
Random Graph Coloring - a Statisti
al Physi
s Approa
hJ. van Mourik and D. SaadThe Neural Computing Resear
h Group, Aston University, Birmingham B4 7ET, United KingdomThe problem of vertex 
oloring in random graphs is studied using methods of statisti
al physi
sand probability. Our analyti
al results are 
ompared to those obtained by exa
t enumeration andMonte-Carlo simulations. We 
riti
ally dis
uss the merits and short
omings of the various methods,and interpret the results obtained. We present an exa
t analyti
al expression for the 2-
oloringproblem as well as general repli
a symmetri
 approximated solutions for the thermodynami
s of thegraph 
oloring problem with p 
olors and K-body edges.PACS numbers: 89.75.-k, 05.50.+q, 75.10.Nr, 02.60.PnI. INTRODUCTIONMethods of statisti
al physi
s have re
ently been applied to a variety of 
omplex optimization problems in a broadrange of areas, from 
omputational 
omplexity [1, 2℄ to the study of error 
orre
ting 
odes [3℄ and 
ryptography [4, 5℄.Graph 
oloring is one of the basi
 Non-deterministi
ally Polynomial (NP) problems. The task is to assign one ofp-
olors to ea
h node, in a randomly 
onne
ted set of verti
es, su
h that no edge will have the same 
olors assigned toboth ends. The feasibility of �nding su
h a solution 
learly depends on the level and nature of 
onne
tivity in the graphand the number of 
olors. The very existen
e of a solution is in the 
lass of NP-
omplete problems [6℄. An extensionof the problem to the 
ase of hyper-edges 
omprising more than two verti
es is also of pra
ti
al signi�
an
e [7℄.Re
ent su

ess in the appli
ation of statisti
al physi
s te
hniques to 
omputational 
omplexity problems, naturallylead to the belief that they may be applied to a wide range of 
omputational 
omplexity tasks, among them is thegraph 
oloring problem.In this paper we map the graph 
oloring problem, with p-
olors, onto the anti-ferromagneti
 p-spin Potts model [8℄;this fa
ilitates the use of established methods of statisti
al physi
s for gaining insight into the dependen
e of graph
olorability on the nature and level of its 
onne
tivity, and the phase transitions that take pla
e. The suggestedframework 
omes with its own limitations; we 
riti
ally dis
uss what 
an, and 
annot be 
al
ulated via the methodsof statisti
al me
hani
s.The statisti
al physi
s approa
h is based on the introdu
tion of a Hamiltonian or 
ost-fun
tion, and the 
al
ulationof the typi
al free energy in the large system limit. From the free energy one 
an obtain the typi
al ground stateenergy, whi
h in turn allows one to make predi
tions on the graph 
olorability. A non-zero ground state energyindi
ates that, under the given 
onditions, random graphs are typi
ally not 
olorable. Our theoreti
al results arerestri
ted to the repli
a symmetri
 (RS) approximation (see [10, 11℄), and are, for the 2-
olor problem (whi
h issolvable in linear time) in perfe
t agreement with those obtained by numeri
al methods; for the 3-
olor problem theresults are only in qualitative agreement with those obtained by numeri
al methods. The theoreti
al results 
an besystemati
ally improved by using repli
a symmetry breaking (RSB) approximations, although our 
urrent results donot provide a dire
t indi
ation for a breakdown of the RS approximation.Apart from determining merely the 
olorability of the graph, the ground state energy also tells us what is the typi
alminimal fra
tion of unsatis�ed edges when the graph is non-
olorable. Furthermore, the ground state (residual) entropygives us information about the number of di�erent 
oloring s
hemes that share the minimum number of unsatis�ededges.The suggested framework 
overs a range of possible variations of the original problem. However, only a limitednumber of them 
an be studied in a single paper; we therefore restri
t this study to regular p = 2 and p = 3 
olorproblems on random graphs with 2-vertex edges (i.e. with 2-body intera
tions in the statisti
al physi
s terminology).In this 
ontext, regular stands for the fa
t that all edges 
onne
t the same number of verti
es and impose the same
olor 
onstraint on the verti
es they 
onne
t, and that all verti
es have the same available 
olor set. Possible variationsin
lude many-K vertex edges (K-body intera
tions); mixtures of edges with di�erent K values and/or with di�erentlo
al 
onstraints imposed on the 
olors of the verti
es involved; 
onstraints on the overall frequen
ies of verti
es of a
ertain 
olor; mixtures of verti
es with di�erent available 
olor sets; other probability distributions of the number ofedges per vertex, et
.Our results, in agreement with results obtained elsewhere [9℄, seem to indi
ate, that for p � 3 there is a 1st ordertransition for the 
olorability as a fun
tion of the average graph 
onne
tivity, from probability 1 to 0, at some 
riti
alaverage 
onne
tivity. This implies that in these 
ases a vanishing ground state energy implies that the graph isp-
olorable, while a non-zero ground state energy indi
ates that the graph is typi
ally not p-
olorable.Contrasting results obtained from the theoreti
al framework with numeri
al studies in the 
ase of p = 2 exposes
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2inherent limitations of the statisti
al physi
s based analysis. Using a 
ompletely di�erent approa
h, we also obtain anexa
t expression for the probability that large random graphs with 2-vertex edges are 2-
olorable, �nding a 2nd ordertransition for the 
olorability as a fun
tion of the graph's average 
onne
tivity, from non-zero to zero probability.This result shows that in general a zero ground state energy does not automati
ally imply that a graph is typi
ally
olorable.The paper is organized as follows: In se
tion II we de�ne the problem and introdu
e the notations used, while inse
tion III we introdu
e the statisti
al physi
s framework. Se
tion IV introdu
es the results obtained from the analysisas well as numeri
al results obtained by exa
t enumeration and Monte-Carlo simulations. The 
ase of 2-
olorabilityis studied in se
tion V; dis
ussion and 
on
lusions are presented in se
tion VI.II. GRAPH COLORING - DEFINITIONS AND NOTATIONIn a general set-up, we 
onsider regular random graphs G(Nv ;K; �) 
onsisting of Nv verti
es, 
onne
ted to ea
hother by (hyper) edges. Ea
h (hyper) edge 
onne
ts exa
tly K distin
t verti
es. The 
onne
tivity is then des
ribedby the tensor Dfj1::jKg, the elements of whi
h are 1 is there is an (hyper) edge 
onne
ting the verti
es fj1::jKg, and0 otherwise. Note that the total number of possible (hyper) edges in the graph is given by Npe=g = �NvK �, whilethe total number of possible (hyper) edges a given vertex j may be involved in, is given by Npe=v = �Nv�1K�1 �. Theoverall 
onne
tivity of the graph G(Nv;K; �) is des
ribed by the parameter �, whi
h gives the average number ofedges ea
h vertex is involved in. Hen
e, for large graphs (i.e. Nv !1), the fra
tion of the total number of edges Neand the total number of verti
es Nv, is typi
ally given byNeNv = �K +O(N�12v ) : (1)In a random graph, this is obtained by 
onsidering all (i.e. Npe=g) possible K-tuples fj1::jKg of verti
es, and byassigning Dfj1::jKg = ( 1 with probability Pe = �Npe=v0 with probability Pne = 1� �Npe=v : (2)In the large system limit (i.e. Nv !1), the number of edges per vertex (ne) is then Poisson distributed:P (ne = k) = �Npe=vk �� �Npe=v�k �1� �Npe=v�Npe=v�k ' �kk! exp(��); k = 0; 1; 2; ::;1 : (3)The most studied 
ase is that of K = 2, in whi
h one 
onsiders 
onventional edges (or 2-body intera
tions); graphswith K � 3 are also 
onsidered in other 
ontexts, for instan
e, the assignment of examination rooms to 
lasses [7℄, inwhi
h 
ase one generally speaks of K hyper edges (or K-body intera
tions). Although we will derive expressions forgeneral K, in this paper we will limit ourselves to the analysis of random graphs with K = 2.Now we assume that ea
h vertex j 
an take a 
olor 
j out of a set f�j;1; ::; �j;pjg of pj 
olors, its 
olor set. A
oloring problem on a graph is determined by the 
onstraint(s) on the 
olors of verti
es 
onne
ted by a(n) (hyper)edge. For instan
e, one 
an demand that none of the 
olors 
j of the verti
es 
onne
ted by an edge are the same, orthat the 
olors 
j of the verti
es 
onne
ted by an edge are not all the same (note that both 
onstraints are identi
alfor K = 2). Although in prin
iple, one 
an 
onsider s
enarios where the 
olor set may di�er from vertex to vertex,and where the 
olor 
onstraints may di�er from edge to edge, in the present paper we restri
t ourselves to the 
asewhere all verti
es have the same 
olor set f�1; ::; �pg � f1; ::; pg of p 
olors, and where ea
h edge imposes the same
olor 
onstraint on the verti
es it 
onne
ts. The a
tual 
olor of a vertex j is indi
ated by 
j 2 f1; ::; pg, and we denotea 
oloring of the entire graph by ~
 � f
1; ::; 
Nvg.In this 
ontext our goal is to determine the probability that a randomly generated graph with average 
onne
tivity�, and a given 
olor set and 
olor 
onstraints, is 
olorable.Note that the K = 2 
ase with p available 
olors, is exa
tly the anti-ferromagneti
 p-spin Potts model [8℄, whilethe p = 2 
ase is the anti-ferromagneti
 Ising model (see [10, 11℄). The only randomness present in the model, is therandom graph 
onne
tivity.



