
Random Graph Coloring - a Statistial Physis ApproahJ. van Mourik and D. SaadThe Neural Computing Researh Group, Aston University, Birmingham B4 7ET, United KingdomThe problem of vertex oloring in random graphs is studied using methods of statistial physisand probability. Our analytial results are ompared to those obtained by exat enumeration andMonte-Carlo simulations. We ritially disuss the merits and shortomings of the various methods,and interpret the results obtained. We present an exat analytial expression for the 2-oloringproblem as well as general replia symmetri approximated solutions for the thermodynamis of thegraph oloring problem with p olors and K-body edges.PACS numbers: 89.75.-k, 05.50.+q, 75.10.Nr, 02.60.PnI. INTRODUCTIONMethods of statistial physis have reently been applied to a variety of omplex optimization problems in a broadrange of areas, from omputational omplexity [1, 2℄ to the study of error orreting odes [3℄ and ryptography [4, 5℄.Graph oloring is one of the basi Non-deterministially Polynomial (NP) problems. The task is to assign one ofp-olors to eah node, in a randomly onneted set of verties, suh that no edge will have the same olors assigned toboth ends. The feasibility of �nding suh a solution learly depends on the level and nature of onnetivity in the graphand the number of olors. The very existene of a solution is in the lass of NP-omplete problems [6℄. An extensionof the problem to the ase of hyper-edges omprising more than two verties is also of pratial signi�ane [7℄.Reent suess in the appliation of statistial physis tehniques to omputational omplexity problems, naturallylead to the belief that they may be applied to a wide range of omputational omplexity tasks, among them is thegraph oloring problem.In this paper we map the graph oloring problem, with p-olors, onto the anti-ferromagneti p-spin Potts model [8℄;this failitates the use of established methods of statistial physis for gaining insight into the dependene of grapholorability on the nature and level of its onnetivity, and the phase transitions that take plae. The suggestedframework omes with its own limitations; we ritially disuss what an, and annot be alulated via the methodsof statistial mehanis.The statistial physis approah is based on the introdution of a Hamiltonian or ost-funtion, and the alulationof the typial free energy in the large system limit. From the free energy one an obtain the typial ground stateenergy, whih in turn allows one to make preditions on the graph olorability. A non-zero ground state energyindiates that, under the given onditions, random graphs are typially not olorable. Our theoretial results arerestrited to the replia symmetri (RS) approximation (see [10, 11℄), and are, for the 2-olor problem (whih issolvable in linear time) in perfet agreement with those obtained by numerial methods; for the 3-olor problem theresults are only in qualitative agreement with those obtained by numerial methods. The theoretial results an besystematially improved by using replia symmetry breaking (RSB) approximations, although our urrent results donot provide a diret indiation for a breakdown of the RS approximation.Apart from determining merely the olorability of the graph, the ground state energy also tells us what is the typialminimal fration of unsatis�ed edges when the graph is non-olorable. Furthermore, the ground state (residual) entropygives us information about the number of di�erent oloring shemes that share the minimum number of unsatis�ededges.The suggested framework overs a range of possible variations of the original problem. However, only a limitednumber of them an be studied in a single paper; we therefore restrit this study to regular p = 2 and p = 3 olorproblems on random graphs with 2-vertex edges (i.e. with 2-body interations in the statistial physis terminology).In this ontext, regular stands for the fat that all edges onnet the same number of verties and impose the sameolor onstraint on the verties they onnet, and that all verties have the same available olor set. Possible variationsinlude many-K vertex edges (K-body interations); mixtures of edges with di�erent K values and/or with di�erentloal onstraints imposed on the olors of the verties involved; onstraints on the overall frequenies of verties of aertain olor; mixtures of verties with di�erent available olor sets; other probability distributions of the number ofedges per vertex, et.Our results, in agreement with results obtained elsewhere [9℄, seem to indiate, that for p � 3 there is a 1st ordertransition for the olorability as a funtion of the average graph onnetivity, from probability 1 to 0, at some ritialaverage onnetivity. This implies that in these ases a vanishing ground state energy implies that the graph isp-olorable, while a non-zero ground state energy indiates that the graph is typially not p-olorable.Contrasting results obtained from the theoretial framework with numerial studies in the ase of p = 2 exposes

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aston Publications Explorer

