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Abstract 

Background: Synapse damage and loss are fundamental to the pathophysiology of Alzheimer’s 

disease (AD) and lead to reduced cognitive function. The goal of this review is to address the 

challenges of forging new clinical development approaches for AD therapeutics that can 

demonstrate reduction of synapse damage or loss. 

The key points of this review include the following: 

 Synapse loss is a downstream effect of amyloidosis, tauopathy, inflammation, and other 

mechanisms occurring in AD 

 Synapse loss correlates most strongly with cognitive decline in AD because synaptic 

function underlies cognitive performance 

 Compounds that halt or reduce synapse damage or loss have a strong rationale as treatments 

of AD 

 Biomarkers that measure synapse degeneration or loss in patients will facilitate clinical 

development of such drugs   

 The ability of methods to sensitively measure synapse density in the brain of a living patient 

through synaptic vesicle glycoprotein 2A (SV2A) positron emission tomography (PET) 

imaging, concentrations of synaptic proteins (e.g., neurogranin or synaptotagmin) in the 

cerebrospinal fluid (CSF), or functional imaging techniques such as quantitative 

electroencephalography (qEEG) provides a compelling case to use these types of 

measurements as biomarkers that quantify synapse damage or loss in clinical trials in AD 

Conclusion: A number of emerging biomarkers are able to measure synapse injury and loss in 

the brain, and may correlate with cognitive function in AD. These biomarkers hold promise 

both for use in diagnostics and in the measurement of therapeutic successes. 

 

Keywords 

Alzheimer’s disease, synapse, biomarker, cerebrospinal fluid, positron emission tomography, 

electroencephalography 
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Background 

Alzheimer’s disease (AD) and related dementias afflict nearly 44 million people worldwide 

(1). In the United States, nearly 6 million people have AD, a number that is expected to double 

by 2050 (2). Only symptomatic treatments are currently available, and disease modeling 

techniques suggest that the beneficial effects of current treatments may peak by six months 

(3,4). More effective symptomatic treatments or first-of-a-kind disease-modifying therapies 

for AD continue to be a huge unmet medical need; these treatments would significantly impact 

the quality of life annual healthcare expenditure for AD patients, which were estimated to be 

$277B annually in 2018, and up to $1100B annually by 2050 (2). 

Hypotheses regarding etiology of AD and potential targets for pharmacologic intervention 

have evolved over the recent decades of intense industry and academic research. 

Neurotransmitter hypotheses, while giving rise to the first drugs approved for treating AD, 

generated means for symptomatic relief but failed to generate disease-altering treatments (5). 

Amyloid plaque- and tau tangle-related hypotheses, focused on aggregated Aβ peptide and tau 

protein, appeared to offer promising targets for disease-altering therapies, but most clinical 

programs targeting A generation with small molecules and A clearance with antibodies have 

been disappointing (6,7). Treatment with several anti-A antibodies (solanezumab, with a high 

affinity for monomeric A, and aducanumab and BAN2401, which target fibrillar A) was 

associated with a small slowing of cognitive decline in subsets of patients with AD, but those 

targeting fibrils are associated with vasogenic edema and cerebral microhemorrhages, possibly 

limiting their clinical usefulness (7). Understanding the role of soluble Aβ aggregates has led 

to the new hypotheses that these Aβ oligomers may be responsible for the neurotoxic etiology 

of AD, with hopes that therapeutics that reduce their synaptotoxicity may delay or stop the 

progression of AD (8). Monitoring treatment-related reduction of such toxicity may provide 

suitable biomarker endpoints for drug efficacy and are independent of etiology of disease.  

A foundational principle of neuroscience is that synaptic function underlies cognition. There 

is widespread acceptance of the premise that synapse damage or loss is the objective sign of 

neurodegeneration that is most highly correlated with cognitive decline in AD; this is supported 

by clinical, post-mortem, and non-clinical evidence as summarized below. Objective measures 
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of synaptic damage or loss are therefore a special category of biomarkers expected to be most 

closely correlated with cognitive function. 

The goal of this paper is to review the concept of biomarkers of synapse damage as a potential 

approvable endpoint for treatment in AD and other neurological indications, and to review the 

literature in order to assist biopharmaceutical drug developers and regulators in addressing the 

challenges of forging new pathways for the approval of synaptoprotective AD therapeutics. 

Part 1 will review the critical role played by synaptic damage in the pathophysiologic processes 

that underlie AD and their relation to cognitive decline. Part 2 will review currently available 

biomarkers that measure synapse damage or loss in living patients, with a view towards their 

use as surrogate endpoints in clinical trials in AD.   