3III. REPLICA CALCULATIONA. General S
enarioWe now present the statisti
al physi
s formulation of the graph 
oloring problem. To map this problem onto astatisti
al physi
s framework, we introdu
e a Hamiltonian or 
ost fun
tion for given 
oloring ~
 and 
onne
tivity D:H(~
;D) �XhiK DhiK �hiK (~
) ; (4)where we have introdu
ed the following short-hand notation for the K-tuples to keep our notation 
on
ise:hiK � fj1::jKg : (5)Furthermore, �hiK (~
) is 0 if the edge 
olor 
onstraints are satis�ed and 1 otherwise, su
h that H(~
) 
ounts the numberof unsatis�ed edges. We fo
us on the 
ase where 
olors of nodes sharing an edge should not all be the same; �hiK (~
)is then given by �hiK (~
) = pX�=1[�
℄hiK ; with �
j � Æ�;
j ; [�
℄hiK � KYk=1 �
jk ; (6)su
h that exp ��� �hiK (~
)� = pY�=1 �1�� [�
℄hiK � = 1�� pX�=1[�
℄hiK ; (7)where � � (1� e��). In addition we 
ould put 
onstraints on the total fra
tion's f� of edges of 
olor �:NXj=1 �
j = Nf�; (note that X� f� = 1) : (8)The 
entral quantity from whi
h all other relevant physi
al quantities 
an be derived, is the free energy. This 
an beobtained from the partition fun
tion (with the 
onstraints on ~f):Z(~f;D) = Tr~
 exp0���XhiK DhiK �hiK (~
)1AY� Æ( NXj=1 �
j �Nf�) : (9)The free energy per degree of freedom, is then obtained from F(~f;D) = � 1�Nv log[Z(~f;D)℄. It is very hard and notvery useful to 
al
ulate F(~f;D) for any spe
i�
 
hoi
e of 
onne
tivity D. Therefore, we 
al
ulate the expe
tation(average) value of the free energy over the ensemble of all allowed realizations of the 
onne
tivity. The average overall tensors D with K non-zero elements per row, and Lj per 
olumn j is given byhg(D)iD � Tr D g(D)QNvj1=1 Æ �Phj2;::;jKiDhiK ; Lj1�Tr DQNvj1=1 Æ �Phj2;::;jKiDhiK ; Lj1� � TN : (10)Quantities of the type Q(
) = hQy(
)iy, with Qy(
) = 1M ln [Zy(
)℄ and Zy(
) � Trx f(x; y), are very 
ommon in thestatisti
al physi
s of disordered systems. We distinguish between the (quen
hed) disorder y (the 
onne
tivity D inour 
ase) and the mi
ros
opi
 (thermal) variables x (the 
oloring ~
 in our 
ase). Some ma
ros
opi
 order parameters
(x; y) (the f� in our 
ase) may be �xed to spe
i�
 values and may depend on both y and x. Although we will notprove this here, su
h a quantity is generally believed to be self-averaging in the large system limit, i.e., obeying aprobability distribution P (Qy(
)) = Æ(Qy(
)�Q(
))). The dire
t 
al
ulation of Q(
) is known as a quen
hed averageover the disorder, but is typi
ally hard to 
arry out, and requires using the repli
a method [11℄. The repli
a methodmakes use of the identity hlnZi = h limn!0[Zn�1℄=n i, by 
al
ulating averages over a produ
t of partition fun
tionrepli
as. Employing assumptions about repli
a symmetries and analyti
ally 
ontinuing the variable n to zero, one



4obtains solutions whi
h enable one to determine the state of the system. We now present only the de�nitions and�nal expressions for the relevant physi
al quantities as obtained by the repli
a 
al
ulation. For the te
hni
al detailswe refer to appendix A.The order parameters that naturally o

ur in this 
al
ulation areqhaimf�gm � NXj=0Zj [�
j ℄haimf�gm ; m = 0; 1; ::; n ; (11)and their de�nition is enfor
ed by the introdu
tion of the 
orresponding Lagrange multipliers q̂haimf�gm . Here we haveintrodu
ed short hand notations for the m-tuples of repli
a indi
es and their 
orresponding 
olors:haim � ha` j ` = 1; ::;mi ; f�gm � f�` j ` = 1; ::;mg; [�
j ℄haimf�gm � mỲ=1 Æ�`;
a`j : (12)Note the di�eren
e in notation for the repli
a indi
es <:>, whi
h all have to be di�erent, and for the 
olors f:g forwhi
h multiple o