https://core.ac.uk/display/188183346?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2inherent limitations of the statistial physis based analysis. Using a ompletely di�erent approah, we also obtain anexat expression for the probability that large random graphs with 2-vertex edges are 2-olorable, �nding a 2nd ordertransition for the olorability as a funtion of the graph's average onnetivity, from non-zero to zero probability.This result shows that in general a zero ground state energy does not automatially imply that a graph is typiallyolorable.The paper is organized as follows: In setion II we de�ne the problem and introdue the notations used, while insetion III we introdue the statistial physis framework. Setion IV introdues the results obtained from the analysisas well as numerial results obtained by exat enumeration and Monte-Carlo simulations. The ase of 2-olorabilityis studied in setion V; disussion and onlusions are presented in setion VI.II. GRAPH COLORING - DEFINITIONS AND NOTATIONIn a general set-up, we onsider regular random graphs G(Nv ;K; �) onsisting of Nv verties, onneted to eahother by (hyper) edges. Eah (hyper) edge onnets exatly K distint verties. The onnetivity is then desribedby the tensor Dfj1::jKg, the elements of whih are 1 is there is an (hyper) edge onneting the verties fj1::jKg, and0 otherwise. Note that the total number of possible (hyper) edges in the graph is given by Npe=g = �NvK �, whilethe total number of possible (hyper) edges a given vertex j may be involved in, is given by Npe=v = �Nv�1K�1 �. Theoverall onnetivity of the graph G(Nv;K; �) is desribed by the parameter �, whih gives the average number ofedges eah vertex is involved in. Hene, for large graphs (i.e. Nv !1), the fration of the total number of edges Neand the total number of verties Nv, is typially given byNeNv = �K +O(N�12v ) : (1)In a random graph, this is obtained by onsidering all (i.e. Npe=g) possible K-tuples fj1::jKg of verties, and byassigning Dfj1::jKg = ( 1 with probability Pe = �Npe=v0 with probability Pne = 1� �Npe=v : (2)In the large system limit (i.e. Nv !1), the number of edges per vertex (ne) is then Poisson distributed:P (ne = k) = �Npe=vk �� �Npe=v�k �1� �Npe=v�Npe=v�k ' �kk! exp(��); k = 0; 1; 2; ::;1 : (3)The most studied ase is that of K = 2, in whih one onsiders onventional edges (or 2-body interations); graphswith K � 3 are also onsidered in other ontexts, for instane, the assignment of examination rooms to lasses [7℄, inwhih ase one generally speaks of K hyper edges (or K-body interations). Although we will derive expressions forgeneral K, in this paper we will limit ourselves to the analysis of random graphs with K = 2.Now we assume that eah vertex j an take a olor j out of a set f�j;1; ::; �j;pjg of pj olors, its olor set. Aoloring problem on a graph is determined by the onstraint(s) on the olors of verties onneted by a(n) (hyper)edge. For instane, one an demand that none of the olors j of the verties onneted by an edge are the same, orthat the olors j of the verties onneted by an edge are not all the same (note that both onstraints are identialfor K = 2). Although in priniple, one an onsider senarios where the olor set may di�er from vertex to vertex,and where the olor onstraints may di�er from edge to edge, in the present paper we restrit ourselves to the asewhere all verties have the same olor set f�1; ::; �pg � f1; ::; pg of p olors, and where eah edge imposes the sameolor onstraint on the verties it onnets. The atual olor of a vertex j is indiated by j 2 f1; ::; pg, and we denotea oloring of the entire graph by ~ � f1; ::; Nvg.In this ontext our goal is to determine the probability that a randomly generated graph with average onnetivity�, and a given olor set and olor onstraints, is olorable.Note that the K = 2 ase with p available olors, is exatly the anti-ferromagneti p-spin Potts model [8℄, whilethe p = 2 ase is the anti-ferromagneti Ising model (see [10, 11℄). The only randomness present in the model, is therandom graph onnetivity.



3III. REPLICA CALCULATIONA. General SenarioWe now present the statistial physis formulation of the graph oloring problem. To map this problem onto astatistial physis framework, we introdue a Hamiltonian or ost funtion for given oloring ~ and onnetivity D:H(~;D) �XhiK DhiK �hiK (~) ; (4)where we have introdued the following short-hand notation for the K-tuples to keep our notation onise:hiK � fj1::jKg : (5)Furthermore, �hiK (~) is 0 if the edge olor onstraints are satis�ed and 1 otherwise, suh that H(~) ounts the numberof unsatis�ed edges. We fous on the ase where olors of nodes sharing an edge should not all be the same; �hiK (~)is then given by �hiK (~) = pX�=1[�℄hiK ; with �j � Æ�;j ; [�℄hiK � KYk=1 �jk ; (6)suh that exp ��� �hiK (~)� = pY�=1 �1�� [�℄hiK � = 1�� pX�=1[�℄hiK ; (7)where � � (1� e��). In addition we ould put onstraints on the total fration's f� of edges of olor �:NXj=1 �j = Nf�; (note that X� f� = 1) : (8)The entral quantity from whih all other relevant physial quantities an be derived, is the free energy. This an beobtained from the partition funtion (with the onstraints on ~f):Z(~f;D) = Tr~ exp0���XhiK DhiK �hiK (~)1AY� Æ( NXj=1 �j �Nf�) : (9)The free energy per degree of freedom, is then obtained from F(~f;D) = � 1�Nv log[Z(~f;D)℄. It is very hard and notvery useful to alulate F(~f;D) for any spei� hoie