9 

confirmed reduced levels of Fusarium infection in P. indica-preinoculated roots thereby 10 

corroborating our interpretation of qPCR results (not shown).  11 

Consistent with our results, several studies have demonstrated that P. indica and other 12 

mutualistic fungal endophytes may enable plants to more efficiently scavenge ROS or prevent 13 

ROS production under stress conditions (Baltruschat et al. 2008; Rodriguez et al. 2008 14 

Sherameti et al. 2008; Sun et al. 2010; Waller et al. 2005). Our data suggest that antioxidant 15 

defense was maintained at a high level in P. indica-colonized roots in response to F. 16 

culmorum infection. It is well established that necrotrophic pathogens such as Botrytis cinerea 17 

utilize production of ROS to accelerate cell death and facilitate subsequent infection (Govrin 18 

and Levine 2000). A recent study showed that inhibition of the oxidative burst in Arabidopsis 19 

resulted in resistance to B. cinerea infection (Yang et al. 2011). F. culmorum infection also 20 

triggers a sustained oxidative burst and cell death in the invaded plant tissues (Cuzick et al. 21 

2009). Consistent with this, higher antioxidant capacity was associated with an increase in 22 

resistance of transgenic flax (Linum usitatissimum) seedlings to F. culmorum (Lorenc-Kukuła 23 

et al. 2007). Three key enzymes of flavonoid biosynthesis were upregulated in these flax 24 

plants resulting in an increased flavonoid content and high antioxidant capacity.  25 
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Based on our results and the aforementioned studies, we propose that the increase in 1 

resistance of barley roots to F. culmorum is, at least partly, mediated by P. indica-induced 2 

activation of antioxidant defense. Since higher antioxidant activity diminishes cell death 3 

induced by ROS, necrotization of plant tissue is consequently reduced, which is unfavorable 4 

to the necrotrophic pathogen. Yet, further studies are required to firmly establish the 5 

mechanism of endophyte-mediated resistance against pathogens in plant roots. 6 

 7 

MATERIALS AND METHODS  8 

 9 

Plant material and fungal inoculation 10 

Seeds of barley (Hordeum vulgare L. cv. Uschi) were surface-sterilized for 10 min in 0.25% 11 

sodium hypochlorite, rinsed thoroughly with water and germinated for 2 days at 22°C on 12 

sheets of Whatman No. 1 filter paper in Petri dishes. Germinated seeds were planted into 200-13 

ml pots (three plants per pot) filled with a 2:1 mixture of expanded clay (Seramis, 14 

Masterfoods, Verden, Germany) and Oil-Dri (equivalent to Terra Green, Damolin, Mettmann, 15 

Germany), incubated in a growth chamber at 22
o
C/18

o
C day/night cycle, 60% relative 16 

humidity and a photoperiod of 16 h (240 µmol m
-2

 s
-1 

photon flux density), and fertilized 17 

weekly with 0.1% Wuxal top N solution (Schering, N/P/K: 12/4/6).  18 

Agar discs of 0.5 cm diameter covered by mycelium of P. indica (DSM 11827; 19 

Sharma et al. 2008) were placed in the centre of 9-cm petri dishes containing Aspergillus 20 

minimal medium solidified with 1.5% (wt/v) agar and incubated for 6 weeks at 26°C (Peškan-21 

Berghöfer et al. 2004). Then chlamydospores were collected by flooding the surface of the 22 

plate with 10 ml of sterile water containing 0.02% (v/v) Tween 20 followed by gentle 23 

scraping with a spatula. Spore suspension was filtered through two layers of Miracloth 24 

(Calbiochem) to remove chunks of mycelium, centrifuged (3000 g, 7 min), resuspended in 25 
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0.02% Tween 20, and the spore concentration was determined using a haemocytometer. For 1 

inoculation with P. indica, roots of 2-day-old seedlings were immersed in P. indica spore 2 

suspension (5×10
5
 ml

–1
) before sowing (Verma et al. 1998). Control plants were treated with 3 

water containing 0.02% Tween 20. Root colonization was determined in 2-week-old plants by 4 

magnified intersections method (McGonigle et al. 1990) after staining root fragments with 5 