urren
e of the same 
olor is allowed.Sin
e all repli
as are subje
t to the same disorder the 
orresponding variables, depending on just one repli
a index,must be equivalent (index independent): f̂a� = f̂�, qa� = q� and q̂a� = q̂�. To pro
eed with the 
al
ulation, oneneeds to assume a 
ertain order parameter symmetry for qhaimf�gm and their 
onjugates q̂haimf�gm , for m > 1. The simplestansatz is that all repli
a m-tuples (m = 2; ::; n) with the same 
olor set f�gm are equivalent. This ansatz is 
alledthe repli
a symmetri
 ansatz (RS). In RS the order parameters qhaimf�gm , q̂haimf�gm depend only on the 
olor multipli
itiesm� �Pm̀=1 Æ�;�` appearing in the m-tuple f�gm (i.e. qhaimf�gm = q~m, and q̂haimf�gm = q̂~m, where ~m = fm� j � = 1; ::; pg).Note that for general positive integer n there may be m-tuples of any size up to n, therefore m� 
an take thevalues 0; 1; ::; n under the 
onstraint P�m� � n . To fa
ilitate the analyti
 
ontinuation to non-integer n, it isnow te
hni
ally advantageous to write the dis
rete set of order parameters fq~m; q̂~mg as the moments of p-variableprobability distributions on the interval [0; 1℄p:8<: q~m = q0 R 0fd~x �(~x)g Qp�=1(x�)m�q̂~m = q̂0 R 0fd~̂x �̂(~̂x)g Qp�=1(�x̂�)m� ; (13)where R 0 d~y::: � R 10 fQp�=1 dy�g::: Æ(Pp�=1 y� � 1). The variables x� 
an be interpreted as the (
avity) probabilitiesthat a vertex takes the 
olors � 2 f1; ::; pg, and �(~x) is their joint probability distribution. The 
onstraintP� y� = 1expresses the fa
t that the total probability is 1. Using the ansatz (13), solving the saddle point equations with respe
tto q̂0 and q0, and taking the limit n! 0, we obtain the quen
hed free energy per edge Fe(~f) for given values ~f :Fe(~f) = 1� "K� pX�=1 f�f̂� +KG1 � G2 � K� G3# ; (14)taken in the extremum with respe
t to (~̂f ; �̂; �), whereG1 � Z 0fd~xd~̂x �(~x) �̂(~̂x)g log(1� pX�=1 x�x̂�)G2 � Z 0 KYk=1fd~xk �(~xk)g log(1�� pX�=1 KYk=1 xk;�)G3 � XL=0P (L) Z 0 LYl=1fd~̂xl �̂(~̂xl)g log pX�=1 exp(f̂�) LYl=1(1� x̂l;�)! : (15)The internal energy and entropy per edge are then given byUe = ��Fe�� = Z 0 KYk=1fd~xk �(~xk)gexp(��)Pp�=1QKk=1 xk;�(1��Pp�=1QKk=1 xk;�) ; Se = �(Ue �Fe) : (16)



5Note that it is 
onvenient to 
onsider the energy per edge (Ue), and entropy per vertex (Sv � K� Se). In this way,Ue is just the fra
tion of unsatis�ed edges (i.e. 0 � Ue � 1), while Sv is the entropy per degree of freedom (i.e.0 � Sv � log(p)).The saddle point equations are obtained by variation with respe
t to ~̂f , � and �̂ (under the 
onstraint that � and�̂ are normalized) respe
tively, yielding:f� = XL=0P (L) Z 0 LYl=1fd~̂xl �̂(~̂x
)g exp(f̂�)QLl=1(1� x̂l;�)Pp�=1 exp(f̂�)QLl=1(1� x̂l;�) (17)�̂(~̂x) = Z 0 K�1Yk=1fd~xk �(~xk)gY� Æ x̂� ��K�1Yk=1 xk;�! (18)�(~x) = XL=1P (L)L� Z 0 L�1Yl=1fd~̂xl �̂(~̂xl)gY� Æ x� � exp(f̂�)QL�1l=1(1� x̂l;�)P� exp(f̂�)QL�1l=1(1� x̂l;�)! : (19)From (17) and (19) we see that the normalizationsP� f� = 1 and P� x� = 1 are automati
ally satis�ed.Note that for the 2-
olor problem (p = 2) one 
an invoke an Ising spin representation for the 
olors, e.g. bymapping the 
olor 1 onto spin +1 and 
olor 2 onto spin �1. Then, using the fa
t that x2 = 1 � x1, and de�ningm � 1� 2x2 (2 [�1; 1℄), one obtains a single 1-variable probability distribution ~�() for the 
avity magnetization (m)of the verti
es (spins): ~�(m) � ��1+m2 ; 1�m2 � : (20)We also note that in the absen
e of overall 
olor 
onstraints (i.e. f̂� = 0), a paramagneti
 solution of the saddle pointequations (18,19) always exists:�pm(~x) = Æ�~x� �1p�~1� ; �̂pm(~̂x) = Æ�~̂x� � �pK�1�~1� (21)Fe;pm = 1� � (K��K��)� log(p)� log(pK�1��)� ; Ue;pm = exp(��)(pK�1��) ; f� = 1p (22)Finally, one should note that the expressions (14-19) are valid for any distribution of the number of edges per vertexP (L), although in this paper we only investigate the 
ase where P (L) is a Poisson distribution.B. Two-body intera
tions, no 
olor 
onstraintsWe now derive expli
it expressions for the spe
ial 
ases that we analyze in more detail later on: 2-body edges,K = 2, and no 
onstraint on the overall 
olor frequen
ies f̂� = 0; 8�). From (18) we obtain the relation�̂(~̂x) = 1��� ~̂x�� ! Z 0 d~̂x �̂(~̂x) g(~̂x) = Z 0 d~x �(~x) g(�~x); (23)su
h that the free energy per edge 
an be written in terms of the p-dimensional probability distribution �(~x) alone:Fe = 1� �G1 � 2�G3� ; (24)G1 = Z 0 2Yk=1fd~xk �(~xk)g log 1��X� 2Yk=1xk;�! (25)G3 = XL P (L) Z 0 LYl=1fd~xl �(~xl)g log X� LYl=1(1��xl;�)! : (26)The saddle point equation (19) now be
omes�(~x) = XL=1P (L)L� Z 0 L�1Yl=1fd~xl �(~xl)gY� Æ x� � QL�1l=1(1��xl;�)P�QL�1l=1(1��xl;�)! : (27)



