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An r-tuple colonng of a graph s one 1in which 7 colors are assigned to each point of the graph
so that the sets of colors assigned 1o adjacent points are always disjornt. We investigate the
question of whether a uniigaely n-colotable graph can recewve an r-tuple colonng with fewer thar
nr co.orn We show that the cannot happen for n = 3 and r = 2 and that for a given n and . to
establish the conjecture that ne umyguely n-colorable graph can receive an r-tuple coloring from
fewer than ar colors it saffices to prove at for onee a finite set of uniquely n-colorable graphs.

An r-quple colonne ov a graph (7 is an assignment to each point of G of an
unardered r-tuple of awtitet colors such that the r-tuples assigned to two adjacent
points have no colors in commorn. A completely equivalent formulation |2, 3] is to
say that n r-tuple coloring of G is a coloring. in the usual sense, of the
lexicographic product G[K.]: in fact, we will denote the least number of colors
which which one can achieve an r-tuple coloring of G by y(G[K.)).

Clearly Y (G[K.]D= r(G). A lower bound. as shown in [2]. is y(G[K.]) =
Y (G)+ 2r - 2: the two bounds agree when G is bipartite. It is also known that for
all values of y(G)>>2 and r = 2 ¢xampies can be found where the upper bound is
not sharp [2]. In this note we show that if G is uniquely colorable [1] then the lower
bound cannot hold for pair colorings and then briefly discuss the more general
question of whether the upper bound is in fact always sharp for such graphs.

A family {C\..... C.} covers a graph G at least (exactly) r times if each point of
G belongs to at least (exactly) r of the C. Thus. given an n-coloring of G. the n
color classes form a family (of independent sets) which covers G exactly once.

Lemma 1. Let G be uniquely n-colorable. If a collection of n independent sets covers
G at least once. then it covers G exactly once.

Proof. Let {C......C.icover G at least once, and let u € C, M C.. Note that no set
C, is wholly contained in any collection of the others, for otherwise we could cover
G at least once with n 1 sets. yielding y(G)<n - 1. But now, consider the
following collections:
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n-1
A= {(,‘.,Cg'C,.(."—(C,lJCz),...uC,, - U C,}.

B- {C Co= Co. Cr~(CLUCH.....Co - U' C,}.

These are cach_f.milies of n disjoint independent sets whose union is the point
set V{G)of G.i.e., cachis a coloring of G. However, the colorings are different, as
in B the point u is colored the same as all points in C:— C,, while it is colored
differently from these in A. This contradicts the hypothesis that G was uniquely
n-colorable.

Theorem 2. If G is uniquely n-colorable, n > 2, then x(G|K;})=n +3.

Proof. Suppose that x (G[K:])=n +2. Let {C\..... C..;} be a coloring of G[K:].
andlet {A,,.... A,.;} be the corresponding projecticns of the C, onto G. Then each
A, is an independent set and the collection {A,} covers G twice. Note first that no n
of the {A,] can cover G at least once. For, if, for example, {A,..... A.} covered G
at least once it would cover G exactly once by the lemma. But this would mean that
{A.... A..:} covered G once, implying that n = x(G) < 2, a contradiction.

Thus. for every i and j, A, N A, #0. We proceed to develop two different
¢olorings of G. Define the sets B, i=1,....n by
B, = A,
B:=A,- A,
B.= A.-(A,UA)).

B..<|:: A“-)—(A|U o e UA,.-:),
Ba! = (A,. UA.H)UA..‘,z)"(Av UA;U e UA,,;]).
The B. cover G.

They are also independent. This is clear for B,,..., B,.,. To see that B, is also
independent note that

Bn = (An n An'I)U(An ﬂ Auu:)U(A"u n An:)

and, therefore. that any two points of B, have common membership in some 4,
ezch of which is independent. Then, by Lemma 1, the B, must be disjoint.

Thaus, the {B.} yield a coloring of G. But a different coloring of G results when we
define B, = A,, Bi= A, - A., and B = B, for i >2. This contradicts the unique
colorability of G.

Corollary 3. If G is uniquely 3-colorable, then x{G[K,]) = 6.
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Although this theorem offers minimal support for it. 1t is tempting to consider the
following conjecture: i

(*) [If G is uniquely n-colorable, then x(G[K.,])= nr.

Actually, we can consider (*) to be a family of conjectures, one for each value of
n>2and r =2 For n =2itis alreadv a theorem, and for a given n and all r it is
true for those uniquely n-colorable graphs which contain n-cliques. Furthermore,
for a given n and r. the truth of (*) depends only on its validity for small graphs.

Theorem 4. For a given n and r there is a number f(n. r) such thai if (*) holds for
graphs G with p(G) < f(n,r). thea (*) holds for al! G.

Proof. By induction. Let GG be uniquely n-colorable, where p = p(G) satisfies

(> ("

-

and assume that the result holds for graphs with fewer than p points: i.e., that for
such graphs G’ if G’ is uniquely n-colorable then x(G'[K.])= nr. Consider the
anique coloring of G from n colors. if two points u and v receive the same color
then the result G’ of identifying them is also uniquely n-colorable. Furthermore, if
in some r-tuple coloring of G, u and v receive the same r-tuple of colors, then
y(G'[K.]) = x(G[K.]): the chromatic number cannot decrease since the identifica-
ticn of the pseudo-vertices u[K,] and v{K.,] is a homomorphism, and does not
increase since the fact that u and v receive the same r-tuple guarantees that the
resulting coloring is valid for G'.

Now, let the coloring of G partition the points into sets {V,..., V.}. In any of
the V. we could choose any two points to identify, as above: in fact, there are

( ! ‘,t) possible choices. In particular, by picking the largest of the V., we are

-

tp gn}) possible choices.

assured of (
We wish to make a choice which wiil lead to a graph G’ with x(G'[K/])=
x(G[K.]). Assume that y(G[K.]) < nr — 1. then there are at most (nrr— 1) distinct

r-tuples possibie. Thus, if we choose p such that

()7,

there must be two points in the largest V, which receive the same r-tuple of colors
in some r-tuple coloring. By identifying them, as above. we get a uniquely
n-colorable graph G’ such that x(G'[K.]) = x(G[K.]). But, sirce G' is smaller
than G the induction hypothesis yields x(G[K.]) = nr.
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A graph G need not be uniquely n-colorable for x(G[K.]) to be equal to nr.
Stahi [4] has pointed out the following:
»
Theorem § (Stahl). If the independence number of G satisfies B(G)x(G) = p(G),
then Y{G|K. ])-— v (G).

Proof. Let x{(G)=n and let {C...... C..} be a coloring of G[K,]. L.et A, be the
arojection of ¢, on G. Then each A, 1s independent. so that |A,| = Bd(G).
Furthermore,

m = 2(‘ < mpBuAC).

But. since B(G) = p/n. rp = mp/n, so that m <~ m.
However. since x(G)Y=n, m = y(G[K.]} < nr.
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