0.01% (w/v) acid fuchsin in lactoglycerol (Kormanik and McGraw 1982). Nine seedlings 6 

(three in each of three pots) were selected at random from each treatment and the whole root 7 

system was examined for fungal structures under a Zeiss Axioplan 2 microscope. The rest of 8 

the plants were used in further analyses only if all plants chosen for microscopic examination 9 

were well-colonized by P. indica (colonization was at least 50% among 1-cm-long root 10 

segments).  11 

Fusarium culmorum strain KF 350 was grown on potato dextrose agar plates at 22°C 12 

(Jansen et al. 2005). For root inoculation, barley kernels were autoclaved twice for 25 min 13 

with a 24-h interval, then inoculated with conidia of F. culmorum, and incubated for one week 14 

at room temperature before being used as inoculum as described by Waller et al. (2005). One-15 

week-old seedlings were removed from the pots and roots were washed thoroughly with 16 

sterile water. Then seedlings were transplanted to 200 ml pots filled with a 2:1 mixture of 17 

expanded clay and Oil-Dri containing or not containing the inoculum (8-10 infected kernels 18 

per pot). Transplanted plants were cultured for additional 2 weeks under the same conditions 19 

as described above.  20 

 21 

Quantification of F. culmorum in infected plants 22 

The ratio of F. culmorum DNA to plant DNA was used to monitor the success of F. 23 

culmorum infection in barley. Roots of 3-week-old barley plants were harvested from pot 24 

cultures and washed intensively with sterile water before DNA extraction. DNA was isolated 25 
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from the whole root system using DNAzol reagent (Invitrogen) following the manufacturer’s 1 

instructions. Furthermore, pure genomic DNA was isolated from roots of uninoculated plants 2 

and from aerial mycelia of F. culmorum scraped off the agar to construct calibration curves 3 

for a normalized measurement of infection. Extracted DNA was quantified using a NanoDrop 4 

1000 spectrophotometer (Thermo Fisher Scientific). Primers designed to amplify fragments 5 

either of the fungal Tri12 gene (involved in the trichothecene pathway) from the genomic 6 

DNA of F. culmorum KF350 (forward, 5′- GCC CAT ATT CGC GAC AAT GT-3′ and 7 

reverse, 5′- GGC GAA CTG ATG AGT AAC AAA ACC-3′), or the plant EF1α gene from 8 

barley genomic DNA (forward, 5′- TCT CTG GGT TTG AGG GTG AC-3′ and reverse, 5′- 9 

GGC CCT TGT ACC AGT CAA GGT-3′) were used (Nicolaisen et al. 2009; Nielsen et al. 10 

2012). Hundred ng of total DNA served as template in each qPCR reaction. Amplifications 11 

were performed in 20 µl volume using 2× SYBR FAST Master Mix (KAPA Biosystems) in a 12 

CFX96 Real-Time System (Bio-Rad Laboratories) according to the following program: three 13 

min at 95°C, 40 cycles of 15 s at 95°C, 10 s at 60°C, 10 s at 72 °C. A melting curve was 14 

determined at the end of cycling to verify specificity of amplification. Cycle threshold (Ct) 15 

values were calculated automatically by the Bio-Rad CFX Manager Software (version 2.1). 16 

Individual standard curves were developed by plotting the logarithm of known concentrations 17 

of F. culmorum DNA and barley DNA (twofold dilution series) against the Ct values. The 18 

amount of target DNA for unknown samples was extrapolated from the respective standard 19 

curves. To normalize gene quantification between different samples, the amount of fungal 20 

Tri12 was divided by the amount of plant EF1α quantified in infected roots.  21 

 22 

Antioxidant assays  23 

Roots of 3-week-old barley plants were harvested from pot cultures and washed intensively 24 

with sterile water before extraction. The entire excised root system was used for the 25 
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antioxidant assays. Levels of reduced and oxidized forms of ascorbate and glutathione, and 1 

activities of antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), ascorbate 2 

peroxidase (APX), dehydroascorbate reductase (DHAR), monodehydroascorbate reductase 3 

