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1. Introduction

The implicit/explicit distinction – as applied to internal representations and to the rules accord-
ing to which they are processed – has played a significant role in the late 20th century, when 
the sciences of cognition saw a shift from symbolic to connectionist accounts of information 
processing underlying cognition. According to the classical symbolic approach, representations 
are explicitly encoded in strings of symbols and processed according to transition rules that are 
(at least sometimes) explicitly stored (Clapin 2002; Dennett 1983). Connectionist modeling 
introduced an altogether different view, where ‘representations’ are not stored in separable, 
localized vehicles but are rather implicit in the connection weights of neurons comprising the 
network; and the ‘knowledge’ of processing rules as implicitly embodied in the dispositions 
of the network to transform input vector of activation into output vectors (Haugeland 1991; 
Ramsey 2007: Ch. 5).

This chapter aims to put the implicit/explicit distinction into service once again to help 
make sense of the changing theoretical landscape of cognitive science. My focus will be on the 
predictive processing (henceforth PP) view of cognition that recently stirred some excitement 
among many philosophers and cognitive (neuro)scientists. According to PP, the brain is in the 
business of minimizing the prediction error, which measures the mismatch between internally 
predicted and actual sensory input. This single idea, the story goes, could explain perception, 
attention, and motor control, as well as potentially scale up to account for more off-line forms 
of cognition.

Two drastically different ways of understanding the commitments of PP have emerged in the 
literature. The ‘intellectualist’ interpretation views prediction error minimization as a process 
that rests on using an internal representation to infer the causes of sensory stimulation. Propo-
nents of the ‘radical’ view argue that PP is best viewed as an enactive (non-representational and 
non-inferential) framework.

Here, I will propose a conciliatory reading of PP, where intellectualist and radical interpreta-
tions correspond to different ways in which predicting sensory states and computing prediction 
errors can be realized. In some cases (those in line with ‘intellectualist’ PP), the representa-
tional notions at use in PP pick out activities of an internal model that serves as an explicit 
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representation. The processes of updating and revising such a model count as genuinely inferen-
tial, although in a fairly minimal sense of implicit inference (that is, although the representations 
are explicit, the rules of processing are not). In other cases (those in line with ‘radical’ PP), the 
representational notions in PP pick out states merely implicit in processing biases attuned to 
statistics of natural scenes. Here, representational talk is arguably best read as a gloss on biased 
feed-forward processing that implicitly ‘predicts’ certain regularities in sensory input. Rather 
than inferring the causes of the sensory input, these implicit ‘predictions’ enable efficient encod-
ing of the input. I will argue that this hybrid reading of PP introduces an interesting spin on 
the philosophical notion that explicit knowing-that presupposes and rests on a background of 
implicit knowing-how (Clapin 2002; Dennett 1983; Ryle 1949/2000).

The discussion is structured as follows. In section 2, I familiarize the reader with basic tenets 
of PP and summarize what intellectualist and radical readings of the framework amount to. 
Section 3 is devoted to distinguishing two types of mechanisms that often go under a single 
umbrella of PP, where mechanisms of one sort employ an explicit representations, while mecha-
nisms of the other sort rely on processing biases that implicitly embody ‘predictions’ about 
sensory regularities. In section 4, I outline the sense in which the mechanisms of the former, 
explicit-representation-using type perform genuine, albeit non-explicit (i.e. implicit or tacit) 
Bayesian causal inference. I end with a brief summary.

2. ‘Intellectualist’ and ‘Radical’ Predictive Processing

2.1 Core Tenets of Predictive Processing

To perceive the world, the cognitive system needs to reduce its uncertainty with respect to 
distal causes of its sensory states.1 One possible way to achieve this is by employing a detector-
based strategy, where pieces of internal machinery selectively react to relevant features of the 
environment (say, the presence of edges, flies, or human faces). However, complications associ-
ated with interpreting the sensory input in terms of its distal causes suggest a different solution. 
These complications have to do, first, with the fact that sensory states are inherently corrupted 
by random noise. And, second, they stem from the fact that the flow of sensory input depends 
on a whole manifold of interacting causes, and there are multiple possible ways of ‘unmixing’ 
the input to yield a perception of a scene. Somehow, the cognitive system has to decide on just 
one interpretation.