6Sin
e the main question we want to investigate is the 
olorability of the graph, we are spe
i�
ally interested in theground state energy. We therefore take the low temperature limit (i.e. � ! 1), where a �nite 
ontribution to theenergy only exists when 1�xk;� � "k;� = O(exp(��)) for the same 
olor � for both k = 1; 2; i.e. when two 
onne
tedverti
es are for
ed to have the same 
olor. Then the integrand of (16) be
omes to leading order,exp(��)Pp�=1Q2k=1 xk;�(1��Pp�=1Q2k=1 xk;�) = (1�X)(1 +�X exp(�)) ' 1(1 + exp(�)X) = O(1); (28)with X � "1;� + "2;� � "1;�"2;� �X� 6=�x1;�x2;� ' O(exp(��)) : (29)However, the limit � !1 is not easily taken analyti
ally for the �xed point equation (27). As we show in appendix B,even in this limit, the extremizing distribution �(~x) is non-trivial, and we have not found a way to obtain it analyti
ally.We therefore solve equation (27) numeri
ally to obtain the equilibrium distribution �(~x) whi
h is in turn used to obtainF ; U and S.The various integrations in the saddle point equations and the resulting physi
al quantities are obtained by theMonte-Carlo method. The distribution �(~x) is obtained as the (p-dimensional) histogram of a large population of sizeNP of p-dimensional points f~xi j i = 1; ::; Npg. All results presented in this paper have been obtained using NP = 106.The �xed point equation (27) 
an then be solved by randomly updating (i.e. repla
ing) one of the ~xi ! ~x0i. Theupdate of ~x0i is 
arried out by, �rst, randomly pi
king a value L with probability P (L)L� , then randomly pi
king L�1~xil 's, and �nally using the r.h.s. of the arguments of the Æ-fun
tion in (27) to 
al
ulate the resulting 
omponents of~x0i. This pro
ess is repeated until the histogram rea
hes a steady state. On
e this histogram is obtained, it 
an beused to 
al
ulate the various physi
al quantities in similar fashion.Note that in order to rea
h a suÆ
ient numeri
al pre
ision in the low temperature limit for the 
omponents of the~xi, we either save xi;� if xi;� � 0:5 or "i;� � 1 � xi;� if xi;� > 0:5. This avoids pre
ision loss, e.g. in 
al
ulating(1��xi;�), when xi;� is very 
lose to 1. Similar steps are taken to keep suÆ
ient numeri
al pre
ision for the r.h.s ofthe saddle point equation (27).Furthermore, it should be noted that often a very large number of iterations is needed (up to 103NP ) before thedistribution be
omes stationary. This, in 
ombination with the �nite population size NP = 106, and the inherentrandomness in the Monte-Carlo integrations, puts a limit on the a
hievable numeri
al pre
ision of our results.IV. RESULTSWe now turn to the results of the numeri
al evaluation of the RS expressions.First, it should be noted that the residual entropy S0(�) per vertex (i.e. the logarithm of the number of 
oloringsof the ground state) does not vanish for any �nite �. For the 2-
olor problemS0(�) � Nd
(�)Nv log(2) � P (ne = 0; �) log(2) � Sl(�) > 0 ; (30)where Nd
(�) is the number of dis
onne
ted 
lusters, and where P (ne = 0; �) > 0 is the fra
tion of 
ompletely isolatedverti
es at given 
onne
tivity �. For ea
h of these 
lusters, one 
an pi
k a single representative vertex and give it2 di�erent 
olors; the 
olor of all the other verti
es in the 
luster is then uniquely determined when the graph is 2-
olorable. In the 
ase of non 2-
olorable 
luster, there is at least 1 (and possibly more) way of 
oloring the remainingverti
es su
h that the number of unsatis�ed edges in the 
luster is minimal.For the p-
olor problem S0(�) � p�2Xk=0P (ne = k; �) log(p� k) � Sl(�) > 0 ; (31)where P (ne = k; �) > 0 is the fra
tion of verti
es 
onne
ted by k edges at given 
onne
tivity �. A vertex 
onne
tedto k other verti
es, 
an at least pi
k between p � k 
olors (and more if some of the verti
es it is 
onne
ted to havethe same 
olor) whether the graph is p-
olorable or not. In 
ase the graph is not p-
olorable, there is at least 1 (andpossibly more) 
hoi
es of 
oloring the verti
es su
h that the number of unsatis�ed edges in the graph is minimal.The ground state energy E0(�) per edge 
an then be used as an indi
ator for the 
olorability of the graphs. Sin
ewe use the saddle point method, there may be O(1=pNv) 
u
tuations of the internal energy per edge around the



7saddle point value. If E0(�) � 0, this 
learly pre
ludes 
olorability, while for E0(�) = 0 the 
olorability may dependon the 
u
tuations.Note that in the absen
e of overall 
onstraints on the 
olor frequen
ies, the solutions always exhibit a 
omplete 
olorsymmetry, as expe
ted. In other words, the distribution �(~x) is symmetri
 under permutations of the 
omponents of~x (up to numeri
al pre
ision), and the marginal distribution for ea
h of the 
olors is identi
al:~��(x�) � Z 10 pY� 6=� dx� �(~x); ! ~��(x�) = ~�(x) ;8 � (32)1. 2-
olor graphsFor the 2-
olor problem, the results are as follows (see Figs.1 and 2):� For � � 1, we only �nd the paramagneti
 solution at all temperatures and the 
orresponding ground stateenergy E0(�) = 0.� For � > 1, from a 
ertain (inverse) temperature Tp(�) (�p(�)) on-wards, the paramagneti
 solution 
oexistswith a non-trivial solution, whi
h 
an be identi�ed as the physi
al one (at least in the RS approximation) bythe fa
t that this solution 
ontinues to obey inequality (30) for all values of � that we have examined, while the
ontinuation of the para-magneti
 solution violates it. We have a positive ground state energy E0(�) > 0, andin perfe
t agreement with the numeri
al experiments, this predi
ts P
(�) = 0 for � > �
 = 1.The behavior of the ground state energy and entropy is presented in Fig.1 while the phase diagram and the expli
itdistribution obtained above � > 1 is presented in Fig.2.>From (16), we see that the internal energy is always positive. Furthermore, the numeri
al analysis indi
ates thatalso the entropy and the spe
i�
 heat CV � �U�T = T �S�T are always non-negative, and inequality (30) is alwayssatis�ed. This implies that all quantities behave as in a proper physi
al system, not giving any dire
t indi
ation thatthe RS-ansatz might be ina

urate.
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FIG. 1: On the left: the ground state energy E0(�) for p = 2. Up to � = 1 (�), E0(�) = 0. The paramagneti
 ground stateenergy E0;pm is always 0. On the right: the ground state entropy S0(�) (full line) for p = 2, 
ompared to its lower boundSl(�) (30) (dashed line), and the paramagneti
 ground state entropy Spm(�) (dotted line). Up to � = 1 (�), S0 and Spm
oin
ide. 2. 3-
olor graphsFor the 3-
olor problem, the results are as follows (see Figs.3 and 5):� For � / 4, we only �nd the paramagneti
 solution at all temperatures, and the 
orresponding ground stateenergy E0(�) = 0.



8

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.5 1 1.5 2

PM NPM� �
T p = 2

0

0.002

0.004

0.006

0.008

0.01

0 0.2 0.4 0.6 0.8 1

p = 2~�(x)
xFIG. 2: On the left: the phase diagram (�; T ), and the transition from the paramagneti
 to the non-paramagneti
 RS state.The phase transition is 2nd order in �(~x). At zero temperature, E0 = 0 for � � 1 (�) and E0 > 0 for � > 1 (from � on-wards).On the right: the stationary distribution ~�(x) for p = 2, � = 2 (> �
), � = 15. We note the peaks and non trivial distributionat x ' 0 and x ' 1, indi
ating that many verti
es are for
ed (not) to take a spe
i�
 
