168 research outputs found

    r-tuple colorings of uniquely colorable graphs

    Get PDF
    AbstractAn r-tuple coloring of a graph is one in which r colors are assigned to each point of the graph so that the sets of colors assigned to adjacent points are always disjoint. We investigate the question of whether a uniquely n-colorable graph can receive an r-tuple coloring with fewer than nr colors. We show that this cannot happen for n=3 and r=2 and that for a given n and r to establish the conjecture that no uniquely n-colorable graph can receive an r-tuple coloring from fewer than nr colors it suffices to prove it for on a finite set of uniquely n-colorable graphs

    Digraphs and homomorphisms: Cores, colorings, and constructions

    Get PDF
    A natural digraph analogue of the graph-theoretic concept of an `independent set\u27 is that of an acyclic set, namely a set of vertices not spanning a directed cycle. Hence a digraph analogue of a graph coloring is a decomposition of the vertex set into acyclic sets

    Conflict-Free Coloring of Planar Graphs

    Get PDF
    A conflict-free k-coloring of a graph assigns one of k different colors to some of the vertices such that, for every vertex v, there is a color that is assigned to exactly one vertex among v and v's neighbors. Such colorings have applications in wireless networking, robotics, and geometry, and are well-studied in graph theory. Here we study the natural problem of the conflict-free chromatic number chi_CF(G) (the smallest k for which conflict-free k-colorings exist). We provide results both for closed neighborhoods N[v], for which a vertex v is a member of its neighborhood, and for open neighborhoods N(v), for which vertex v is not a member of its neighborhood. For closed neighborhoods, we prove the conflict-free variant of the famous Hadwiger Conjecture: If an arbitrary graph G does not contain K_{k+1} as a minor, then chi_CF(G) <= k. For planar graphs, we obtain a tight worst-case bound: three colors are sometimes necessary and always sufficient. We also give a complete characterization of the computational complexity of conflict-free coloring. Deciding whether chi_CF(G)<= 1 is NP-complete for planar graphs G, but polynomial for outerplanar graphs. Furthermore, deciding whether chi_CF(G)<= 2 is NP-complete for planar graphs G, but always true for outerplanar graphs. For the bicriteria problem of minimizing the number of colored vertices subject to a given bound k on the number of colors, we give a full algorithmic characterization in terms of complexity and approximation for outerplanar and planar graphs. For open neighborhoods, we show that every planar bipartite graph has a conflict-free coloring with at most four colors; on the other hand, we prove that for k in {1,2,3}, it is NP-complete to decide whether a planar bipartite graph has a conflict-free k-coloring. Moreover, we establish that any general} planar graph has a conflict-free coloring with at most eight colors.Comment: 30 pages, 17 figures; full version (to appear in SIAM Journal on Discrete Mathematics) of extended abstract that appears in Proceeedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2017), pp. 1951-196

    Random Graph Coloring - a Statistical Physics Approach

    Get PDF
    The problem of vertex coloring in random graphs is studied using methods of statistical physics and probability. Our analytical results are compared to those obtained by exact enumeration and Monte-Carlo simulations. We critically discuss the merits and shortcomings of the various methods, and interpret the results obtained. We present an exact analytical expression for the 2-coloring problem as well as general replica symmetric approximated solutions for the thermodynamics of the graph coloring problem with p colors and K-body edges.Comment: 17 pages, 9 figure

    Nonrepetitive colorings of lexicographic product of graphs

    Get PDF
    A coloring cc of the vertices of a graph GG is nonrepetitive if there exists no path v1v2v2lv_1v_2\ldots v_{2l} for which c(vi)=c(vl+i)c(v_i)=c(v_{l+i}) for all 1il1\le i\le l. Given graphs GG and HH with V(H)=k|V(H)|=k, the lexicographic product G[H]G[H] is the graph obtained by substituting every vertex of GG by a copy of HH, and every edge of GG by a copy of Kk,kK_{k,k}. %Our main results are the following. We prove that for a sufficiently long path PP, a nonrepetitive coloring of P[Kk]P[K_k] needs at least 3k+k/23k+\lfloor k/2\rfloor colors. If k>2k>2 then we need exactly 2k+12k+1 colors to nonrepetitively color P[Ek]P[E_k], where EkE_k is the empty graph on kk vertices. If we further require that every copy of EkE_k be rainbow-colored and the path PP is sufficiently long, then the smallest number of colors needed for P[Ek]P[E_k] is at least 3k+13k+1 and at most 3k+k/23k+\lceil k/2\rceil. Finally, we define fractional nonrepetitive colorings of graphs and consider the connections between this notion and the above results

    Lower Bounds for the Graph Homomorphism Problem

    Full text link
    The graph homomorphism problem (HOM) asks whether the vertices of a given nn-vertex graph GG can be mapped to the vertices of a given hh-vertex graph HH such that each edge of GG is mapped to an edge of HH. The problem generalizes the graph coloring problem and at the same time can be viewed as a special case of the 22-CSP problem. In this paper, we prove several lower bound for HOM under the Exponential Time Hypothesis (ETH) assumption. The main result is a lower bound 2Ω(nloghloglogh)2^{\Omega\left( \frac{n \log h}{\log \log h}\right)}. This rules out the existence of a single-exponential algorithm and shows that the trivial upper bound 2O(nlogh)2^{{\mathcal O}(n\log{h})} is almost asymptotically tight. We also investigate what properties of graphs GG and HH make it difficult to solve HOM(G,H)(G,H). An easy observation is that an O(hn){\mathcal O}(h^n) upper bound can be improved to O(hvc(G)){\mathcal O}(h^{\operatorname{vc}(G)}) where vc(G)\operatorname{vc}(G) is the minimum size of a vertex cover of GG. The second lower bound hΩ(vc(G))h^{\Omega(\operatorname{vc}(G))} shows that the upper bound is asymptotically tight. As to the properties of the "right-hand side" graph HH, it is known that HOM(G,H)(G,H) can be solved in time (f(Δ(H)))n(f(\Delta(H)))^n and (f(tw(H)))n(f(\operatorname{tw}(H)))^n where Δ(H)\Delta(H) is the maximum degree of HH and tw(H)\operatorname{tw}(H) is the treewidth of HH. This gives single-exponential algorithms for graphs of bounded maximum degree or bounded treewidth. Since the chromatic number χ(H)\chi(H) does not exceed tw(H)\operatorname{tw}(H) and Δ(H)+1\Delta(H)+1, it is natural to ask whether similar upper bounds with respect to χ(H)\chi(H) can be obtained. We provide a negative answer to this question by establishing a lower bound (f(χ(H)))n(f(\chi(H)))^n for any function ff. We also observe that similar lower bounds can be obtained for locally injective homomorphisms.Comment: 19 page
    corecore