of onnetivity D. Therefore, we alulate the expetation(average) value of the free energy over the ensemble of all allowed realizations of the onnetivity. The average overall tensors D with K non-zero elements per row, and Lj per olumn j is given byhg(D)iD � Tr D g(D)QNvj1=1 Æ �Phj2;::;jKiDhiK ; Lj1�Tr DQNvj1=1 Æ �Phj2;::;jKiDhiK ; Lj1� � TN : (10)Quantities of the type Q() = hQy()iy, with Qy() = 1M ln [Zy()℄ and Zy() � Trx f(x; y), are very ommon in thestatistial physis of disordered systems. We distinguish between the (quenhed) disorder y (the onnetivity D inour ase) and the mirosopi (thermal) variables x (the oloring ~ in our ase). Some marosopi order parameters(x; y) (the f� in our ase) may be �xed to spei� values and may depend on both y and x. Although we will notprove this here, suh a quantity is generally believed to be self-averaging in the large system limit, i.e., obeying aprobability distribution P (Qy()) = Æ(Qy()�Q())). The diret alulation of Q() is known as a quenhed averageover the disorder, but is typially hard to arry out, and requires using the replia method [11℄. The replia methodmakes use of the identity hlnZi = h limn!0[Zn�1℄=n i, by alulating averages over a produt of partition funtionreplias. Employing assumptions about replia symmetries and analytially ontinuing the variable n to zero, one



4obtains solutions whih enable one to determine the state of the system. We now present only the de�nitions and�nal expressions for the relevant physial quantities as obtained by the replia alulation. For the tehnial detailswe refer to appendix A.The order parameters that naturally our in this alulation areqhaimf�gm � NXj=0Zj [�j ℄haimf�gm ; m = 0; 1; ::; n ; (11)and their de�nition is enfored by the introdution of the orresponding Lagrange multipliers q̂haimf�gm . Here we haveintrodued short hand notations for the m-tuples of replia indies and their orresponding olors:haim � ha` j ` = 1; ::;mi ; f�gm � f�` j ` = 1; ::;mg; [�j ℄haimf�gm � mỲ=1 Æ�`;a`j : (12)Note the di�erene in notation for the replia indies <:>, whih all have to be di�erent, and for the olors f:g forwhih multiple ourrene of the same olor is allowed.Sine all replias are subjet to the same disorder the orresponding variables, depending on just one replia index,must be equivalent (index independent): f̂a� = f̂�, qa� = q� and q̂a� = q̂�. To proeed with the alulation, oneneeds to assume a ertain order parameter symmetry for qhaimf�gm and their onjugates q̂haimf�gm , for m > 1. The simplestansatz is that all replia m-tuples (m = 2; ::; n) with the same olor set f�gm are equivalent. This ansatz is alledthe replia symmetri ansatz (RS). In RS the order parameters qhaimf�gm , q̂haimf�gm depend only on the olor multipliitiesm� �Pm̀=1 Æ�;�` appearing in the m-tuple f�gm (i.e. qhaimf�gm = q~m, and q̂haimf�gm = q̂~m, where ~m = fm� j � = 1; ::; pg).Note that for general positive integer n there may be m-tuples of any size up to n, therefore m� an take thevalues 0; 1; ::; n under the onstraint P�m� � n . To failitate the analyti ontinuation to non-integer n, it isnow tehnially advantageous to write the disrete set of order parameters fq~m; q̂~mg as the moments of p-variableprobability distributions on the interval [0; 1℄p:8<: q~m = q0 R 0fd~x �(~x)g Qp�=1(x�)m�q̂~m = q̂0 R 0fd~̂x �̂(~̂x)g Qp�=1(�x̂�)m� ; (13)where R 0 d~y::: � R 10 fQp�=1 dy�g::: Æ(Pp�=1 y� � 1). The variables x� an be interpreted as the (avity) probabilitiesthat a vertex takes the olors � 2 f1; ::; pg, and �(~x) is their joint probability distribution. The onstraintP� y� = 1expresses the fat that the total probability is 1. Using the ansatz (13), solving the saddle point equations with respetto q̂0 and q0, and taking the limit n! 0, we obtain the quenhed free energy per edge Fe(~f) for given values ~f :Fe(~f) = 1� "K� pX�=1 f�f̂� +KG1 � G2 � K� G3# ; (14)taken in the extremum with respet to (~̂f ; �̂; �), whereG1 � Z 0fd~xd~̂x �(~x) �̂(~̂x)g log(1� pX�=1 x�x̂�)G2 � Z 0 KYk=1fd~xk �(~xk)g log(1�� pX�=1 KYk=1 xk;�)G3 � XL=0P (L) Z 0 LYl=1fd~̂xl �̂(~̂xl)g log pX�=1 exp(f̂�) LYl=1(1� x̂l;�)! : (15)The internal energy and entropy per edge are then given byUe = ��Fe�� = Z 0 KYk=1fd~xk �(~xk)gexp(��)Pp�=1QKk=1 xk;�(1��Pp�=1QKk=1 xk;�) ; Se = �(Ue �Fe) : (16)



5Note that it is onvenient to onsider the energy per edge (Ue), and entropy per vertex (Sv � K� Se). In this way,Ue is just the fration of unsatis�ed edges (i.e. 0 � Ue � 1), while Sv is the entropy per degree of freedom (i.e.0 � Sv � log(p)).The saddle point equations are obtained by variation with respet to ~̂f , � and �̂ (under the onstraint that � and�̂ are normalized) respetively, yielding:f� = XL=0P (L) Z 0 LYl=1fd~̂xl �̂(~̂x)g exp(f̂�)QLl=1(1� x̂l;�)Pp�=1 exp(f̂�)QLl=1(1� x̂l;�) (17)�̂(~̂x) = Z 0 K�1Yk=1fd~xk �(~xk)gY� Æ x̂� ��K�1Yk=1 xk;�! (18)�(~x) = XL=1P (L)L� Z 0 L�1Yl=1fd~̂xl �̂(~̂xl)gY� Æ x� � exp(f̂�)QL�1l=1(1� x̂l;�)P� exp(f̂�)QL�1l=1(1� x̂l;�)! : (19)From (17) and (19) we see that the normalizationsP� f� = 1 and P� x� = 1 are automatially satis�ed.Note that for the 2-olor problem (p = 2) one an invoke an Ising spin representation for the olors, e.g. bymapping the olor 1 onto spin +1 and olor 2 onto spin �1. Then, using the fat that x2 = 1 � x1, and de�ningm � 1� 2x2 (2 [�1; 1℄), one obtains a single 1-variable probability distribution ~�() for the avity magnetization (m)of the verties (spins): ~�(m) � ��1+m2 ; 1�m2 � : (20)We also note that in the absene of overall olor onstraints (i.e. f̂� = 0), a paramagneti solution of the saddle pointequations (18,19) always exists:�pm(~x) = Æ�~x� �1p�~1� ; �̂pm(~̂x) = Æ�~̂x� � �pK�1�~1� (21)Fe;pm = 1� � (K��K��)� log(p)� log(pK�1��)� ; Ue;pm = exp(��)(pK�1��) ; f� = 1p (22)Finally, one should note that the expressions (14-19) are valid for any distribution of the number of edges per vertexP (L), although in this paper we only investigate the ase where P (L) is a Poisson distribution.B. Two-body interations, no olor onstraintsWe now derive expliit expressions for the speial ases that we analyze in more detail later on: 2-body edges,K = 2, and no onstraint on the overall olor frequenies f̂� = 0; 8�). From (18) we obtain the relation�̂(~̂x) = 1��� ~̂x�� ! Z 0 d~̂x �̂(~̂x) g(~̂x) = Z 0 d~x �(~x) g(�~x); (23)suh that the free energy per edge an be written in terms of the p-dimensional probability distribution �(~x) alone:Fe = 1� �G1 � 2�G3� ; (24)G1 = Z 0 2Yk=1fd~xk �(~xk)g log 1��X� 2Yk=1xk;�! (25)G3 = XL P (L) Z 0 LYl=1fd~xl �(~xl)g log X� LYl=1(1��xl;�)! : (26)The saddle point equation (19) now beomes�(~x) = XL=1P (L)L� Z 0 L�1Yl=1fd~xl �(~xl)gY� Æ x� � QL�1l=1(1��xl;�)P�QL�1l=1(1��xl;�)! : (27)



6Sine the main question we want to investigate is the olorability of the graph, we are spei�ally interested in theground state energy. We therefore take the low temperature limit (i.e. � ! 1), where a �nite ontribution to theenergy only exists when 1�xk;� � "k;� = O(exp(��)) for the same olor � for both k = 1; 2; i.e. when two onnetedverties are fored to have the same olor. Then the integrand of (16) beomes to leading order,exp(��)Pp�=1Q2k=1 xk;�(1��Pp�=1Q2k=1 xk;�) = (1�X)(1 +�X exp(�)) ' 1(1 + exp(�)X) = O(1); (28)with X � "1;� + "2;� � "1;�"2;� �X� 6=�x1;�x2;� ' O(exp(��)) : (29)However, the limit � !1 is not easily taken analytially for the �xed point equation (27). As we show in appendix B,even in this limit, the extremizing distribution �(~x) is non-trivial, and we have not found a way to obtain it analytially.We therefore solve equation (27) numerially to obtain the equilibrium distribution �(~x) whih is in turn used to obtainF ; U and S.The various integrations in the saddle point equations and the resulting physial quantities are obtained by theMonte-Carlo method. The distribution �(~x) is obtained as the (p-dimensional) histogram of a large population of sizeNP of p-dimensional points f~xi j i = 1; ::; Npg. All results presented in this paper have been obtained using NP = 106.The �xed point equation (27) an then be solved by randomly updating (i.e. replaing) one of the ~xi ! ~x0i. Theupdate of ~x0i is arried out by, �rst, randomly piking a value L with probability P (L)L� , then randomly piking L�1~xil 's, and �nally using the r.h.s. of the arguments of the Æ-funtion in (27) to alulate the resulting omponents of~x0i. This proess is repeated until the histogram reahes a steady state. One this histogram is obtained, it an beused to alulate the various physial quantities in similar fashion.Note that in order to reah a suÆient numerial preision in the low temperature limit for the omponents of the~xi, we either save xi;� if xi;� � 0:5 or "i;� � 1 � xi;� if xi;� > 0:5. This avoids preision loss, e.g. in alulating(1��xi;�), when xi;� is very lose to 1. Similar steps are taken to keep suÆient numerial preision for the r.h.s ofthe saddle point equation (27).Furthermore, it should be noted that often a very large number of iterations is needed (up to 103NP ) before thedistribution beomes stationary. This, in ombination with the �nite population size NP = 106, and the inherentrandomness in the Monte-Carlo integrations, puts a limit on the ahievable numerial preision of our results.IV. RESULTSWe now turn to the results of the numerial evaluation of the RS expressions.First, it should be noted that the residual entropy S0(�) per vertex (i.e. the logarithm of the number of oloringsof the ground state) does not vanish for any �nite �. For the 2-olor problemS0(�) � Nd(�)Nv log(2) � P (ne = 0; �) log(2) � Sl(�) > 0 ; (30)where Nd(�) is the number of disonneted lusters, and where P (ne = 0; �) > 0 is the fration of ompletely isolatedverties at given onnetivity �. For eah of these lusters, one an pik a single representative vertex and give it2 di�erent olors; the olor of all the other verties in the luster is then uniquely determined when the graph is 2-olorable. In the ase of non 2-olorable luster, there is at least 1 (and possibly more) way of oloring the remainingverties suh that the number of unsatis�ed edges in the luster is minimal.For the p-olor problem S0(�) � p�2Xk=0P (ne = k; �) log(p� k) � Sl(�) > 0 ; (31)where P (ne = k; �) > 0 is the fration of verties onneted by k edges at given onnetivity �. A vertex onnetedto k other verties, an at least pik between p � k olors (and more if some of the verties it is onneted to havethe same olor) whether the graph is p-olorable or not. In ase the graph is not p-olorable, there is at least 1 (andpossibly more) hoies of oloring the verties suh that the number of unsatis�ed edges in the graph is minimal.The ground state energy E0(�) per edge an then be used as an indiator for the olorability of the graphs. Sinewe use the saddle point method, there may be O(1=pNv) utuations of the internal energy per edge around the