olor. For � < �
 these peaks are absent.We also note the distin
t peaks at x � 1=2; 1=3 and other rational values. The symmetry around x = 0:5 is spe
i�
 for p = 2.� For 4 / � / 5:1, from a 
ertain temperature Tpm(�) on-wards, the paramagneti
 solution 
oexists with a non-trivial solution, whi
h 
an be identi�ed as the physi
al one by 
omparing the free energies. The ground stateenergy E0(�) remains 0.� For 5:1 / �, from a 
ertain temperature Tpm(�) on-wards, the paramagneti
 solution 
oexists with a non-trivialsolution with a positive ground state energy E0(�) > 0, whi
h 
an be identi�ed as the physi
al one by by thefa
t that this solution 
ontinues to obey inequality (31) for all values of � that we have examined, while the
ontinuation of the para-magneti
 solution violates it.The behavior of the ground state energy and entropy is presented in Fig.3; expli
it distributions obtained for various� values are presented in Fig.4, while the phase diagram is presented in Fig.5.As we will see, the numeri
al experiments predi
t that P
(�) = 1 for � < �
 ' 4:7, and that P
(�) = 0 for� > �
 ' 4:7. Although the RS analysis results do not 
ontradi
t the numeri
al ones, they are unable to identify�
 ' 4:7 as the 
riti
al 
olorability value. This is reminis
ent of the RS results in the K-SAT problem [1℄.In our 
ase, however, from (16), we see that the internal energy is always non-negative. In addition , the numeri
alanalysis shows that both entropy and spe
i�
 heat CV � �U�T = T �S�T are always non-negative, and inequality (31) isalways satis�ed. This implies that all quantities behave as in a proper physi
al system, thus giving no dire
t indi
ationthat the RS-ansatz is wrong.
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FIG. 3: On the left: the ground state energy E0(�) for p = 3. Up to � ' 5:1 (�), E0 = 0. The paramagneti
 ground stateenergy E0;pm is always 0. On the right: the ground state entropy S0(�) (full line) for p = 3, 
ompared to its lower bound Sl(�)(dashed line), and the paramagneti
 ground state entropy S0;pm(�) (dotted line). Up to � ' 4 (�), S0 and Sp 
oin
ide.
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FIG. 4: On the left: the stationary distribution ~�(x) for p = 3, � = 4:5 (< �
) (and � = 4:8 inset), � = 15. Although thesolutions 
learly di�ers from the paramagneti
 solution (a single peak at x = 1=3), the absen
e of peaks near x ' 0; 1 indi
atesthat E0(�) = 0. On the right: the stationary distribution ~�(x) for p = 3, � = 5:5 (> �
), � = 15. In the inset we have enlargedand trun
ated the verti
al s
ale, to illustrate the 
ontinuous nature of the distribution. We note the peaks and non-trivialdistribution at x ' 0 and x ' 1, indi
ating that many verti
es are for
ed (not) to take a spe
i�
 
olor, and that E0(�) > 0.
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FIG. 5: The phase diagram (�; T ). The phase transition from a paramagneti
 distribution �(~x) to a non-paramagneti
distribution �(~x) is 2nd order in �(~x). From � on-wards the RS ground state energy is positive.3. exa
t enumerationsTo validate the results obtained analyti
ally we 
arried out extensive 
omputer simulations using two di�erentapproa
hes.The �rst numeri
al method we use, is an exa
t enumeration of all the possible 
olorings for a given graph. Notethat, in general, the number of possible 
olorings examined grows exponentially with the system size Nv (i.e. �P (Nv) exp(
Nv log(p�1)), where P (Nv) is some polynomial, and where 
 is some 
onstant 
alled the attrition rate,see e.g. [12℄ and referen
es therein. Hen
e, for p � 3, we are fairly limited in the a

essible system sizes (i.e.Nv ' O(102)), and may expe
t 
onsiderable �nite size e�e
ts.For p = 2, however, the 
olorability of a graph 
an be determined by the following linear algorithm: We start bypi
king a vertex at random, and giving it a 
ertain 
olor. Then, the 
olor of all verti
es it is 
onne
ted to (i.e. the2nd generation, whi
h is typi
ally a �nite number that depends on �), must have the opposite 
olor, and the edgesinvolved 
an be removed. Now one 
an assign the �rst 
olor to all the verti
es (the 3rd generation) 
onne
ted to the2nd generation, and the edges involved are again removed. This pro
ess is repeated until either the whole graph is
olored or a 
ontradi
tion is en
ountered. Sin
e this pro
ess requires only a �nite number of operations per edge,and sin
e the number of edges is Ne = �2Nv, one 
an determine the 2-
olorability of the graph in linear time, andlarge system sizes are a

essible. It is important to note that a graph that 
ontains any loop of odd length, is not2-
olorable, while any graph that does not 
ontain a loop of odd length, is. We will use this observation to obtain anexa
t expression for the 2-
olorability of random graphs in the next se
tion.



10The 2-
olorability P
(�) as obtained by exa
t enumerations for system sizes Nv = 102; ::; 105, as well as thetheoreti
al line (for Nv !1), are plotted in Fig.6. We observe that P
(�) de
reases 
ontinuously from P
(�) = 1 at� = 0 to P
(�) = 0 for � � 1. These results are in full agreement with those reported in [9℄, although here we havestudied mu
h larger systems. They are also in agreement with the results obtained by the repli
a method, but thelatter is unable to distinguish between P
(�) = 1 and 0 < P
(�) < 1 as in both 
ases the ground state energy is 0.One should note that this linear algorithm is spe
i�
 to the graph-
oloring problem with p = 2 and K = 2. In the
ase that p � 3 and/or K � 3, the 
olors of the next generation are not uniquely determined by the 
olors of theprevious one. The same holds for the K-SAT problem (even with K = 2) where a 
lause (i.e. edge) may be satis�edby either of its arguments or by both.For p � 3 it is believed that no polynomial algorithm exists to determine the p-
olorability of a graph, and wehave to resort to the exploration of the possible 
olorings by building up a sear
h tree. Sin
e we limit ourselves todetermining whether a graph is 
olorable or not, we are able to introdu
e some 
riteria to redu
e the problem, thusavoiding enumerating the full sear
h tree.A �rst step in the redu
tion is pruning: a vertex that has more available 
olors than verti
es it is 
onne
ted to, willalways be able to satisfy all edges, irrespe
tive of their 
olors. Therefore, it will not determine the 
olorability of thegraph, and the vertex and all its edges 
an be pruned. This pruning is to be done iteratively (as the pruning of onevertex with its edges may render other verti
es prunable), until all remaining verti
es have at least as many edges asavailable 
olors.A se
ond step is early stopping: one starts 
oloring the remaining verti
es, keeping tra
k of the remaining available
olors per vertex for all un
olored verti
es. One 
an stop exploring the sear
h tree when a good 
oloring is found.Alternatively, when the number of remaining available 
olors for a vertex be
omes 0, the 
oloring so far will lead toa 
ontradi
tion later on, and we 
an abandon this bran
h of the sear
h tree altogether. One then ba
ktra
ks to thepoint where a 
oloring was still possible.All this greatly redu
es the a
tual number of 
olorings that have to be examined, leaving it, however, exponential inthe system size, thus greatly limiting the a

essible system size. Furthermore, sin
e we stop as soon as we en
ountera 
ontradi
tion, we have no information on the minimum number of unsatis�ed edges (i.e. the ground state energy),or the number of 
olorings that yield the minimum number of unsatis�ed edges (i.e. the residual entropy). In Fig.6we observe that the transition from P(�) = 1 to P(�) = 0 be
omes in
reasingly sharp with the in
reasing system size,and that the 
urves 
ross at � ' 4:7. This is typi
al for a 1st order transition, and puts the 
riti
al 
onne
tivity forthe in�nite system at �
 ' 4:7. In this limit we expe
t P(�) to go dis
ontinuously from 1 to 0, in a