The Roles of Synaptic Damage and Loss in Cognition 

The idea that changes in synapses mediate information storage dates back to Santiago Ramon 

y Cajal’s anatomical observations of brain structure in the late 1890’s (9), gained popularity in 

the mid-twentieth century with Hebb’s postulate that synapses between neurons will be 

strengthened if they are active at the same time, and that this process contributes to learning 

(10), and was supported experimentally by Kandel’s studies in Aplysia (11). This concept was 

underscored by the discoveries of synaptic long-term potentiation by Bliss and Lomo (12) and 

the hippocampal synaptic plasticity in memory formation by Morris and colleagues (13). In 

recognition of the importance of synaptic function to cognition, awards including the Brain 

Prize and the Nobel Prize have been awarded to multiple scientists for their work in this field. 

Synapse dysfunction and loss correlates most strongly with the pathological cognitive decline 

experienced in Alzheimer’s disease (14–19). This association was initially described through 

two independent methods, the estimation of synapse number using electron microscopy 

techniques (16) and measurements of synaptic protein concentrations (19), each of which 

showed a strong correlation between synapse number (or synaptic proteins) and cognitive 

scores on the Mini-Mental Status Examination (MMSE). This concept has been robustly 

replicated using a variety of approaches (14,18,20–26), including disease models. While the 

molecular cascades leading to synapse degeneration in AD have yet to be fully determined, 

there is ample evidence from both human brain and disease models supporting synaptotoxic 
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roles of soluble pathological forms of Aβ and tau, as well as glial-mediated neuroinflammation 

(see (14) for an excellent recent meta-analysis). This paper will review evidence of these 

mechanisms, as well as approaches for their detection in patients.  

Mechanisms of Synapse Damage and Loss in AD 

Amyloid plaques formed of aggregated Aβ peptide are one of the defining pathological lesions 

of AD (27–29). In both human brain and mouse models expressing familial AD-associated 

amyloid precursor protein and presenilin mutations, plaques are associated with local synapse 

loss [Figure 1, (30–34)] as well as memory and synaptic plasticity deficits (35–37). However, 

total plaque load is not the factor most strongly correlated with cognitive decline (38) or 

synaptic pathology (17,39) in AD. Instead, abundant data demonstrate that soluble forms of 

Aβ, rather than the large insoluble fibrils in plaques, are toxic to synapses (15,40). Lambert 

and colleagues found that fibril-free synthetic forms of Aβ oligomers (AβO) inhibited long-

term potentiation (LTP) ex vivo (41), and in 2002 Walsh and colleagues demonstrated that 

naturally secreted AβO disrupt LTP in vivo (42). Since then many studies have shown that 

AβO may drive the cognitive impairment found in animal models of AD (43–45), and 

potentially also in human AD (46–48).  

Exposure to oligomers in vitro produces rapid reduction in expression of many synaptic 

proteins required for normal neurotransmission and for learning and memory formation within 

hours (49); longer exposure produces frank loss of synapses and spines (45,49–51). Higher, 

non-physiological concentrations result in rapid neuronal cell death.  

The presence of AβO has been correlated with synaptic plasticity impairment and frank 

synapse loss in mice and cell models (45,49–51) and in human brains in AD (30,52,53). 

Furthermore, AβO have been visualized within individual synapses of both mouse models and 

AD cases using high resolution imaging techniques (30,31,54), arguing strongly that they may 

directly contribute to synaptic and cognitive dysfunction. 
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Figure 1: High-Resolution Array Tomography Imaging Reveals Plaque-Associated Synapse 

Loss in Human Temporal Cortex. Scale Bar: 10 Micrometers. 

 

While Aβ monomers may interact with many receptors, in model systems AβO have been 

demonstrated to bind to synaptic receptors including cellular prion protein, NgR1, EphB2, and 

PirB/LilrB2; additional receptor proteins have yet to be rigorously defined (55–61). One 

important regulator of the oligomer receptor complex is the sigma-2 protein receptor complex 

(62,63), the target of the AD disease-modifying drug candidate CT1812 (64). Downstream of 

interacting with synaptic receptors, robust evidence suggests AβO cause calcium influx and 

downstream synaptic dysfunction (15,65,66). 

Another defining neuropathological lesion of AD is the aggregation of truncated, misfolded, 

and hyperphosphorylated tau into neurofibrillary tangles (27). Tau pathology correlates with 

neuron loss and cognitive decline in AD (28,67). In accordance with the observation that tau 

causes neuron death, mouse models that express tau mutations that cause frontotemporal 

dementias with tau pathology demonstrate neuron loss (68–71), early synapse loss, and 

disruption of neuronal network function (72–77). As has been observed with Aβ, the forms of 

tau that may be toxic are the soluble, non-fibrillar and highly reactive forms, the oligomers 

(78–80).   

