690,335 research outputs found

    Predictive uncertainty in auditory sequence processing

    Get PDF
    Copyright © 2014 Hansen and Pearce. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms

    Modularity and the predictive mind

    Get PDF
    Modular approaches to the architecture of the mind claim that some mental mechanisms, such as sensory input processes, operate in special-purpose subsystems that are functionally independent from the rest of the mind. This assumption of modularity seems to be in tension with recent claims that the mind has a predictive architecture. Predictive approaches propose that both sensory processing and higher-level processing are part of the same Bayesian information-processing hierarchy, with no clear boundary between perception and cognition. Furthermore, it is not clear how any part of the predictive architecture could be functionally independent, given that each level of the hierarchy is influenced by the level above. Both the assumption of continuity across the predictive architecture and the seeming non-isolability of parts of the predictive architecture seem to be at odds with the modular approach. I explore and ultimately reject the predictive approach’s apparent commitments to continuity and non-isolation. I argue that predictive architectures can be modular architectures, and that we should in fact expect predictive architectures to exhibit some form of modularity

    Folk Psychology and the Bayesian Brain

    Get PDF
    Whilst much has been said about the implications of predictive processing for our scientific understanding of cognition, there has been comparatively little discussion of how this new paradigm fits with our everyday understanding of the mind, i.e. folk psychology. This paper aims to assess the relationship between folk psychology and predictive processing, which will first require making a distinction between two ways of understanding folk psychology: as propositional attitude psychology and as a broader folk psychological discourse. It will be argued that folk psychology in this broader sense is compatible with predictive processing, despite the fact that there is an apparent incompatibility between predictive processing and a literalist interpretation of propositional attitude psychology. The distinction between these two kinds of folk psychology allows us to accept that our scientific usage of folk concepts requires revision, whilst rejecting the suggestion that we should eliminate folk psychology entirely

    The cybernetic Bayesian brain: from interoceptive inference to sensorimotor contingencies

    Get PDF
    Is there a single principle by which neural operations can account for perception, cognition, action, and even consciousness? A strong candidate is now taking shape in the form of “predictive processing”. On this theory, brains engage in predictive inference on the causes of sensory inputs by continuous minimization of prediction errors or informational “free energy”. Predictive processing can account, supposedly, not only for perception, but also for action and for the essential contribution of the body and environment in structuring sensorimotor interactions. In this paper I draw together some recent developments within predictive processing that involve predictive modelling of internal physiological states (interoceptive inference), and integration with “enactive” and “embodied” approaches to cognitive science (predictive perception of sensorimotor contingencies). The upshot is a development of predictive processing that originates, not in Helmholtzian perception-as-inference, but rather in 20th-century cybernetic principles that emphasized homeostasis and predictive control. This way of thinking leads to (i) a new view of emotion as active interoceptive inference; (ii) a common predictive framework linking experiences of body ownership, emotion, and exteroceptive perception; (iii) distinct interpretations of active inference as involving disruptive and disambiguatory—not just confirmatory—actions to test perceptual hypotheses; (iv) a neurocognitive operationalization of the “mastery of sensorimotor contingencies” (where sensorimotor contingencies reflect the rules governing sensory changes produced by various actions); and (v) an account of the sense of subjective reality of perceptual contents (“perceptual presence”) in terms of the extent to which predictive models encode potential sensorimotor relations (this being “counterfactual richness”). This is rich and varied territory, and surveying its landmarks emphasizes the need for experimental tests of its key contributions

    Vanilla PP for Philosophers: A Primer on Predictive Processing

    Get PDF
    The goal of this short chapter, aimed at philosophers, is to provide an overview and brief explanation of some central concepts involved in predictive processing (PP). Even those who consider themselves experts on the topic may find it helpful to see how the central terms are used in this collection. To keep things simple, we will first informally define a set of features important to predictive processing, supplemented by some short explanations and an alphabetic glossary. The features described here are not shared in all PP accounts. Some may not be necessary for an individual model; others may be contested. Indeed, not even all authors of this collection will accept all of them. To make this transparent, we have encouraged contributors to indicate briefly which of the features are necessary to support the arguments they provide, and which (if any) are incompatible with their account. For the sake of clarity, we provide the complete list here, very roughly ordered by how central we take them to be for “Vanilla PP” (i.e., a formulation of predictive processing that will probably be accepted by most researchers working on this topic). More detailed explanations will be given below. Note that these features do not specify individually necessary and jointly sufficient conditions for the application of the concept of “predictive processing”. All we currently have is a semantic cluster, with perhaps some overlapping sets of jointly sufficient criteria. The framework is still developing, and it is difficult, maybe impossible, to provide theory-neutral explanations of all PP ideas without already introducing strong background assumptions

