106,376 research outputs found

    Propeller aeroacoustic methodologies

    Get PDF
    The aspects related to propeller performance by means of a review of propeller methodologies are addressed. Preliminary wind tunnel propeller performance data are presented and the predominent limitations of existing propeller performance methodologies are discussed. Airfoil developments appropriate for propeller applications are also reviewed

    Vertical structures induced by embedded moonlets in Saturn's rings: the gap region

    Full text link
    We study the vertical extent of propeller structures in Saturn's rings. Our focus lies on the gap region of the propeller and on non-inclined propeller moonlets. In order to describe the vertical structure of propellers we extend the model of Spahn and Sremcevic (2000) to include the vertical direction. We find that the gravitational interaction of ring particles with the non-inclined moonlet does not induce considerable vertical excursions of ring particles, but causes a considerable thermal motion in the ring plane. We expect ring particle collisions to partly convert the lateral induced thermal motion into vertical excursions of ring particles. For the gap region of the propeller, we calculate gap averaged propeller heights on the order of 0.7 Hill radii, which is of the order of the moonlet radius. In our model the propeller height decreases exponentially until viscous heating and collisional cooling balance. We estimate Hill radii of 370m and 615m for the propellers Earhart and Bleriot. Our model predicts about 120km for the azimuthal extent of the Earhart propeller at Saturn's 2009 equinox, being consistent with values determined from Cassini images

    Modeling the effects of wind tunnel wall absorption on the acoustic radiation characteristics of propellers

    Get PDF
    Finite element theory is used to calculate the acoustic field of a propeller in a soft walled circular wind tunnel and to compare the radiation patterns to the same propeller in free space. Parametric solutions are present for a "Gutin" propeller for a variety of flow Mach numbers, admittance values at the wall, microphone position locations, and propeller to duct radius ratios. Wind tunnel boundary layer is not included in this analysis. For wall admittance nearly equal to the characteristic value of free space, the free field and ducted propeller models agree in pressure level and directionality. In addition, the need for experimentally mapping the acoustic field is discussed

    Formation of a Propeller Structure by a Moonlet in a Dense Planetary Ring

    Full text link
    The Cassini spacecraft discovered a propeller-shaped structure in Saturn's A ring. This propeller structure is thought to be formed by gravitational scattering of ring particles by an unseen embedded moonlet. Self-gravity wakes are prevalent in dense rings due to gravitational instability. Strong gravitational wakes affect the propeller structure. Here, we derive the condition for formation of a propeller structure by a moonlet embedded in a dense ring with gravitational wakes. We find that a propeller structure is formed when the wavelength of the gravitational wakes is smaller than the Hill radius of the moonlet. We confirm this formation condition by performing numerical simulations. This condition is consistent with observations of propeller structures in Saturn's A ring.Comment: 12 pages, 4 figures. Accepted for publication in ApJ Letter

    Flow-field Survey of an Empennage Wake Interacting with a Pusher Propeller

    Get PDF
    The flow field between a model empennage and a 591-mm-diameter pusher propeller was studied in the Ames 7- by 10-Foot Wind Tunnel with directional pressure probes and hot-wire anemometers. The region probed was bounded by the empennage trailing edge and downstream propeller. The wake properties, including effects of propeller operation on the empennage wake, were investigated for two empennage geometries: one, a vertical tail fin, the other, a Y-tail with a 34 deg dihedral. Results showed that the effect of the propeller on the empennage wake upstream of the propeller was not strong. The flow upstream of the propeller was accelerated in the streamwise direction by the propeller, but the empennage wake width and velocity defect were relatively unaffected by the presence of the propeller. The peak turbulence in the wake near the propeller tip station, 0.66 diameter behind the vertical tail fin, was approximately 3 percent of the free-stream velocity. The velocity field data can be used in predictions of the acoustic field due to propeller-wake interaction

    The Effect of the Sperry Messenger Fuselage on the Air Flow at the Propeller Plane

    Get PDF
    In order to study the effect of the fuselage, landing gear, and engine on the air flow through the propeller, a survey was made in the plane of the Sperry Messenger propeller with the propeller removed. The tests were made in the 20-foot air stream of the propeller research tunnel of the National Advisory Committee for Aeronautics at Langley Field, Virginia. The variation of the velocity with distance from the center in the propeller plane was found to be appreciable and well worth consideration in the design of propellers. It was also found that the velocity through the propeller plane was affected by the presence of the engine, and that the velocity in front of the landing gear was lower than that at other points in the propeller plane having the same radius

    A theoretical investigation of noise reduction through the cylindrical fuselage of a twin-engine, propeller-driven aircraft

    Get PDF
    Interior noise in the fuselage of a twin-engine, propeller-driven aircraft with two propellers rotating in opposite directions is studied analytically. The fuselage was modeled as a stiffened cylindrical shell with simply supported ends, and the effects of stringers and frames were averaged over the shell surface. An approximate mathematical model of the propeller noise excitation was formulated which includes some of the propeller noise characteristics such as sweeping pressure waves around the sidewalls due to propeller rotation and the localized nature of the excitation with the highest levels near the propeller plane. Results are presented in the form of noise reduction, which is the difference between the levels of external and interior noise. The influence of propeller noise characteristics on the noise reduction was studied. The results indicate that the sweep velocity of the excitation around the fuselage sidewalls is critical to noise reduction

    Evaluation of the Langley 4- by 7-meter tunnel for propeller noise measurements

    Get PDF
    An experimental and theoretical evaluation of the Langley 4- by 7- Meter Tunnel was conducted to determine its suitability for obtaining propeller noise data. The tunnel circuit and open test section are described. An experimental evaluation is performed using microphones placed in and on the tunnel floor. The reflection characteristics and background noise are determined. The predicted source (propeller) near-field/far-field boundary is given using a first-principles method. The effect of the tunnel-floor boundry layer on the noise from the propeller is also predicted. A propeller test stand used for part of his evaluation is also described. The measured propeller performance characteristics are compared with those obtained at a larger scale, and the effect of the test-section configuration on the propeller performance is examined. Finally, propeller noise measurements were obtained on an eight-bladed SR-2 propeller operating at angles of attack -8 deg, 0 deg, and 4.6 deg to give an indication of attainable signal-to-noise ratios
    corecore