65 research outputs found

    Multimodal phenotyping of synaptic damage in Alzheimer’s disease : translational perspective with focus on quantitative EEG

    Get PDF
    Alzheimer’s disease (AD) is a progressive neurodegenerative disorder and the most common form of dementia. Accumulation of AD-associated pathology in the brain may begin a decade or more before the appearance of the first symptoms of the disease. The pathological-clinical “continuum of AD” therefore encompasses time between the initial neuropathological changes and symptoms of advanced disease. Besides cognitively healthy individuals at risk, it includes subjects with subjective cognitive decline (SCD), mild cognitive impairment (MCI) and eventually dementia when the severity of cognitive impairment affects patients’ ability to carry out everyday activities. Timely detection of the disease would therefore recognize patients that are at risk for future cognitive deterioration and provide time window for the prevention and novel therapeutical interventions. Accumulating evidence suggests that degeneration and dysfunction of brain neuronal connections, i.e. synapses, is one of the earliest and best proxies of cognitive deficits in patients along AD continuum. Human electroencephalography (EEG) is a non-invasive and widely available diagnostic method that records real-time large-scale synaptic activity. The commonly used method in research settings is quantitative EEG (qEEG) analysis that provides objective information on EEG recorded at the level of the scalp. Quantitative EEG analysis unravels complex EEG signal and adds relevant information on its spectral components (frequency domain), temporal dynamics (time domain) and topographic estimates (space domain) of brain cortical activity. The general aim of the present thesis was to characterize different aspects of synaptic degeneration in AD, with the focus on qEEG and its relationship to both conventional and novel synaptic markers. In study I, global qEEG measures of power and synchronization were found to correlate with conventional cerebrospinal fluid (CSF) biomarkers of Aβ and tau pathology in patients diagnosed with SCD, MCI and AD, linking the markers of AD pathology to the generalized EEG slowing and reduced brain connectivity in fast frequency bands. In study II, qEEG analysis in the time domain (EEG microstates) revealed alterations in the organization and dynamics of large-scale brain networks in memory clinic patients compared to healthy elderly controls. In study III, topographical qEEG analysis of brain functional connectivity was associated with regionspecific cortical glucose hypometabolism ([18F]Fluorodeoxyglucose positron-emission tomography) in MCI and AD patients. Study IV provided evidence that qEEG measures of global power and synchronization correlate with CSF levels of synaptic marker neurogranin, both modalities being in combination independent predictors of progression to AD dementia in MCI patients. Study V and associated preliminary study introduced in the thesis assessed the translational potential of CSF neurogranin and qEEG as well as their direct relationship to AD neuropathology in App knock-in mouse models of AD. In study V, changes in CSF neurogranin levels and their relationship to conventional CSF markers in App knock-in mice corresponded to the pattern observed in clinical AD cohorts. These findings highlighted the potential use of mouse CSF biomarkers as well as App knock-in mouse models for translational investigation of synaptic dysfunction due to AD. In general, the results of the thesis invite for further clinical validation of multimodal synaptic markers in the context of early AD diagnosis, prognosis, and treatment monitoring in individual patients

    Guidelines for the recording and evaluation of pharmaco-EEG data in man: the International Pharmaco-EEG Society (IPEG)

    Get PDF
    The International Pharmaco-EEG Society (IPEG) presents updated guidelines summarising the requirements for the recording and computerised evaluation of pharmaco-EEG data in man. Since the publication of the first pharmaco-EEG guidelines in 1982, technical and data processing methods have advanced steadily, thus enhancing data quality and expanding the palette of tools available to investigate the action of drugs on the central nervous system (CNS), determine the pharmacokinetic and pharmacodynamic properties of novel therapeutics and evaluate the CNS penetration or toxicity of compounds. However, a review of the literature reveals inconsistent operating procedures from one study to another. While this fact does not invalidate results per se, the lack of standardisation constitutes a regrettable shortcoming, especially in the context of drug development programmes. Moreover, this shortcoming hampers reliable comparisons between outcomes of studies from different laboratories and hence also prevents pooling of data which is a requirement for sufficiently powering the validation of novel analytical algorithms and EEG-based biomarkers. The present updated guidelines reflect the consensus of a global panel of EEG experts and are intended to assist investigators using pharmaco-EEG in clinical research, by providing clear and concise recommendations and thereby enabling standardisation of methodology and facilitating comparability of data across laboratories