    PRESISTANT: Learning based assistant for data pre-processing

    Get PDF
    Data pre-processing is one of the most time consuming and relevant steps in a data analysis process (e.g., classification task). A given data pre-processing operator (e.g., transformation) can have positive, negative or zero impact on the final result of the analysis. Expert users have the required knowledge to find the right pre-processing operators. However, when it comes to non-experts, they are overwhelmed by the amount of pre-processing operators and it is challenging for them to find operators that would positively impact their analysis (e.g., increase the predictive accuracy of a classifier). Existing solutions either assume that users have expert knowledge, or they recommend pre-processing operators that are only "syntactically" applicable to a dataset, without taking into account their impact on the final analysis. In this work, we aim at providing assistance to non-expert users by recommending data pre-processing operators that are ranked according to their impact on the final analysis. We developed a tool PRESISTANT, that uses Random Forests to learn the impact of pre-processing operators on the performance (e.g., predictive accuracy) of 5 different classification algorithms, such as J48, Naive Bayes, PART, Logistic Regression, and Nearest Neighbor. Extensive evaluations on the recommendations provided by our tool, show that PRESISTANT can effectively help non-experts in order to achieve improved results in their analytical tasks

    Human Computation and Convergence

    Full text link
    Humans are the most effective integrators and producers of information, directly and through the use of information-processing inventions. As these inventions become increasingly sophisticated, the substantive role of humans in processing information will tend toward capabilities that derive from our most complex cognitive processes, e.g., abstraction, creativity, and applied world knowledge. Through the advancement of human computation - methods that leverage the respective strengths of humans and machines in distributed information-processing systems - formerly discrete processes will combine synergistically into increasingly integrated and complex information processing systems. These new, collective systems will exhibit an unprecedented degree of predictive accuracy in modeling physical and techno-social processes, and may ultimately coalesce into a single unified predictive organism, with the capacity to address societies most wicked problems and achieve planetary homeostasis.Comment: Pre-publication draft of chapter. 24 pages, 3 figures; added references to page 1 and 3, and corrected typ

    Predictive biometrics: A review and analysis of predicting personal characteristics from biometric data

    Get PDF
    Interest in the exploitation of soft biometrics information has continued to develop over the last decade or so. In comparison with traditional biometrics, which focuses principally on person identification, the idea of soft biometrics processing is to study the utilisation of more general information regarding a system user, which is not necessarily unique. There are increasing indications that this type of data will have great value in providing complementary information for user authentication. However, the authors have also seen a growing interest in broadening the predictive capabilities of biometric data, encompassing both easily definable characteristics such as subject age and, most recently, `higher level' characteristics such as emotional or mental states. This study will present a selective review of the predictive capabilities, in the widest sense, of biometric data processing, providing an analysis of the key issues still adequately to be addressed if this concept of predictive biometrics is to be fully exploited in the future

    Efficient Scalable Accurate Regression Queries in In-DBMS Analytics

    Get PDF
    Recent trends aim to incorporate advanced data analytics capabilities within DBMSs. Linear regression queries are fundamental to exploratory analytics and predictive modeling. However, computing their exact answers leaves a lot to be desired in terms of efficiency and scalability. We contribute a novel predictive analytics model and associated regression query processing algorithms, which are efficient, scalable and accurate. We focus on predicting the answers to two key query types that reveal dependencies between the values of different attributes: (i) mean-value queries and (ii) multivariate linear regression queries, both within specific data subspaces defined based on the values of other attributes. Our algorithms achieve many orders of magnitude improvement in query processing efficiency and nearperfect approximations of the underlying relationships among data attributes
    corecore