7saddle point value. If E0(�) � 0, this learly preludes olorability, while for E0(�) = 0 the olorability may dependon the utuations.Note that in the absene of overall onstraints on the olor frequenies, the solutions always exhibit a omplete olorsymmetry, as expeted. In other words, the distribution �(~x) is symmetri under permutations of the omponents of~x (up to numerial preision), and the marginal distribution for eah of the olors is idential:~��(x�) � Z 10 pY� 6=� dx� �(~x); ! ~��(x�) = ~�(x) ;8 � (32)1. 2-olor graphsFor the 2-olor problem, the results are as follows (see Figs.1 and 2):� For � � 1, we only �nd the paramagneti solution at all temperatures and the orresponding ground stateenergy E0(�) = 0.� For � > 1, from a ertain (inverse) temperature Tp(�) (�p(�)) on-wards, the paramagneti solution oexistswith a non-trivial solution, whih an be identi�ed as the physial one (at least in the RS approximation) bythe fat that this solution ontinues to obey inequality (30) for all values of � that we have examined, while theontinuation of the para-magneti solution violates it. We have a positive ground state energy E0(�) > 0, andin perfet agreement with the numerial experiments, this predits P(�) = 0 for � > � = 1.The behavior of the ground state energy and entropy is presented in Fig.1 while the phase diagram and the expliitdistribution obtained above � > 1 is presented in Fig.2.>From (16), we see that the internal energy is always positive. Furthermore, the numerial analysis indiates thatalso the entropy and the spei� heat CV � �U�T = T �S�T are always non-negative, and inequality (30) is alwayssatis�ed. This implies that all quantities behave as in a proper physial system, not giving any diret indiation thatthe RS-ansatz might be inaurate.
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10The 2-olorability P(�) as obtained by exat enumerations for system sizes Nv = 102; ::; 105, as well as thetheoretial line (for Nv !1), are plotted in Fig.6. We observe that P(�) dereases ontinuously from P(�) = 1 at� = 0 to P(�) = 0 for � � 1. These results are in full agreement with those reported in [9℄, although here we havestudied muh larger systems. They are also in agreement with the results obtained by the replia method, but thelatter is unable to distinguish between P(�) = 1 and 0 < P(�) < 1 as in both ases the ground state energy is 0.One should note that this linear algorithm is spei� to the graph-oloring problem with p = 2 and K = 2. In thease that p � 3 and/or K � 3, the olors of the next generation are not uniquely determined by the olors of theprevious one. The same holds for the K-SAT problem (even with K = 2) where a lause (i.e. edge) may be satis�edby either of its arguments or by both.For p � 3 it is believed that no polynomial algorithm exists to determine the p-olorability of a graph, and wehave to resort to the exploration of the possible olorings by building up a searh tree. Sine we limit ourselves todetermining whether a graph is olorable or not, we are able to introdue some riteria to redue the problem, thusavoiding enumerating the full searh tree.A �rst step in the redution is pruning: a vertex that has more available olors than verties it is onneted to, willalways be able to satisfy all edges, irrespetive of their olors. Therefore, it will not determine the olorability of thegraph, and the vertex and all its edges an be pruned. This pruning is to be done iteratively (as the pruning of onevertex with its edges may render other verties prunable), until all remaining verties have at least as many edges asavailable olors.A seond step is early stopping: one starts oloring the remaining verties, keeping trak of the remaining availableolors per vertex for all unolored verties. One an stop exploring the searh tree when a good oloring is found.Alternatively, when the number of remaining available olors for a vertex beomes 0, the oloring so far will lead toa ontradition later on, and we an abandon this branh of the searh tree altogether. One then baktraks to thepoint where a oloring was still possible.All this greatly redues the atual number of olorings that have to be examined, leaving it, however, exponential inthe system size, thus greatly limiting the aessible system size. Furthermore, sine we stop as soon as we enountera ontradition, we have no information on the minimum number of unsatis�ed edges (i.e. the ground state energy),or the number of olorings that yield the minimum number of unsatis�ed edges (i.e. the residual entropy). In Fig.6we observe that the transition from P(�) = 1 to P(�) = 0 beomes inreasingly sharp with the inreasing system size,and that the urves ross at � ' 4:7. This is typial for a 1st order transition, and puts the ritial onnetivity forthe in�nite system at � ' 4:7. In this limit we expet P(�) to go disontinuously from 1 to 0, in aordane withthe results presented in [9℄.
