
r-TVPLE COLORINGS OF UNIQUELY COLORABLE GRAPHS 

C’lc;\rl> t (G[ K. 1, - ‘\ (G ). A I owcr bound. as shown in [?I. is k (G[ K, 1) 2 

t(G)+ Zr - 2; the two bounds agree when Qi is tripartite. It is also known that for 

all values of k (G ) :B 2 and f 2 Z oampb can be found H here the upper bound is 

not sharp 12). In this note we show that if G is uniquely colorable [ 11 then the lower 

bound cannot hold for p;lir colorings-and then briefly discuss the more general 

question of whcthcr the upper bound is in fact always sharp for such graphs. 

A family {C ‘,, . . . , Cm} cows a graph (r; at ltwsf (mzcrly ) r rimes if each point of 

G belongs to at Icast (exactly) r of the C,. Thus. given an rr-coloring of G. the n 

C&N- classes form a family (of independent sets) which covers G exactly once. 

Prod. Let {C’I...., C,) cover C; at least once, and let w E C, C? C:. Wote that no set 

C, is wholly contained in any collection of the others, for otherwise we could cover 

G a; lcast once with n 1 sets. yielding x(G) s n - 1. Rut now, consider the 

folhowing collection5i: 
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These are each&milies of n disjoint independent sets whose union is the point 
set V(G)of G; i.e., each is a coloring of G. However, the colorings are different, as 
in B the point u is colored the same as all points in C2 - C,, while it is colored 
differeatly from thcs*e in A. This contradicts the hypothesis that G was uniquely 
n-colorable. 

f. Suppose that k(G(&)) == n + 2. Let (C,, . . . , C,,+r) be a coloring of G[KJ, 
an110 let (A 3, . . . . A,+J be the corresponding projecticns of the C, onto%. Then each 
A, is an independent set and the collection (14,) covers G twice. Note first that no n 
af the {A,] can cover G at least once. For. if, for example, (A,, . . . , A,,) covered G 
at least once it would cover G exactly once by the lemma. But this would mean that 

?Ih *. ir A,. :) covered G <Tnce, implying that n = x(G) d 2, a contradiction. 

Thus. for every i and j, A, p1 A,# di). We proceed to develop two different 
cnlorings of G. Define the sets B,, i = 1,. . . e n by 

B, = A,. 

fj;= A,--(A,UArj+ 

. . 

The 8 cover G. 

They ar? also independent. This is cle!ar for f?,, ,. ., I#,+ To see that B” is also 
independent note that 

Bm = (A, n A,-#J(A, n A,.&J(A,,+, n A,.z) 

and, therefore. that any two points of B, have common membership in some a,, 
;m& of which is indepesadent. Then, by Lemma 1, the B, must be disjoint. 

‘(IS, the (IS‘} yield a coloring of G. But a different cciloring of G results when we 
e Ba’= AZ, t35 = A!, - A:!, and B: = B, for i > 2. This contradicts the unique 

ry 3. If G is unquely 3-c06or~61e, then x(G[ K,]) = 6. 
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Although this theorem offers minimal support for it. It is tempting to consider the 

f nllowing conjecture: i 

(*) If G is uniquely n-colorable. then x(G[K,J) = nr. 

Actually, we, can consider (* ) to be a family of conjectures, one for each value of 

n > 2 and r 3 2. For n = Z it is already a theorem, and for a given n and all r it is 

true for those uniquely n-colorable graphs which contain n-cliques. Furthermore, 

for a given n and r. the truth of ( * ) depends only on its validity for small graphs. 

Theorem 4. For a #WI n and t thew is a nrrmbet f(n. I) such that if (* ) holds for 
graphs G with p(G) s J(n. r ). therl 1 * ) holds for all G. 

Prmf. By induction. I ct G be uniquely n-colorable, where p ,-r p(G) satisfies 

and assume that the result holds for graphs with fewer than p points: i.e., that for 

such graphs C;’ if G’ is uniquely n-colorable then x(G’[K,])- nr. Consider the 

unique coloring of G from n colora. if two points u and c receive the same color 

then tht result G’ of identifying them is also uniquety n-colorable. Furthermore, if 

in some r-tuple coloring of G, II and o receive the same r-tuple of colors, then 

.u(G’l K,]) r .k(G[ IS, 1); the chromatic number cannot decrease since the identifica- 

tion of the pseudo-vertices II [ K,J and L) [ K,) is a homomorphism, and does not 

increase siqce the fact that (4 and t* receive the same r-tuple guarantees that the 

resulting coloring is valid for G’. 

Now, let the coloring of G partition the points into sets {V,, . . . , V,,}. In any of 

the VS3 we could choose any two points to identify, as above; in fact, there are 
I 

possible choices. In particular, by picking the largest of the V, we are 

possible choices. 

We wish to make a choice which will Lead to a graph G’ with x(G’[K]) = 

x(G[K,)). Assume that ,~(G[K,])~ nr - 1; then there are at most distinct 

r-tuples possible, Thus, if we choose p such that 

there must be two points in the largest V, which receive the same r-tuple of colors 

in some r-tuple coloring. By identifying them. as above. we get a uniquely 

n -c&orable graph G ’ suck that x(G’[K,l) = x(G[K,]). Rut, since G’ is smaller 

than G the induction hypothesis yields dy (G[ K,]) = nr. 
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Prua%. Let x(G) = n and let (C,. . . . . C,,,) be a coloring of G[K,]. Let A, hc the 

projertitw of C, on G. Then each A, IS independent. so that 1 A, 1 s &(G). 
Futthermore, 
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