ordan
e withthe results presented in [9℄.
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�FIG. 6: Left: the probability that a random graph is 2-
olorable. The transition from P
(�) > 0 to P
(�) = 0 is 2nd order.Right: the probability that a random graph is 3-
olorable. The transition from P
(�) > 0 to P
(�) = 0 is 1st order. Theprobabilities are obtained by exa
t enumerations, averaged over 103 runs.4. Monte-Carlo simulationsSin
e exa
t enumerations for p � 3 are limited to relatively small system sizes, we have also performed Monte-Carlosimulations with simulated annealing for the p = 3 
ase. The simulations have been performed for system sizesNv = 1000 and Nv = 10000 and 
onsist of the following ingredients:� At ea
h temperature we perform Monte-Carlo dynami
s. Starting with a 
on�guration ~
 with energy E(~
), we
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hange the 
olor of a randomly 
hosen 
j to 
0j 6= 
j , obtaining the new 
on�guration ~
0 with energy E(~
0). Then,if �E � E(~
0)�E(~
) � 0 we always a

ept the move; otherwise we a

ept it with probability exp(�� �E) < 1.� We then gradually lower the temperature (this is known as simulated annealing [13℄). If the temperature isredu
ed (
ooling of the system) logarithmi
ally slowly with the system size, one is guaranteed to �nd the globalminimum ~
0 of E(~
). However, logarithmi
ally slow 
ooling is not feasible due to limitations in 
omputing time.Therefore, we must adopt a feasible 
ooling s
heme. Here we have opted for a linear 
ooling s
heme, where wein
rease � by small steps of �xed length d� = 10�4. At ea
h inverse temperature � we make C Nv Monte-Carlosteps, and we 
ontrol the 
ooling rate by 
hanging C, and try to extrapolate to 1=C ! 0 in order to obtaina predi
tion for in�nitely slow 
ooling. The values of C that we have 
onsidered, are C = 0:1; 1; 10; 100. Thevalues of the ground state energy as obtained by the linear 
ooling s
hemes serve as an upper bound for thetrue ground state energy.The simulation results are presented in Fig.7. We observe that the results predi
t that E0(�) starts deviatingsigni�
antly form 0 around � ' 4:6� 4:7, in agreement with the exa
t enumeration. The very similar values that weobtain for the ground state energies as obtained by the simulations for both Nv = 103 and Nv = 104, indi
ate thatthe �nite size e�e
ts for these sizes of systems, if noti
eable, fall well within limitations of the a
hievable numeri
alpre
ision due to the linear 
ooling s
heme. The results show that E0(�) as predi
ted by the RS approximation is nolonger in agreement with the numeri
al eviden
e, thus giving an indire
t indi
ation that one may have to 
onsider amore 
ompli
ated ansatz for the repli
a symmetries. A similar underestimation of the ground state energy in the RSapproximation has been observed in the K-SAT problem [1℄. In that model, however, the in
onsisten
y of the RSresult was signaled by an (unphysi
al) negative ground state energy. This problem was partially solved by 
onsideringa more 
ompli
ated ansatz for the repli
a symmetry (i.e. a 1 step repli
a symmetry breaking ansatz - 1RSB ). Itis therefore plausible that su
h a 1RSB 
al
ulation would also improve on the predi
tion of the value �
 at whi
hthe ground state energy 
eases to be 0 (i.e. move it 
loser to the true value �
 ' 4:7). Su
h a 
al
ulation (and alsosubsequent steps in Parisi's s
heme for RSB) is easy to formulate, but its evaluation is numeri
ally rather involved.This analysis is beyond the s
ope of the 
urrent paper, but will be the subje
t of a forth
oming study.
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urve is the estimate for in�nitely slow 
oolingas obtained by a quadrati
 extrapolation of the values for the three smallest values of 1=C, to 1=C = 0.V. 2 COLOR PROBLEM: EXACT ANALYSISWe will now derive an exa
t expression for the 2-
olorability of random graphs, in the in�nite graph size limit, for� 2 [0; 1℄. As we have seen, the repli
a analysis 
orre
tly �nds E0(�) = 0, but is unable to predi
t the non-trivialbehavior of P
(�) as observed in the exa
t enumerations. We do this by identifying lo
al 
on�gurations that giverise to non-
olorable 
lusters, and by 
al
ulating the probabilities of their o

urren
e. One should noti
e that thenon-
olorable lo
al 
on�gurations are loops of odd length: We start from the probability distribution for the numberof edges of a given vertex: P (L); L = 0; ::;1, whi
h is a Poisson distribution. We re
all from (2) that the probabilitiesof a/no 2-edge between two given verti
es are given byPe = �Npe=v = �Nv ; Pne = 1�Pe ' 1� �Nv : (33)
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FIG. 8: Loops of odd lengths: 3,5,7,... all of whi
h have a �nite probability of o

urring in large randomly generated graphsfor any �nite �.The probability of no (denoted by the symbol :) odd loops in the graph is given byP(:3;:5;:7;:9; ::) = P(:3)P(:5j:3)P(:7j:3;:5)P(:9j:3;:5;:7):: : (34)We �rst evaluate the probability, that 3 randomly 
hosen verti
es form a loop of length 3. We randomly pi
k 3 verti
eswhi
h 
an be done in �Nv3 � ways. The probability that for a given set of 3 verti
es ea
h is 
onne
ted with the othertwo is given by: P(3) = P3e = �3Nv3 (35)As long as the typi
al loop size is �nite (
ompared to Nv), the 
orrelations between the di�erent (2k+1)-tuples isO(Nv�2) (at least 2 new edges have to be present), and are therefore negligible. Hen
e, the probability that there areno 3-loops in the graph is given by P(:3) = (1�P(3)) Nv3 ! ' exp(� �32 3) : (36)Now we turn to the probability that there are no 5-loops, given that there are no 3-loops. We 
an randomly pi
k 5verti
es in �Nv5 � ways. The probability that a given set of 5 verti
es forms a loop (
ounting all the distin
t possibleorderings 4!=2), while there are no shorter (3-) loops in the group (5 internal edges have to be ex
luded), is given by:P(5j:3) = 4!2 P5e P5ne ' 4!2 P5e = P(5) : (37)Therefore, the probability that there are no 5-loops in the graph is given byP(:5) = (1�P(5)) Nv5 ! ' exp(� �52 5) : (38)We 
an repeat this pro
edure for any odd loop length 2k+1, k = 1; 2; 3::. The number of internal edges to ex
ludeis given by (2k+1)(2k�2)=2, while the number of distin
t orderings of the verti
es in a 
losed loop is given by(2k+1)!=[2(2k+1)℄. Hen
e, we obtain:P(:2k + 1j:3; ::;:2k � 1) ' P(:2k + 1) ' exp(� �2k+12 (2k + 1)) : (39)The probability of no odd loops of any length (i.e. the probability that the graph is 
olorable) is therefore:P
 ' 1Yk=1P(:2k + 1) ' exp �12 1Xk=1 �2k+12k+1! = exp��12(atanh(�) � �)� = �1��1+�� 14 exp(�2 ) : (40)