(MDAR), and glutathione reductase (GR) were detected spectrophotometrically in root 4 

extracts as described (Baltruschat et al. 2008; Harrach et al. 2008) 5 

 6 

Peroxide analysis 7 

Lipid hydroperoxides were extracted and assayed using the ferrous oxidation/xylenol orange 8 

(FOX) assay as described (Do et al. 1996). Roots (0.2 g) were homogenized at 0-4°C in 2 ml 9 

methanol containing 0.01% butylated hydroxytoluene (BHT). Following centrifugation 10 

(12,000 g, 10 min, 4°C), the supernatants (0.1 ml) were mixed with 0.7 ml of methanol 11 

containing 0.01% BHT. Then 0.1 ml water containing 2.5 mM FeSO4, 2.5 mM (NH4)2SO4, 12 

and 0.25 M H2SO4, as well as 0.1 ml methanol containing 40 mM BHT and 1.25 mM xylenol 13 

orange were added. Samples were incubated at room temperature for 30 min, and absorbance 14 

at 560 nm was measured. The peroxide content was calculated based on a standard curve 15 

created by known concentrations of hydrogen peroxide as described (DeLong et al. 2002). 16 

The reactivity of 18:2-derived LOOHs with the FOX reagent is nearly identical to H2O2 17 

(DeLong et al. 2002). 18 

 19 

Statistical analysis 20 

At least three independent experiments were carried out in each case. Four replicate pots of 21 

plants from each treatment were sampled for measurements. Statistical significance was 22 

analyzed with Students t-test and ANOVA followed by Tukey post hoc test (Statistica 6.1, 23 

Statsoft). Differences were considered to be significant at P<0.05. 24 

 25 
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TABLES 

 

Table 1. Activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), glutathione reductase (GR), dehydroascorbate 

reductase (DHAR), and monodehydroascorbate reductase (MDHAR) in roots of 3-week-old barley plants preinoculated with Piriformospora 

indica and challenged with Fusarium culmorum. Roots of 2-day-old seedlings were dip-inoculated with 5×10
5
 chlamydospores ml

-1
 of P. indica 

or water before sowing. One-week-old seedlings were transferred to pots containing or not containing inoculum of F. culmorum and cultivated 

for additional 2 weeks before assay. Control seedlings were mock-inoculated twice at 2 days and 1 week.  

 

Treatment SOD 

(EU/g FW) 

CAT 

(µmol/g FW min) 

APX 

(µmol/g FW min) 

GR 

(nmol/g FW min) 

DHAR 

(nmol/g FW min) 

MDHAR 

(nmol/g FW min) 

Control 

P. indica 

F. culmorum 

P. indica+F. culmorum 

576±77b 

933±115a 

256±41c 

836±99a 

70±8c 

102±12ab 

86±10bc 

118±9a 

4.35±0.56b 

4.93±0.49b 

1.75±0.31c 

6.87±0.96a 

220±23b 

266±35ab 

159±25c 

311±40a 

291±38b 

396±35a 

164±19c 

231±35b 

334±33b 

445±29a 

133±19d 

249±25c 
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Data are means of 4 independent replicates ± SD. The experiment was repeated twice with similar results. Different lowercase letters indicate 

significant differences at P≤0.05 by Tukey post hoc test. EU, enzyme unit; FW, fresh weight  
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FIGURE CAPTIONS 1 

 2 

Fig. 1. Shoot and root fresh weight of 3-week-old barley plants preinoculated with 3 

Piriformospora indica and challenged with Fusarium culmorum. Two-day-old seedlings were 4 

dip-inoculated with 5×10
5
 P. indica chlamydospores ml

-1
 or water (mock) before sowing. 5 

One-week-old seedlings were transferred to pots containing or not containing inoculum of F. 6 

culmorum. Control seedlings were mock-inoculated twice at 2 days and 1 week. Data are 7 

means ± SD (n= 4 plants). The experiment was repeated twice with similar results. Different 8 

letters indicate significant differences in shoot and root biomass (P≤0.05, Tukey test).  9 