    Implication of EEG theta/alpha and theta/beta ratio in Alzheimer's and Lewy body disease

    Get PDF
    We evaluated the patterns of quantitative electroencephalography (EEG) in patients with Alzheimer's disease (AD), Lewy body disease (LBD), and mixed disease. Sixteen patients with AD, 38 with LBD, 20 with mixed disease, and 17 control participants were recruited and underwent EEG. The theta/alpha ratio and theta/beta ratio were measured. The relationship of the log-transformed theta/alpha ratio (TAR) and theta/beta ratio (TBR) with the disease group, the presence of AD and LBD, and clinical symptoms were evaluated. Participants in the LBD and mixed disease groups had higher TBR in all lobes except for occipital lobe than those in the control group. The presence of LBD was independently associated with higher TBR in all lobes and higher central and parietal TAR, while the presence of AD was not. Among cognitively impaired patients, higher TAR was associated with the language, memory, and visuospatial dysfunction, while higher TBR was associated with the memory and frontal/executive dysfunction. Increased TBR in all lobar regions and temporal TAR were associated with the hallucinations, while cognitive fluctuations and the severity of Parkinsonism were not. Increased TBR could be a biomarker for LBD, independent of AD, while the presence of mixed disease could be reflected as increased TAR.ope

    A Pilot Study Investigating a Novel Non-Linear Measure of Eyes Open versus Eyes Closed EEG Synchronization in People with Alzheimer’s Disease and Healthy Controls

    Get PDF
    Background: The incidence of Alzheimer disease (AD) is increasing with the ageing population. The development of low cost non-invasive diagnostic aids for AD is a research priority. This pilot study investigated whether an approach based on a novel dynamic quantitative parametric EEG method could detect abnormalities in people with AD. Methods: 20 patients with probable AD, 20 matched healthy controls (HC) and 4 patients with probable fronto temporal dementia (FTD) were included. All had detailed neuropsychology along with structural, resting state fMRI and EEG. EEG data were analyzed using the Error Reduction Ratio-causality (ERR-causality) test that can capture both linear and nonlinear interactions between different EEG recording areas. The 95% confidence intervals of EEG levels of bi-centroparietal synchronization were estimated for eyes open (EO) and eyes closed (EC) states. Results: In the EC state, AD patients and HC had very similar levels of bi-centro parietal synchronization; but in the EO resting state, patients with AD had significantly higher levels of synchronization (AD = 0.44; interquartile range (IQR) 0.41 vs. HC = 0.15; IQR 0.17, p < 0.0001). The EO/EC synchronization ratio, a measure of the dynamic changes between the two states, also showed significant differences between these two groups (AD ratio 0.78 versus HC ratio 0.37 p < 0.0001). EO synchronization was also significantly different between AD and FTD (FTD = 0.075; IQR 0.03, p < 0.0001). However, the EO/EC ratio was not informative in the FTD group due to very low levels of synchronization in both states (EO and EC). Conclusion: In this pilot work, resting state quantitative EEG shows significant differences between healthy controls and patients with AD. This approach has the potential to develop into a useful non-invasive and economical diagnostic aid in AD

    Measures of Resting State EEG Rhythms for Clinical Trials in Alzheimer’s Disease:Recommendations of an Expert Panel