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�FIG. 6: Left: the probability that a random graph is 2-olorable. The transition from P(�) > 0 to P(�) = 0 is 2nd order.Right: the probability that a random graph is 3-olorable. The transition from P(�) > 0 to P(�) = 0 is 1st order. Theprobabilities are obtained by exat enumerations, averaged over 103 runs.4. Monte-Carlo simulationsSine exat enumerations for p � 3 are limited to relatively small system sizes, we have also performed Monte-Carlosimulations with simulated annealing for the p = 3 ase. The simulations have been performed for system sizesNv = 1000 and Nv = 10000 and onsist of the following ingredients:� At eah temperature we perform Monte-Carlo dynamis. Starting with a on�guration ~ with energy E(~), we



11hange the olor of a randomly hosen j to 0j 6= j , obtaining the new on�guration ~0 with energy E(~0). Then,if �E � E(~0)�E(~) � 0 we always aept the move; otherwise we aept it with probability exp(�� �E) < 1.� We then gradually lower the temperature (this is known as simulated annealing [13℄). If the temperature isredued (ooling of the system) logarithmially slowly with the system size, one is guaranteed to �nd the globalminimum ~0 of E(~). However, logarithmially slow ooling is not feasible due to limitations in omputing time.Therefore, we must adopt a feasible ooling sheme. Here we have opted for a linear ooling sheme, where weinrease � by small steps of �xed length d� = 10�4. At eah inverse temperature � we make C Nv Monte-Carlosteps, and we ontrol the ooling rate by hanging C, and try to extrapolate to 1=C ! 0 in order to obtaina predition for in�nitely slow ooling. The values of C that we have onsidered, are C = 0:1; 1; 10; 100. Thevalues of the ground state energy as obtained by the linear ooling shemes serve as an upper bound for thetrue ground state energy.The simulation results are presented in Fig.7. We observe that the results predit that E0(�) starts deviatingsigni�antly form 0 around � ' 4:6� 4:7, in agreement with the exat enumeration. The very similar values that weobtain for the ground state energies as obtained by the simulations for both Nv = 103 and Nv = 104, indiate thatthe �nite size e�ets for these sizes of systems, if notieable, fall well within limitations of the ahievable numerialpreision due to the linear ooling sheme. The results show that E0(�) as predited by the RS approximation is nolonger in agreement with the numerial evidene, thus giving an indiret indiation that one may have to onsider amore ompliated ansatz for the replia symmetries. A similar underestimation of the ground state energy in the RSapproximation has been observed in the K-SAT problem [1℄. In that model, however, the inonsisteny of the RSresult was signaled by an (unphysial) negative ground state energy. This problem was partially solved by onsideringa more ompliated ansatz for the replia symmetry (i.e. a 1 step replia symmetry breaking ansatz - 1RSB ). Itis therefore plausible that suh a 1RSB alulation would also improve on the predition of the value � at whihthe ground state energy eases to be 0 (i.e. move it loser to the true value � ' 4:7). Suh a alulation (and alsosubsequent steps in Parisi's sheme for RSB) is easy to formulate, but its evaluation is numerially rather involved.This analysis is beyond the sope of the urrent paper, but will be the subjet of a forthoming study.
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FIG. 8: Loops of odd lengths: 3,5,7,... all of whih have a �nite probability of ourring in large randomly generated graphsfor any �nite �.The probability of no (denoted by the symbol :) odd loops in the graph is given byP(:3;:5;:7;:9; ::) = P(:3)P(:5j:3)P(:7j:3;:5)P(:9j:3;:5;:7):: : (34)We �rst evaluate the probability, that 3 randomly hosen verties form a loop of length 3. We randomly pik 3 vertieswhih an be done in �Nv3 � ways. The probability that for a given set of 3 verties eah is onneted with the othertwo is given by: P(3) = P3e = �3Nv3 (35)As long as the typial loop size is �nite (ompared to Nv), the orrelations between the di�erent (2k+1)-tuples isO(Nv�2) (at least 2 new edges have to be present), and are therefore negligible. Hene, the probability that there areno 3-loops in the graph is given by P(:3) = (1�P(3)) Nv3 ! ' exp(� �32 3) : (36)Now we turn to the probability that there are no 5-loops, given that there are no 3-loops. We an randomly pik 5verties in �Nv5 � ways. The probability that a given set of 5 verties forms a loop (ounting all the distint possibleorderings 4!=2), while there are no shorter (3-) loops in the group (5 internal edges have to be exluded), is given by:P(5j:3) = 4!2 P5e P5ne ' 4!2 P5e = P(5) : (37)Therefore, the probability that there are no 5-loops in the graph is given byP(:5) = (1�P(5)) Nv5 ! ' exp(� �52 5) : (38)We an repeat this proedure for any odd loop length 2k+1, k = 1; 2; 3::. The number of internal edges to exludeis given by (2k+1)(2k�2)=2, while the number of distint orderings of the verties in a losed loop is given by(2k+1)!=[2(2k+1)℄. Hene, we obtain:P(:2k + 1j:3; ::;:2k � 1) ' P(:2k + 1) ' exp(� �2k+12 (2k + 1)) : (39)The probability of no odd loops of any length (i.e. the probability that the graph is olorable) is therefore:P ' 1Yk=1P(:2k + 1) ' exp �12 1Xk=1 �2k+12k+1! = exp��12(atanh(�) � �)� = �1��1+�� 14 exp(�2 ) : (40)



13>From Fig.6, we see that this result is in perfet agreement with that obtained by exat enumeration up to the pointwhere the typial odd loop length beomes of the order of the square root the system size. This point moves to theright (and approahes � = 1) with inreasing system size. Furthermore, sine for 0 � � < 1 the probability to havean odd loop is P(odd) < 1, the ground state energy E0 per edge is then typially 0, as the probability to have a �niteE0 is exponentially small in Nv: P (U = E0 > 0) ' (P(odd)))NvE0 � 0 : (41)This observation is in perfet agreement with our results from the Monte-Carlo simulations (see Fig.7), and are alsoon�rmed by our replia analysis.Unfortunately, for p � 3 the basi loal on�gurations (i.e. those inluding a �nite number of verties) that lead tonon-olorability annot be enumerated so easily. Furthermore, eah of the basi non-olorable loal on�gurations hasa vanishingly small ourrene probability. It is their olletive probability (inluding very large on�gurations thatmay onsist of a �nite fration of the graph) that suddenly beomes 1 at the ritial �, giving rise to the observed 1storder transition from olorable to non-olorable graphs.