Loss of physiological tau function may contribute to synapse degeneration by impairing axonal 

transport of cargoes needed at synapses, including mitochondria (81,82). Part of the synaptic 

and network dysfunction in tauopathy mice and in AD is likely due to direct effects of tau at 

synapses. Along with the canonical microtubule stabilizing role of tau, this versatile protein 
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has also been shown to play a physiological role in dendrites including postsynaptic densities 

and in presynaptic terminals (83–85). In human AD brain, small aggregates of phospho-tau are 

observed in both presynaptic and postsynaptic regions, and several groups have observed 

phospho-tau in biochemically isolated synaptic fractions (85–87). Importantly, accumulation 

of phospho-tau in synaptic fractions was much higher in people with AD (cases) than in people 

with high pathological burdens who did not exhibit dementia symptoms (48). Together, these 

data strongly indicate that pathological forms of tau at synapses contribute to synaptic 

dysfunction. 

Based on the genetic causes of rare forms of familial AD, which all act to increase Aβ 

accumulation, and the timing of pathological development where plaque pathology is an early 

pathological feature preceding appreciable tau pathology by many years, it is widely thought 

that Aβ is “upstream” of tau in initiating AD pathogenesis (88). One of the key challenges in 

this field is understanding the links between Aβ and tau, and recent data indicate that these 

proteins may cooperate to cause synaptic degeneration. Several pathways involving tau have 

been implicated in AβO-mediated synapse loss. AβO activation of the NMDA receptor has 

been reported to cause excitotoxicity through the recruitment of Fyn kinase by tau to the post-

synaptic density in mice (83,89,90). Lowering tau levels also protects against some of the 

synaptic effects of AβO (91,92). 

Beyond the direct effects of these pathological proteins on neurons and synapses, 

epidemiologic and genetic data strongly implicate inflammatory mechanisms in synapse 

damage in AD. In particular, recent data indicate that microglia may play an active role in 

synapse loss (93). The most important genetic risk factor for late-onset AD is inheritance of 

the apolipoprotein E epsilon 4 (APOE 4) allele (94). The ApoE4 isoform is highly expressed 

in astrocytes under physiological conditions, but its expression is upregulated in microglia in 

mouse models of AD (95). The effects of AβO at synapses are exacerbated by ApoE4 in 

plaque-bearing mouse models and human AD brain, and are ameliorated by removing 

endogenous ApoE (30,96,97). Triggering receptor expressed on myeloid cells 2 (TREM2), 

complement receptor 1 (CR1), and CD33 are all expressed in microglia, where they may affect 

phagocytosis of synapses (93). The complement system has emerged recently as particularly 

interesting in AD because the tagging of synapses with C1q downstream of both Aβ and tau 
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pathology causes CR3 mediated microglial phagocytosis of synapses (98–102). While several 

members of the complement pathway have been observed to be upregulated in AD brain and 

to correlate with tau pathology (101,102), it remains unknown whether microglial phagocytosis 

of synapses in human disease actively drives synapse loss or simply removes synapses after 

damage has occurred.  

Importantly, in mouse models of AD, the effects on synapses of key elements of AD 

pathogenesis—AβO, tau, or inflammation—are reversible. In multiple studies, deficits in LTP, 

memory impairment, and synapse loss recover in mice when levels of AβO, tau, or 

inflammation are lowered (69,103–108). This plasticity of synaptic connections and their 

potential for recovery lends hope for therapeutics that reduce synaptotoxicity in AD. 

Regardless of the causative role of AβO and the contributions to disease progression of tau, 

p-tau, glia, and inflammation processes, synapse dysfunction has a number of downstream 

neurophysiological consequences including altered neuronal oscillatory behavior and an 

imbalance between excitation and inhibition. These alter neural circuit function and adversely 

impact behavior. As such, normal synapse number and function is the basis for cognitive 

performance and is an ideal measure of brain damage due to disease. 