    Get PDF
    The Electrophysiology Professional Interest Area (EPIA) and Global Brain Consortium endorsed recommendations on candidate electroencephalography (EEG) measures for Alzheimer's disease (AD) clinical trials. The Panel reviewed the field literature. As most consistent findings, AD patients with mild cognitive impairment and dementia showed abnormalities in peak frequency, power, and "interrelatedness" at posterior alpha (8-12Hz) and widespread delta (&lt;4Hz) and theta (4-8Hz) rhythms in relation to disease progression and interventions. The following consensus statements were subscribed: (1) Standardization of instructions to patients, resting state EEG (rsEEG) recording methods, and selection of artifact-free rsEEG periods are needed; (2) power density and "interrelatedness" rsEEG measures (e.g., directed transfer function, phase lag index, linear lagged connectivity, etc.) at delta, theta, and alpha frequency bands may be use for stratification of AD patients and monitoring of disease progression and intervention; and (3) international multisectoral initiatives are mandatory for regulatory purposes

    EEG Markers in Emotionally Unstable Personality Disorder-A Possible Outcome Measure for Neurofeedback: A Narrative Review.

    Get PDF
    Objectives. There is growing evidence for the use of biofeedback (BF) in affective disorders, dissocial personality disorder, and in children with histories of abuse. Electroencephalogram (EEG) markers could be used as neurofeedback in emotionally unstable personality disorder (EUPD) management especially for those at high risk of suicide when emotionally aroused. This narrative review investigates the evidence for EEG markers in EUPD. Methods. PRISMA guidelines were used to conduct a narrative review. A structured search method was developed and implemented in collaboration with an information specialist. Studies were identified via 3 electronic database searches of MEDLINE, Embase, and PsycINFO. A predesigned inclusion/exclusion criterion was applied to selected papers. A thematic analysis approach with 5 criteria was used. Results. From an initial long list of 5250 papers, 229 studies were identified and screened, of which 44 met at least 3 of the predesigned inclusion criteria. No research to date investigates EEG-based neurofeedback in EUPD. A number of different EEG biomarkers are identified but there is poor consistency between studies. Conclusions. The findings heterogeneity may be due to the disorder complexity and the variable EEG related parameters studied. An alternative explanation may be that there are a number of different neuromarkers, which could be clustered together with clinical symptomatology, to give new subdomains. Quantitative EEGs in particular may be helpful to identify more specific abnormalities. EEG standardization of neurofeedback protocols based on specific EEG abnormalities detected may facilitate targeted use of neurofeedback as an intervention in EUPD

    The Clinical Promise of Biomarkers of Synapse Damage or Loss in Alzheimer’s Disease

    Get PDF
    BACKGROUND: Synapse damage and loss are fundamental to the pathophysiology of Alzheimer's disease (AD) and lead to reduced cognitive function. The goal of this review is to address the challenges of forging new clinical development approaches for AD therapeutics that can demonstrate reduction of synapse damage or loss. The key points of this review include the following: Synapse loss is a downstream effect of amyloidosis, tauopathy, inflammation, and other mechanisms occurring in AD.Synapse loss correlates most strongly with cognitive decline in AD because synaptic function underlies cognitive performance.Compounds that halt or reduce synapse damage or loss have a strong rationale as treatments of AD.Biomarkers that measure synapse degeneration or loss in patients will facilitate clinical development of such drugs.The ability of methods to sensitively measure synapse density in the brain of a living patient through synaptic vesicle glycoprotein 2A (SV2A) positron emission tomography (PET) imaging, concentrations of synaptic proteins (e.g., neurogranin or synaptotagmin) in the cerebrospinal fluid (CSF), or functional imaging techniques such as quantitative electroencephalography (qEEG) provides a compelling case to use these types of measurements as biomarkers that quantify synapse damage or loss in clinical trials in AD. CONCLUSION: A number of emerging biomarkers are able to measure synapse injury and loss in the brain and may correlate with cognitive function in AD. These biomarkers hold promise both for use in diagnostics and in the measurement of therapeutic successes
    corecore