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FIG. 9: The smallest elementary non-olorable on�gurations for p = 3 (left), p = 4 (right), both of whih have a vanishinglysmall ourrene probability in large randomly generated graphs for any �nite �.VI. CONCLUSIONSWe analyzed the olorability of random graphs for �nite average onnetivity, an important NP-omplete problem.The statistial physis based analysis provides typial results in the in�nite system size limit, omplementing resultspublished in the omputational omplexity literature.The results obtained are in qualitative agreement with those reported in the literature as well as with numerialresults we obtained from exat enumeration and Monte-Carlo based solutions.One apparent disrepany, in the ase of 2-olor graphs, has been investigated using a probabilisti analysis thatprovided exat results for the probability of olorable random graphs in the ase of two olors. The analysis alsoexplains the failure of the statistial physis based analysis to detet unolorability when this omes as a result of onlya �nite number of unsatis�able edges, sine suh an analysis an identify only an extensive number of suh edges.The urrent analysis is the �rst step in the investigation of graph olorability. Future studies inlude: a) Re�ningthe urrent analysis by extending it to the ase of 1-step RSB. b) Investigating graphs with mixed 2 and 3-olorverties; this ase has been studied numerially in [9℄ but is diÆult to analyze due to the di�erent nature of twoanalyzes. ) Studying the properties of random graphs with various restritions. These researh ativities are urrentlyunderway.Aknowledgments:We would like to thank Toby Walsh for introduing us to the problem and for useful disussions. Support by The Royal Soiety andEPSRC-GR/N00562 is aknowledged.[1℄ R. Monasson and R. Zehina, Phys. Rev. Lett., 75, 2432, (1995); Phys. Rev. E, 56, 1357, (1996).
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15where we have used the short hand notations (12). Step (A3) is justi�ed, beause after integration over the Zj , onlythose terms in the expansion of the exponential in whih eah Zj ours exatly L times will survive, and it wasshown [14℄ that in the thermodynami limit (Nv !1), in the expansion of the logarithm all higher order terms arenegligible ompared to the �rst order term. In step (A4), we have made the hoie (7) for �ahiK .We have that PhiK [x℄hiK ' �PNvj=1 xj�K =K! , in the thermodynami limit, suh thatT ' I NvYj=1�dZj2�iZ�(Lj+1)j � exp0B� 1K! nXm=0(��)m Xhaim Xf�gm 24 NvXj=0Zj [�j ℄haimf�gm35K1CA : (A5)In order to fatorize the whole expression in the j's, we introdue the order parametersqhaimf�gm � NXj=0Zj [�j ℄haimf�gm ; (A6)by the introdution of the orresponding Lagrange multipliers q̂haimf�gm .T = Z nYm=0 Yhaim Yf�gm8<:dq̂haimf�gmdqhaimf�gm2�i exp0��q̂haimf�gmqhaimf�gm + (��)m (qhaimf�gm)KK! 1A9=; NvYj=1Xj ; (A7)whereXj = I dZj2�iZ�(Lj+1)j exp0�Zj nXm=0Xhaim Xf�gm q̂haimf�gm [�j ℄haimf�gm1A = 1Lj ! 0� nXm=0Xhaim Xf�gm q̂haimf�gm [�j ℄haimf�gm1ALj (A8)Following similar steps we obtain for the denominatorN ' Z �dq̂0dq02�i � exp �q̂0q0 + qK0K! +NXL P (L) log� q̂L0L!�! (A9)The average of the repliated partition funtion hene readshZni = 1N Z nYa=1 pY�=1(df̂a�2�i exp��Nf̂a�f��)nYm=0 Yhaim Yf�gm8<:dq̂haimf�gmdqhaimf�gm2�i exp0��q̂haimf�gmqhaimf�gm + (��)m (qhaimf�gm)KK! 1A9=;NvYj=1 nYa=1 Traj exp(X� f̂a��aj )8><>: 1Lj ! 0� nXm=0Xhaim Xf�gm q̂haimf�gm [�j ℄haimf�gm1ALj9>=>; (A10)whih an be evaluated using the saddle point method for the integration variables f̂a� , q̂haimf�gm and qhaimf�gm . In orderto proeed with the alulation, we must make an assumption about the symmetry between replias, and we use thereplia symmetri ansatz (13) for the terms in (A10) that involve the order parameters:nXm=0Xhaim Xf�gm q̂haimf�gmqhaimf�gm = q0q̂0 Z 0fd~xd~̂x �(~x) �̂(~̂x)g nXm=0Xhaim Xf�gmY� (�x�x̂�)m�= q0q̂0 Z 0fd~xd~̂x �(~x) �̂(~̂x)g nXm=0� nm�X~m �m~m�Y� (�x�x̂�)m�= q0q̂0 Z 0fd~xd~̂x �(~x) �̂(~̂x)g nXm=0� nm�(�X� x�x̂�)m