13>From Fig.6, we see that this result is in perfe
t agreement with that obtained by exa
t enumeration up to the pointwhere the typi
al odd loop length be
omes of the order of the square root the system size. This point moves to theright (and approa
hes � = 1) with in
reasing system size. Furthermore, sin
e for 0 � � < 1 the probability to havean odd loop is P(odd) < 1, the ground state energy E0 per edge is then typi
ally 0, as the probability to have a �niteE0 is exponentially small in Nv: P (U = E0 > 0) ' (P(odd)))NvE0 � 0 : (41)This observation is in perfe
t agreement with our results from the Monte-Carlo simulations (see Fig.7), and are also
on�rmed by our repli
a analysis.Unfortunately, for p � 3 the basi
 lo
al 
on�gurations (i.e. those in
luding a �nite number of verti
es) that lead tonon-
olorability 
annot be enumerated so easily. Furthermore, ea
h of the basi
 non-
olorable lo
al 
on�gurations hasa vanishingly small o

urren
e probability. It is their 
olle
tive probability (in
luding very large 
on�gurations thatmay 
onsist of a �nite fra
tion of the graph) that suddenly be
omes 1 at the 
riti
al �, giving rise to the observed 1storder transition from 
olorable to non-
olorable graphs.
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FIG. 9: The smallest elementary non-
olorable 
on�gurations for p = 3 (left), p = 4 (right), both of whi
h have a vanishinglysmall o

urren
e probability in large randomly generated graphs for any �nite �.VI. CONCLUSIONSWe analyzed the 
olorability of random graphs for �nite average 
onne
tivity, an important NP-
omplete problem.The statisti
al physi
s based analysis provides typi
al results in the in�nite system size limit, 
omplementing resultspublished in the 
omputational 
omplexity literature.The results obtained are in qualitative agreement with those reported in the literature as well as with numeri
alresults we obtained from exa
t enumeration and Monte-Carlo based solutions.One apparent dis
repan
y, in the 
ase of 2-
olor graphs, has been investigated using a probabilisti
 analysis thatprovided exa
t results for the probability of 
olorable random graphs in the 
ase of two 
olors. The analysis alsoexplains the failure of the statisti
al physi
s based analysis to dete
t un
olorability when this 
omes as a result of onlya �nite number of unsatis�able edges, sin
e su
h an analysis 
an identify only an extensive number of su
h edges.The 
urrent analysis is the �rst step in the investigation of graph 
olorability. Future studies in
lude: a) Re�ningthe 
urrent analysis by extending it to the 
ase of 1-step RSB. b) Investigating graphs with mixed 2 and 3-
olorverti
es; this 
ase has been studied numeri
ally in [9℄ but is diÆ
ult to analyze due to the di�erent nature of twoanalyzes. 
) Studying the properties of random graphs with various restri
tions. These resear
h a
tivities are 
urrentlyunderway.A
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hni
al details of the repli
a 
al
ulation. We 
al
ulate the average of the n-th power of thepartition sum: Zn(~f;D) � nYa=124Tr~
a exp0���XhiK DhiK �ahiK (~
)1AY� Æ( NXj=1 �
aj �Nf�)35 : (A1)The 
onstraints on the f� are enfor
ed by the introdu
tion of the Lagrange multipliers f̂a� , su
h that the average ofthe repli
ated partition sum be
omeshZni = Z nYa=1 pY�=1(df̂a�2�i exp��Nf�f̂a��) nYa=18<:Tr~
a exp0� pX�=1 NvXj=1 f̂a��
aj1A9=;�* nYa=1 exp0���XhiK DhiK �hiK (~
a)1A+D : (A2)The average over all tensors D with K (taken to be 2 for now) non zero elements per row, and Lj per 
olumn j isgiven by (10), where the Krone
ker deltas 
an be expressed as Æ(x; y) = H dZ2�iZ(x�y�1). We now pro
eed with the
al
ulation of T T = TrD I NvYj1=1�dZj12�i Z(Phj2;::;jKi DhiK�Lj1�1)j1 �YhiK nYa=1 exp ���DhiK �hiK (~
a))�= I NvYj=1�dZj2�iZ�(Lj+1)j �YhiK ( TrDhiK [Z℄DhiKhiK nYa=1 exp ���DhiK �hiK (~
a)�)= I NvYj=1�dZj2�iZ�(Lj+1)j � exp0�XhiK log"1 + [Z℄hiK nYa=1 exp ��� �hiK (~
a)�#1A' I NvYj=1�dZj2�iZ�(Lj+1)j � exp0�XhiK [Z℄hiK nYa=1 exp ��� �hiK (~
a)�1A (A3)= I NYj=1�dZj2�iZ�(Lj+1)j � exp0�XhiK [Z℄hiK nYa=1"1� pX�=1� [�
aj ℄hiK#1A (A4)= I NYj=1�dZj2�iZ�(Lj+1)j � exp0� nXm=0(��)m Xhaim Xf�gmXhiK hZ[�
j ℄haimf�gmihiK1A



15where we have used the short hand notations (12). Step (A3) is justi�ed, be
ause after integration over the Zj , onlythose terms in the expansion of the exponential in whi
h ea
h Zj o

urs exa
tly L times will survive, and it wasshown [14℄ that in the thermodynami
 limit (Nv !1), in the expansion of the logarithm all higher order terms arenegligible 
ompared to the �rst order term. In step (A4), we have made the 
hoi
e (7) for �ahiK .We have that PhiK [x℄hiK ' �PNvj=1 xj�K =K! , in the thermodynami
 limit, su
h thatT ' I NvYj=1�dZj2�iZ�(Lj+1)j � exp0B� 1K! nXm=0(��)m Xhaim Xf�gm 24 NvXj=0Zj [�
j ℄haimf�gm35K1CA : (A5)In order to fa
torize the whole expression in the j's, we introdu
e the order parametersqhaimf�gm � NXj=0Zj [�
j ℄haimf�gm ; (A6)by the introdu
tion of the 
orresponding Lagrange multipliers q̂haimf�gm .T = Z nYm=0 Yhaim Yf�gm8<:dq̂haimf�gmdqhaimf�gm2�i exp0��q̂haimf�gmqhaimf�gm + (��)m (qhaimf�gm)KK! 1A9=; NvYj=1Xj ; (A7)whereXj = I dZj2�iZ�(Lj+1)j exp0�Zj nXm=0Xhaim Xf�gm q̂haimf�gm [�
j ℄haimf�gm1A = 1Lj ! 0� nXm=0Xhaim Xf�gm q̂haimf�gm [�
j ℄haimf�gm1ALj (A8)Following similar steps we obtain for the denominatorN ' Z �dq̂0dq02�i � exp �q̂0q0 + qK0K! +NXL P (L) log� q̂L0L!�! (A9)The average of the repli
ated partition fun
tion hen
e readshZni = 1N Z nYa=1 pY�=1(df̂a�2�i exp��Nf̂a�f��)nYm=0 Yhaim Yf�gm8<:dq̂haimf�gmdqhaimf�gm2�i exp0��q̂haimf�gmqhaimf�gm + (��)m (qhaimf�gm)KK! 1A9=;NvYj=1 nYa=1 Tr
aj exp(X� f̂a��
aj )8><>: 1Lj ! 0� nXm=0Xhaim Xf�gm q̂haimf�gm [�
j ℄haimf�gm1ALj9>=>; (A10)whi
h 
an be evaluated using the saddle point method for the integration variables f̂a� , q̂haimf�gm and qhaimf�gm . In orderto pro
eed with the 
al
ulation, we must make an assumption about the symmetry between repli
as, and we use therepli
a symmetri
 ansatz (13) for the terms in (A10) that involve the order parameters:nXm=0Xhaim Xf�gm q̂haimf�gmqhaimf�gm = q0q̂0 Z 0fd~xd~̂x �(~x) �̂(~̂x)g nXm=0Xhaim Xf�gmY� (�x�x̂�)m�= q0q̂0 Z 0fd~xd~̂x �(~x) �̂(~̂x)g nXm=0� nm�X~m �m~m�Y� (�x�x̂�)m�= q0q̂0 Z 0fd~xd~̂x �(~x) �̂(~̂x)g nXm=0� nm�(�X� x�x̂�)m