Biomarkers of Synapse Damage or Loss 

The importance of synapses in cognition and the strong links among synapses, AD 

pathophysiology, and the symptoms observed in AD make a compelling case for the use of 

biomarkers of synapse damage or loss as proxies for synaptic and cognitive function in AD. A 

recent publication of the NIA-AA Research Framework emphasized the necessity of a 

biological definition of the disease for clinical progress, and established the A/T/N biomarker 

classification system, where “A” stands for amyloid beta, “T” for tau, and “N” for 

neurodegeneration (109), a broad concept that includes destruction of system-level circuits and 

regional volume loss, as well as injury to individual cellular elements such as axons, dendrites, 

and synapses. The extent to which this A/T/N biomarker classification system is confined to 

studies of the pathobiology of AD, versus used to define patient populations that are enrolled 

into clinical trials, will be subject of valuable scientific discussion (110). In the remainder of 

this paper we will focus on “N” type biomarkers specifically related to synapse damage or loss. 
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Visualization of synapses in the living brain has recently been described through the labelling 

of synaptic vesicle glycoprotein 2A (SV2A) with the [11C]UCB-J positron emission 

tomography (PET) ligand (111–113). (Additional SV2A radioligands, [11C]UCB-A and 

[18F]UCB-H, have also been under development.) Comparing a group of AD cases with 

cognitively healthy aged cases, a reduction of approximately 40% of SV2A signal was 

observed in the hippocampus in AD cases (114). The use of this PET ligand to measure synapse 

loss longitudinally in AD is not yet well established. However, as a direct measure of synapse 

density, this biomarker in combination with other cerebrospinal fluid (CSF) biomarkers and 

functional imaging approaches such as magnetic resonance imaging (MRI), quantitative 

electroencephalogram (qEEG), or fluorine-18 fluorodeoxyglucose PET (FDG-PET), is 

independent of the disease hypothesis and has the potential to be a strong indicator of brain 

degeneration and cognitive status (Figure 2). Recent innovations such as this ability to 

sensitively measure synapse density in the brain of a living patient via SV2A PET imaging, 

low concentrations of synaptic protein proteolytic fragments in the CSF via sensitive ELISAs 

or LC/MSMS methods, changes in cortical synaptic currents measured by qEEG, or disruption 

of glucose metabolism measured by FDG-PET promise to revolutionize the ability to stage 

patients and to define disease more precisely. Furthermore, as synapses are a fundamental brain 

structure responsible for cognitive output, measures of synapse density have the most value in 

their ability to assess responses to disease-modifying treatments. 

Folowing the identification of synaptic protein fragments of neurogranin, SNAP-25, and 

synaptotagmin in CSF (115,116), specific protein biomarkers of synapse degeneration have 

begun to emerge in recent years. Protein fragments of neurogranin, a dendritic protein involved 

in LTP, are increased in CSF of patients with AD, and full-length neurogranin is decreased in 

postmortem brain tissues (117,118). Furthermore, encouraging data show that increased 

neurogranin fragments in CSF correlate with future cognitive decline, brain atrophy, and 

glucose metabolism, even at early stages of the disease (117,119–121), and that the increase in 

CSF neurogranin seems to be specific for AD (122,123). This use of CSF measurement of 

neurogranin concentration underlies the concept that an accurate biomarker of synapse loss 

reflects cognitive function based on the correlation between cognitive function and synaptic 

proteins in post-mortem brain. 
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Other synaptic proteins including SNAP25, RAB3A, GAP43, AMPA receptor subunits, and a 

number of other proteins also show promise as CSF biomarkers of synaptic damage and loss 

(24,25,124,125). In addition, recent research proposes inflammatory markers, detectable in the 

CSF, as possible biomarkers of neurodegeneration in AD, though their correlation to synapse 

loss in particular remains unclear (126). Biomarkers of glial activation such as CSF TREM2, 

chitotriosidase, CCL2, and YLK-40 have been observed in AD CSF (127–130). Eventually, a 

panel of synaptic protein biomarkers may be a reliable readout for the different aspects of 

synapse loss (pre-synaptic, synaptic vesicle, and dendritic) and a predictor of memory decline. 

Indeed, a recent study found that a group of synaptic proteins changes in CSF before markers 

of neurodegeneration are observed in AD (131). Although CSF collection is more invasive 

than blood sampling, robust blood-based biomarkers of synaptic damage are not yet available. 

It is, for example, possible to measure neurogranin concentration in plasma, but there is no 

plasma-CSF correlation (119,132). It may be possible to develop higher sensitivity assays and 

analyses of neuron-derived exosomes in blood with advancing technologies (130,133). 
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Figure 2: Amyloid and Tau Biomarkers can be Used to Confirm AD Pathology, and Biomarkers 

of Synaptic Damage and Loss will be Useful for Predicting Cognitive Decline. 
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Finally, functional imaging approaches are additional tools for visualizing the health and 

function of neurons affected by AD. EEG represents a dynamic measurement of synaptic 

function in cortical pyramidal neuronal dendrites that can capture the summed excitatory and 

inhibitory post-synaptic potentials at a macroscopic spatial scale with millisecond time 

resolution (134–137). Overall, quantitative EEG analysis provides the most direct and dynamic 

clinical representation of neuronal and synaptic function in AD patients; however, while it is 

sensitive to changes in neuronal circuit responses resulting from synaptic dysfunction, it cannot 

discriminate between the exact mechanisms of action underlying synaptic dys/function. 