16= q0q̂0 Z 0fd~xd~̂x �(~x)�̂(~̂x)g (1�X� x�x̂�)n (A11)nXm=0(��)m Xhaim Xf�gm (qhaimf�gm)KK! = :: = qK0K! Z 0 KYk=1fd~xk �k(~xk)g(1��X� KYk=1xk;�)n (A12)nXm=0Xhaim Xf�gm q̂haimf�gm [�j ℄haimf�gm = q̂0 Z 0fd~̂x �̂(~̂x)g nXm=0Xhaim Xf�gm pY�=1(�x̂�)m� mỲ=1�` a`j= q̂0 Z 0fd~̂x �̂(~̂x)g nXm=0Xhaim0�Xf�gm mỲ=1(��` a`j x̂�`)1A= q̂0 Z 0fd~̂x �̂(~̂x)g nXm=0Xhaim mỲ=1(�X� �` a`j x̂�)!= :: = q̂0 Z 0fd~̂x �̂(~̂x)g nYa=1(1�X� �aj x̂�) ; (A13)where �m~m� (� m!=Q�m�!) are multi(p)-nomial- , and � nm� (� n!=m!(n�m)!) binomial oeÆients. Hene, wehave nYa=1(Traj exp(X� f̂��a)) 1Lj ! (� � �)Lj == q̂Lj0Lj ! Z 0 LjYl=1fd~̂xl �̂l(~̂xl;�)g nYa=10�Traj exp( pX�=1 f̂��a) LjYl=1(1�X� �a x̂l;�)1A= q̂Lj0Lj ! Z 0 LjYl=1fd~̂xl �̂l(~̂xl;�)g0� pX�=1 exp(f̂�) LjYl=1(1� x̂l;�)1An ; (A14)to obtain the following expression for the averaged repliated partition sumhZni = 1N extf~̂f ;q̂;q;�̂;�g exp"�nNv pX�=1 f�f̂� � q0q̂0 I1 + qK0K!I2 +NvXL P (L)�log( q̂L0L! ) + log(I3L)�# ; (A15)where I1 � Z 0fd~xd~̂x �(~x) �̂(~̂x)g (1�X� x�x̂�)nI2 � Z 0 KYk=1fd~xk �k(~xk)g (1��X� KYk=1 xk;�)n (A16)I3L � Z 0 LYl=1fd~̂xl �̂l(~̂xl)g pX�=1 exp(f̂�) LYl=1(1� x̂l;�)!n :We now solve the saddle point equations with respet to q̂0 and q0, and note that the struture of the (q̂0; q0)-dependentpart of the denominator is exatly the same with I1 = I2 = 1, to obtain8><>: q0 = �Nv�(K�1)!I2 �1=Kq̂0 = Nv�I1 � I2Nv�(K�1)!�1=K ! ( q0q̂0 = Nv�I1qK0K! = Nv�KI2 ; (A17)



17where � =PL P (L) L, suh that all terms not depending on the Ii or f� in the numerator and denominator anel:hZni ' exp"Nv  �n pX�=1 f�f̂� � � log(I1) + �K log(I2) +XL P (L) log(I3L)!# ; (A18)taken in the extremum for f~̂f; �̂; �g. So far we have performed all alulations for general positive integer n. Takinglimn!0 (Zn�1)n , and multiplying the result with KNv� , we obtain the replia symmetri free energy per edge (14).APPENDIX B: LOW TEMPERATURE LIMITWe will now show that even in the limit � !1, the distribution �(~x) remains non-trivial. In order to demonstratethis, we onentrate on the �xed point equation (27). Using two expliit examples, we show how ontributions to�() for extremal values of the arguments (i.e. 1� x� � "� = O(exp(��), x� = O(exp(��)) j � 6= �) may generateontributions to �() with �nite argument values (i.e. 1� x� = O(1); 8 �) and vie-versa.� 1) First, we assume that there is a �nite probability density �(~x) that 1 � x� � "� = O(exp(��)), suh thatx� = O(exp(��)) j � 6= � . Suppose now that p = 3, and onsider the term in (27) with L�1 = 3. The followingombination of ~x`'s (` = 1; 2; 3) has then a �nite probability density:8<: 1� x1;1 � "1;1; 1� x2;2 � "2;2; 1� x3;3 � "3;3; "i;i = O(exp(��))x`;� = O(exp(��)) � 6= � (B1)and, to leading order, generates a ontribution to the l.h.s. of (27) with ~x:1� x� ' 1� exp(��) + "�;�P�(exp(��) + "�;�) = O(1) ; � = 1; 2; 3 ; (B2)i.e. with �nite argument values.� 2) Seond, we assume that there is a �nite probability density �(~x) that 1 � x� � " � 1, suh that x� =O(") j � 6= � . Suppose now that p = 2, and onsider the term in (27) with L�1 = 3. The following ombination of~x`'s (` = 1; 2; 3) has then a �nite probability density:8<: 1� x1;1 � "1;1; 1� x2;1 � "2;1; "1=2;1 = O(")x3;� = O(1) � = 1; 2 (B3)and, to leading order, generates a ontribution to the l.h.s. of (27) with ~x:x1 ' "1;1"2;1"1;1"2;1 + 1�x3;2 = O("2); 1� x2 ' 1� 1�x3;2"1;1"2;1 + 1�x3;2 = O("2): (B4)i.e. with more extreme values of the arguments ( O("2) instead of O(") ).Hene, we have shown that extreme values will generate less extreme values and vie-versa. Sine the r.h.s of(27) ontains terms with all values of L, obviously (even in the limit � ! 1) we annot expliitly keep trak of theproliferation of distributions to di�erent values of ~x, and have to resort to a numerial analysis. For eah value of �,we have to hek whether in the limit � ! 1 a �nite probability density �(~x) is generated for extremal values of ~x(i.e. 1 � x� = O(exp(��))). If this is the ase, the internal energy U will be positive, and the probability that thegraph is olorable must be 0.