16= q0q̂0 Z 0fd~xd~̂x �(~x)�̂(~̂x)g (1�X� x�x̂�)n (A11)nXm=0(��)m Xhaim Xf�gm (qhaimf�gm)KK! = :: = qK0K! Z 0 KYk=1fd~xk �k(~xk)g(1��X� KYk=1xk;�)n (A12)nXm=0Xhaim Xf�gm q̂haimf�gm [�
j ℄haimf�gm = q̂0 Z 0fd~̂x �̂(~̂x)g nXm=0Xhaim Xf�gm pY�=1(�x̂�)m� mỲ=1�` 
a`j= q̂0 Z 0fd~̂x �̂(~̂x)g nXm=0Xhaim0�Xf�gm mỲ=1(��` 
a`j x̂�`)1A= q̂0 Z 0fd~̂x �̂(~̂x)g nXm=0Xhaim mỲ=1(�X� �` 
a`j x̂�)!= :: = q̂0 Z 0fd~̂x �̂(~̂x)g nYa=1(1�X� �
aj x̂�) ; (A13)where �m~m� (� m!=Q�m�!) are multi(p)-nomial- , and � nm� (� n!=m!(n�m)!) binomial 
oeÆ
ients. Hen
e, wehave nYa=1(Tr
aj exp(X� f̂��
a)) 1Lj ! (� � �)Lj == q̂Lj0Lj ! Z 0 LjYl=1fd~̂xl �̂l(~̂xl;�)g nYa=10�Tr
aj exp( pX�=1 f̂��
a) LjYl=1(1�X� �
a x̂l;�)1A= q̂Lj0Lj ! Z 0 LjYl=1fd~̂xl �̂l(~̂xl;�)g0� pX�=1 exp(f̂�) LjYl=1(1� x̂l;�)1An ; (A14)to obtain the following expression for the averaged repli
ated partition sumhZni = 1N extf~̂f ;q̂;q;�̂;�g exp"�nNv pX�=1 f�f̂� � q0q̂0 I1 + qK0K!I2 +NvXL P (L)�log( q̂L0L! ) + log(I3L)�# ; (A15)where I1 � Z 0fd~xd~̂x �(~x) �̂(~̂x)g (1�X� x�x̂�)nI2 � Z 0 KYk=1fd~xk �k(~xk)g (1��X� KYk=1 xk;�)n (A16)I3L � Z 0 LYl=1fd~̂xl �̂l(~̂xl)g pX�=1 exp(f̂�) LYl=1(1� x̂l;�)!n :We now solve the saddle point equations with respe
t to q̂0 and q0, and note that the stru
ture of the (q̂0; q0)-dependentpart of the denominator is exa
tly the same with I1 = I2 = 1, to obtain8><>: q0 = �Nv�(K�1)!I2 �1=Kq̂0 = Nv�I1 � I2Nv�(K�1)!�1=K ! ( q0q̂0 = Nv�I1qK0K! = Nv�KI2 ; (A17)



17where � =PL P (L) L, su
h that all terms not depending on the Ii or f� in the numerator and denominator 
an
el:hZni ' exp"Nv  �n pX�=1 f�f̂� � � log(I1) + �K log(I2) +XL P (L) log(I3L)!# ; (A18)taken in the extremum for f~̂f; �̂; �g. So far we have performed all 
al
ulations for general positive integer n. Takinglimn!0 (Zn�1)n , and multiplying the result with KNv� , we obtain the repli
a symmetri
 free energy per edge (14).APPENDIX B: LOW TEMPERATURE LIMITWe will now show that even in the limit � !1, the distribution �(~x) remains non-trivial. In order to demonstratethis, we 
on
entrate on the �xed point equation (27). Using two expli
it examples, we show how 
ontributions to�() for extremal values of the arguments (i.e. 1� x� � "� = O(exp(��), x� = O(exp(��)) j � 6= �) may generate
ontributions to �() with �nite argument values (i.e. 1� x� = O(1); 8 �) and vi
e-versa.� 1) First, we assume that there is a �nite probability density �(~x) that 1 � x� � "� = O(exp(��)), su
h thatx� = O(exp(��)) j � 6= � . Suppose now that p = 3, and 
onsider the term in (27) with L�1 = 3. The following
ombination of ~x`'s (` = 1; 2; 3) has then a �nite probability density:8<: 1� x1;1 � "1;1; 1� x2;2 � "2;2; 1� x3;3 � "3;3; "i;i = O(exp(��))x`;� = O(exp(��)) � 6= � (B1)and, to leading order, generates a 
ontribution to the l.h.s. of (27) with ~x:1� x� ' 1� exp(��) + "�;�P�(exp(��) + "�;�) = O(1) ; � = 1; 2; 3 ; (B2)i.e. with �nite argument values.� 2) Se
ond, we assume that there is a �nite probability density �(~x) that 1 � x� � " � 1, su
h that x� =O(") j � 6= � . Suppose now that p = 2, and 
onsider the term in (27) with L�1 = 3. The following 
ombination of~x`'s (` = 1; 2; 3) has then a �nite probability density:8<: 1� x1;1 � "1;1; 1� x2;1 � "2;1; "1=2;1 = O(")x3;� = O(1) � = 1; 2 (B3)and, to leading order, generates a 
ontribution to the l.h.s. of (27) with ~x:x1 ' "1;1"2;1"1;1"2;1 + 1�x3;2 = O("2); 1� x2 ' 1� 1�x3;2"1;1"2;1 + 1�x3;2 = O("2): (B4)i.e. with more extreme values of the arguments ( O("2) instead of O(") ).Hen
e, we have shown that extreme values will generate less extreme values and vi
e-versa. Sin
e the r.h.s of(27) 
ontains terms with all values of L, obviously (even in the limit � ! 1) we 
annot expli
itly keep tra
k of theproliferation of distributions to di�erent values of ~x, and have to resort to a numeri
al analysis. For ea
h value of �,we have to 
he
k whether in the limit � ! 1 a �nite probability density �(~x) is generated for extremal values of ~x(i.e. 1 � x� = O(exp(��))). If this is the 
ase, the internal energy U will be positive, and the probability that thegraph is 
olorable must be 0.