Alterations in quantitative measures derived from EEG data in patients with AD have been 

widely described and have been shown to be sensitive to disease progression (134,138,139) 

and to correlate with CSF biomarkers of AD (140). Furthermore, EEG is non-invasive, robust, 

efficacious, and widely available in hospitals. Although EEG itself is an ‘old’ technique, 

quantitative instead of visual analysis of EEG signals provides a wealth of information and is 

a novel and rapidly developing method in modern neuroscience. Spectral power measures (i.e., 

the percentage of the total brain activity accounted for by a specific wave frequency) in task-

free EEGs can be calculated and reflect the oscillatory activity of the underlying brain network 

responsible for cognitive functioning. In patients with AD, the EEG shows distinct changes in 

spectral power indicating a gradual, diffuse slowing of brain electrical activity with progression 

of the disease (138). In particular, the gradual relative increase of neuronal theta (4-8 Hz) 

activity appears to be a robust sign in early AD. It has been recently demonstrated that theta 

band activity is a marker of future cognitive decline in non-demented amyloid-positive subjects 

with additive value above other markers of disease progression such as medial temporal 

atrophy on MRI (141), and importantly, that its increase can be reversed in response to 

approved AD therapeutics (142–151).  

In addition to EEG, the use of fluorine-18 fluorodeoxyglucose PET (FDG-PET), which enables 

the visualization of glucose metabolism rates in the brain, has been investigated for its use in 

AD. In neurons, the demand for glucose is driven partly by synaptic terminals, which generate 

ATP needed for synthesis, release, and recycling of neurotransmitter molecules, for the 

maintenance of the normal resting potential, and for the recovery from action potentials. The 

cerebral metabolic rate of glucose as measured with FDG-PET provides a direct index of 

synaptic functioning and an indirect measure of synaptic density (152). Therefore, a disruption 
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in glucose metabolism may be a very direct determinant of synaptic dysfunction [reviewed in 

(153)]. The ability to detect changes in glucose metabolism prior to the onset of clinical 

symptoms of AD may aid earlier diagnosis of AD (153). Data from the Alzheimer's Disease 

Neuroimaging Initiative (ADNI) have confirmed longitudinal associations between FDG-PET 

and clinical measures (154) and have suggested that FDG-PET may help to increase the 

statistical power of diagnosis over conventional cognitive measures, aid subject selection, and 

substantially reduce the sample size required for clinical trials (155,156), though these findings 

must be confirmed in broader sample sizes and longer studies, and require further clarification 

regarding their applicability to AD or other types of dementias. Therapeutic trials have 

provided strong support for the use of FDG-PET as a clinically relevant primary biomarker 

outcome in proof of concept studies, that has the power to detect active-placebo differences 

less than half as great as the best clinical measures (157). However, additional studies showing 

a relationship between an effective treatment’s FDG-PET and clinical findings are needed to 

provide further support for its “theragnostic” value. 

A key further issue for future exploration is the longitudinal relationship between biomarkers 

and cognitive outcome measures. Even modest correlations between the two would yield 

helpful evidence of clinical relevance. Recent studies have observed modest correlations 

between the International Shopping List Test, a measure of episodic memory, with various 

volumetric MRI measures and especially hippocampal volume (158). Change over time 

correlations would provide further helpful support. Furthermore, as understanding of these 

biomarkers improves, their use may help in discerning AD from other types of dementias, in 

particular through localization of compromised synapses to the frontal lobe, temporal lobe, and 

other brain regions. Finally, opportunities for biomarker validation are offered by the extension 

of assessment to domains of cognition known to be compromised early in the disease process. 

Recent FDA draft guidance has called for trials to feature the use of ‘sensitive 

neuropsychological measures.’ Commentators on the draft guidance have highlighted the need 

for trials to include measures of spatial memory skills, working memory, attention, and 

executive function (159). 
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Conclusions 

Synapses are essential parts of neurons that form the requisite connections of the neuronal 

networks that underlie cognition. The cognitive impairment in AD closely parallels the loss of 

synapses due to the toxic effects of Aβ, tau, and inflammation. Emerging biomarkers of 

synapse damage reflect such synapse injury and loss in the brain due to disease. Hence, 

biomarkers of synapse damage and loss, especially the use of multiple categories of biomarkers 

in combination with one another, hold great promise as biological measures that should 

correlate with cognitive function in AD. 
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