r-TVPLE COLORINGS OF UNIQUELY COLORABLE GRAPHS

Dennis P. GELLER*

Human Sciences and Technology Group, School of Advanced Technology, State University of New York, Binghamton, NY 13901, U.S.A.

Received 14 August 1974 Revised 8 December 1975

An r -tuple coloring of a graph is one in which r colors are assigned to each point of the graph so that the sets of colors assigned to adjacent points are always disjoint. We investigate the question of whether a uniquely n-colorable graph can receive an r-tuple coloring with fewer than nr colors. We show that this cannot happen for $n = 3$ and $r = 2$ and that for a given n and r, to establish the conjecture that no uniquely *n*-colorable graph can receive an r-tuple coloring from fewer than *nr* colors, it suffices to prove it for only a finite set of uniquely *n*-colorable graphs.

An r-tuple coloring of a graph G is an assignment to each point of G of an unordered r-tuple of distinct colors such that the r-tuples assigned to two adjacent points have no colors in common. A completely equivalent formulation $[2, 3]$ is to say that in r-tuple coloring of G is a coloring, in the usual sense, of the lexicographic product $G[K]$; in fact, we will denote the least number of colors which which one can achieve an r-tuple coloring of G by $\chi(G[K])$.

Clearly $\chi(G[K,]) \leq r_k(G)$. A lower bound, as shown in [2], is $\chi(G[K,]) \geq$ $\mathbf{r}_1(G)$ + 2r - 2; the two bounds agree when G is bipartite. It is also known that for all values of $\chi(G) > 2$ and $r \ge 2$ examples can be found where the upper bound is **not sharp 12). In this note we show that if G is uniquely colorable** [11 **then the lower bound cannot hold for pair colorings and then briefly discuss the more general question of whcthcr the upper bound is in fact always sharp for such graphs.**

A family $\{C_1, \ldots, C_n\}$ covers a graph G at least (exactly) *r* times if each point of **G belongs to at Icast (exactly) r of the C,.** Thus. **given an rr-coloring of G. the n** color classes form a family (of independent sets) which covers G exactly once.

Lemma 1. Let G be uniquely n-colorable. If a collection of n independent sets covers G at least once, then it covers G exactly once.

Proof. Let $\{C_1, \ldots, C_n\}$ cover G at least once, and let $u \in C_1 \cap C_2$. Note that no set C, is **wholly contained in any collection of the others,** for otherwise we could cover G at least once with $n - 1$ sets. yielding $\chi(G) \leq n - 1$. But now, consider the **folhowing collection5i:**

^{*}Present address: Massachusetts Computer Associates, 26 Princess Street. Wakefield, MA. U.S.A.

$$
\mathbf{A} = \Big\{ C_1, C_2 = C_1, C_3 = (C_1 \cup C_2), \dots, C_n = \bigcup_{i=1}^{n-1} C_i \Big\},
$$

$$
\mathbf{B} = \Big\{ C_2, C_3 = C_2, C_3 = (C_1 \cup C_2), \dots, C_n = \bigcup_{i=1}^{n-1} C_i \Big\}.
$$

These **are** each&milies of n disjoint independent sets whose union is the point set V(G)of G; i.e., each is a coloring of G. **However, the** colorings are different, as in B the point u is colored the same as all points in $C_2 - C_1$, while it is colored differently from these in A. This contradicts the hypothesis that G was uniquely **n-colorable.**

Theorem 2. If G is uniquely n-colorable, $n > 2$, then $\chi(G[K_2]) \geq n + 3$.

froof. Suppose that $\chi(G[K_2]) = n + 2$. Let $\{C_1, \ldots, C_{n+2}\}\)$ be a coloring of $G[K_2]$, and let $\{A_1, \ldots, A_{n+2}\}$ be the corresponding projections of the C, onto G . Then each A, is an independent set and the collection $\{A_i\}$ covers G twice. Note first that no *n af the {A,} can cover G at least once. For, if, for example,* $\{A_1, \ldots, A_n\}$ *covered G* at least once it would cover G exactly once by the **lemma. But this** would mean that ${A_{n+1}, A_{n+2}}$ covered G once, implying that $n = \chi(G) \le 2$, a contradiction.

Thus. for every *i* and *j*, $A_1 \cap A_2 \neq \emptyset$. We proceed to develop two different colorings of G. Define the sets B_i , $i = 1, \ldots, n$ by

$$
B_1 = A_1,
$$

\n
$$
B_2 = A_2 - A_1,
$$

\n
$$
B_3 = A_3 - (A_1 \cup A_2),
$$

\n
$$
\vdots
$$

\n
$$
B_{n-1} = A_{n-1} - (A_1 \cup ... \cup A_{n-2}),
$$

\n
$$
B_n = (A_n \cup A_{n+1} \cup A_{n+2}) - (A_1 \cup A_2 \cup ... \cup A_{n-1}).
$$

\nThe B. cover G.