 10 

Fig. 2. Concentrations of Fusarium culmorum DNA in roots of 3-week-old barley plants 11 

preinoculated with P. indica and challenged with F. culmorum. Two-day-old seedlings were 12 

dip-inoculated with 5×10
5
 chlamydospores ml

-1
 of P. indica or water (mock) before sowing. 13 

One-week-old seedlings were transferred to pots containing or not containing inoculum of F. 14 

culmorum. Control seedlings were mock-inoculated twice at 2 days and 1 week. Fusarium 15 

DNA levels were measured by real-time PCR and normalized using the plant EF1α assay 16 

(Nielsen et al. 2012). Relative biomass of the fungus (means ± SD) is expressed as the ratio of 17 

fungal DNA relative to plant DNA. No amplification product of the F. culmorum-specific 18 

Tri12 gene was observed when template DNA was prepared from plants not inoculated with 19 

F. culmorum. Data are based on three independent experiments run in triplicate. Students t-20 

test indicated significant difference in F. culmorum colonization (* P<0.05).  21 

 22 

Fig. 3. Levels of reduced ascorbate (white bars) and dehydroascorbate (DHA, hatched bars) in 23 

roots of 3-week-old barley plants preinoculated with P. indica and challenged with F. 24 

culmorum. Two-day-old seedlings were dip-inoculated with 5×10
5
 chlamydospores ml

-1
 of P. 25 
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indica or water (mock) before sowing. One-week-old seedlings were transferred to pots 1 

containing or not containing inoculum of F. culmorum. Control seedlings were mock-2 

inoculated twice at 2 days and 1 week. Data are means ± SD (n= 4 plants). The experiment 3 

was repeated twice with similar results. Different letters indicate significant differences in 4 

reduced ascorbate at P≤0.05 (Tukey test). Levels of DHA did not change significantly at 5 

P≤0.05. FW, fresh weight. 6 

 7 

Fig. 4. Levels of glutathione (GSH, white bars) and glutathione disulfide (GSSG, hatched 8 

bars) in roots of 3-week-old barley plants preinoculated with P. indica and challenged with F. 9 

culmorum. Two-day-old seedlings were dip-inoculated with 5×10
5
 chlamydospores ml

-1
 of P. 10 

indica or water (mock) before sowing. One-week-old seedlings were transferred to pots 11 

containing or not containing inoculum of F. culmorum. Control seedlings were mock-12 

inoculated twice at 2 days and 1 week. Data are means ± SD (n= 4 plants). The experiment 13 

was repeated twice with similar results. Different letters indicate significant differences in 14 

reduced ascorbate at P≤0.05 (Tukey test). GSSG level marked with an asterisk is significantly 15 

different from that observed in mock-inoculated plants (P≤0.05). FW, fresh weight. 16 

 17 

Fig. 5. Peroxide levels in roots of 3-week-old barley plants preinoculated with P. indica and 18 

challenged with F. culmorum. Two-day-old seedlings were dip-inoculated with 5×10
5
 19 

chlamydospores ml
-1
 of P. indica or water (mock) before sowing. One-week-old seedlings 20 

were transferred to pots containing or not containing inoculum of F. culmorum. Control 21 

seedlings were mock-inoculated twice at 2 days and 1 week. Lipid peroxidation was measured 22 

by the ferrous xylenol orange assay (Do et al. 1996). Hydrogen peroxide was used to 23 

construct a standard curve. Data are based on three independent experiments run in triplicate. 24 
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Different letters indicate significant differences in peroxide levels at P≤0.05 (Tukey test). FW, 1 

fresh weight. 2 
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Fig. 1. Harrach, B.D., MPMI 
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Fig. 2. Harrach, B.D., MPMI 
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Fig. 3. Harrach, B.D., MPMI 
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Fig. 4. Harrach, B.D., MPMI 
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Fig. 5. Harrach, B.D., MPMI 
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