They are also independent. This is clear for B_1, \ldots, B_{n-1} . To see that B_n is also **independent note that**

$$
B_n = (A_n \cap A_{n+1}) \cup (A_n \cap A_{n+2}) \cup (A_{n+1} \cap A_{n+2})
$$

and, therefore, that any two points of B_n have common membership in some A_n , each of which is independent. Then, by Lemma 1, the B_i must be disjoint.

Thus, the $\{B_i\}$ yield a coloring of G . But a different coloring of G results when we **define** $B'_1 = A_2$ **,** $B'_2 = A_1 - A_2$ **, and** $B'_1 = B_1$ **for** $i > 2$ **. This contradicts the unique** colorability of G.

Corollary 3. If *G* is uniquely 3-colorable, then $\chi(G[K_2]) = 6$.

Although this theorem offers minimal support for it. It is tempting to consider the following conjecture:

(*) If G is uniquely *n*-colorable, then $\chi(G[K,]) = nr$.

Actually, we can consider (*) to be a family of conjectures, one for each value of $n > 2$ and $r \ge 2$. For $n = 2$ it is already a theorem, and for a given n and all r it is **true for those uniquely n-colorable graphs which contain n-cliques. Furthermore, for a given n and r. the truth of (***) **depends only on its validity for small graphs.**

Theorem 4. For a given n and r there is a number $f(n, r)$ such that if (*) holds for *graphs G with* $p(G) \le f(n, r)$ *, then* $(*)$ *holds for all G.*

Proof. By induction. Let G be uniquely *n*-colorable, where $p = p(G)$ satisfies

$$
\binom{\{r/n\}}{2} > \binom{nr-1}{r}
$$

and assume that the result holds for graphs with fewer than p points: i.e., that for such graphs G' if G' is uniquely *n*-colorable then $\chi(G'[K]) = nr$. Consider the unique coloring of G from n colors; if two points u and v receive the same color then the result G' of identifying them is also uniquely *n*-colorable. Furthermore, if in some r-tuple coloring of G , μ and ν receive the same r-tuple of colors, then $\chi(G'[K_1]) = \chi(G[K_1])$; the chromatic number cannot decrease since the identification of the pseudo-vertices $u[K_t]$ and $v[K_t]$ is a homomorphism, and does not increase since the fact that μ and $\mathbf r$ receive the same $\mathbf r$ -tuple guarantees that the **resulting coloring is valid for G'.**

Now, let the coloring of G partition the points into sets $\{V_1, \ldots, V_n\}$. In any of **the VS3 we could choose any two points to identify, as above; in fact, there are** $\binom{[V_i]}{2}$ possible choices. In particular, by picking the largest of the V_i we are assured of $\binom{\{p/n\}}{2}$ possible choices.

We wish to make a choice which will lead to a graph G' with $\chi(G'[K_1]) =$ $\chi(G[K,])$. Assume that $\chi(G[K,]) \leq nr-1$; then there are at most $\binom{nr-1}{r}$ distinct **r-tuples possible, Thus, if we choose p such that**

$$
\binom{\{p/n\}}{2} > \binom{nr-1}{r}
$$

there must be two points in the largest V, which receive the same r-tuple of colors in some r-tuple coloring. By identifying them. as above. we get a uniquely *n*-colorable graph G' such that $\chi(G'[K_1]) = \chi(G[K_1])$. But, since G' is smaller than G the induction hypothesis yields $\chi(G[K,]) = nr$.

A graph G need not be uniquely *n*-colorable for $\chi(G[K,])$ to be equal to *nr*. Stahl [4] has pointed out the following:

Theorem 5 (Stahl). If the independence number of G satisfies $\beta_0(G)\chi(G) = p(G)$, *then* $Y(G[K_i]) = r_Y(G)$.

Proof. Let $\chi(G) = n$ and let $\{C_1, \ldots, C_m\}$ be a coloring of $G[K_i]$. Let A, be the projection of C, on G. Then each A, is independent, so that $|A_i| \leq \beta_0(G)$. Furthermore.

$$
rp = \sum_{i=1}^m C_i \leq m\beta_0(G).
$$

But, since $\beta_0(G) = p/n$, $rp \le mp/n$, so that $rn \le m$.

However, since $\chi(G) = n$, $m = \chi(G[K]) \leq nr$.

References

- [1] G. Chartrand and D.P. Geller, On uniquely colorable planar graphs, J. Combin. Theory 6 (1969). 271-278.
- [2] D.P. Geller and S. Stahl, The chromatic number and other functions of the lexicographic product of graphs, J. Combin. Theory 19 (1975) 87-95.
- [3] S. Stahl, n-tuple colorings and associated graphs, to appear.
- [4] S. Stahl, personal communication.