Consider, then, a solution to the problem of overcoming sensory ambiguity where the causes 
of sensory states are inferred or predicted, rather than detected (c.f. Bogacz 2017; Clark 2013b, 
2016; Friston 2005, 2010; Hohwy 2013; Rao and Ballard 1999). On this approach, the cogni-
tive system produces a set of hypotheses about the way the sensory signals are generated by their 
worldly causes. The hypotheses regarding the causes of sensory states comprise a generative model. 
Technically, the generative model is defined in terms of a joint probability distribution P(H,D), 
where H stands for hypotheses about the distal causes ‘hidden’ behind the sensory states (e.g. 
edges, flies, or faces) and D stands for ‘observable’ data, namely the sensory input itself (say, the 
retinal image). This joint distribution is equal to a product of the prior distribution P(H), which 
specifies how likely a given hypothesis is prior to obtaining sensory data, and the likelihood 
distribution P(D|H), which expresses the conditional probability of obtaining the data, given 
the hypothesis.2 The generative model can thus serve as a basis for simulating the sensory input 
through drawing samples from the model: one takes a hypothesis from the prior distribution, 
and then, using the likelihood distribution, generates data that this hypothesis deems most likely.
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To subserve perception (rather than free-flowing imagery), the hypotheses derived from the 
generative model ought to become answerable to the input itself (i.e. the samples ‘drawn’ from 
the environment that the model is trying to recapitulate). At this point, the notion of predic-
tion error comes in. The model-based hypotheses are treated as predictions about what streams 
of sensory input are most likely to be obtained. The hypotheses can then be then adjusted by 
measuring the mismatch (for example mean squared error) between the sensory states predicted 
and the states actually sampled. This process enables the system to settle on a hypothesis that 
is most likely true, given the current sensory input. This is equivalent to performing percep-
tual inference by inversing the generative model to yield an approximate posterior distribution 
P(H|D) (later on I will come back to the reservation about the posterior being ‘approximate’). 
In perceptual learning, the parameters of the generative model are adjusted to more effectively 
minimize long-term, average prediction error.

One can think of the statistical structure of the sensory input in terms of a set of nested pat-
terns. Some of those patterns unfold rapidly (e.g. the arrangement of edges may change with every 
saccadic eye movement), while others are more invariant (e.g. ones revealing a stable 3D shape of 
an object), and some may go quite a bit beyond what can be immediately perceived (e.g. slight 
changes in average illumination due to changing seasons). Reflecting this nested structure, the 
generative model itself is thought of as hierarchical. Lower levels of the model predict the flow of 
rapidly changing sensory patterns, while higher levels predict more invariant, ‘abstract’ regulari-
ties. In this hierarchical setting, the job of predicting sensory input is parceled into a series of local 
subproblems, whereby each level L exclusively predicts the activity at the directly adjacent level 
L-1, and serves as input to be predicted at level L+1. In effect, this means that when brain uses the 
model at a given level to predict the activity at a level below, it is using a more abstract description 
of the causes of sensory input to predict causes at a less abstract level of description.

The updating of hypotheses is regulated by estimating the relative precisions of prior knowl-
edge and sensory samples. Precision here is understood formally as inversely proportional to the 
variance of a probability distribution. In the present setting, if the sensory input is estimated to 
be less precise than prior expectations, then perceptual inference proceeds conservatively, i.e. 
it is less perturbed by the prediction error (when trying to find your way in a heavy fog, the 
retinal input may prove close to useless). If the opposite is the case, the inference puts relatively 
more weight on sensory evidence, i.e. the prediction error (e.g. when trying to make sense of a 
completely new situation for which one has no prior knowledge). It is precision estimation that 
accounts, on this story, for attention. Allocation of attention is explained in terms of precision-
based weighting of prediction errors.

This theoretical toolkit can also be employed to account for motor control. PP builds on tra-
ditional predictive theories of motor control (Grush 2004; Pickering and Clark 2014) by claiming 
that action just is a way of minimizing the prediction error (Friston 2010). Roughly, movement 
amounts to intervening on the world to induce sensory data that conform to some prior hypoth-
esis about one’s action (e.g. ‘I am now reaching for a piece of pizza’) or a sequence of actions 
(also called ‘policy’, e.g. ‘I am faithful to my diet’). If successful, acting results in minimizing the 
prediction error. Motor control thus construed relies on a kind of self-fulfilling prophecy, where to 
initiate movement, the brain needs to decrease the estimated precision of current proprioceptive 
prediction error (regardless of its actual precision) and increase the estimated precision of the prior 
which is to be actualized by action (and which is false at the onset of movement).

Predictive processing (PP), then, is the view that perception, attention and action all result 
from using a hierarchical generative model to generate predictions and minimize their preci-
sion-weighted errors.
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2.2 Intellectualist PP

The preceding description of PP made heavy use of the ‘intellectualist’ vision of cognition as 
consisting of building a model to perform inferences about the world hidden beyond the veil of 
sensory states. How literal should we treat this description to be? Is the brain really constructing 
models to infer the world? Or is this sort of talk merely a heuristically useful (albeit perhaps in 
many respects misleading) gloss on a theory that, under closer scrutiny, is much more in line 
with embodied/enactive/embedded views of cognition?

This is where the philosophical literature on PP breaks down into two seemingly mutually 
inconsistent approaches, an ‘intellectualist’ and a ‘radical’ one.3 Space forbids me from discuss-
ing in detail the many nuanced ways in which those outlooks differ. I will restrict this general 
summary to two dimensions along which the distinction can be drawn. These dimensions have 
to do with PP’s commitment (1) to internal representations and (2) to the idea of perception and 
action being underpinned by inference. As will transpire later on, these two axes of the debate 
over PP can be connected to the implicit/explicit distinction, which applies to (explicit vs 
implicit) representations and to the (explicit vs implicit) rules that guide information-processing, 
including inferential rules.

Regarding the commitment to representation, proponents of the intellectualist PP take 
the generative model to perform the function of an internal representation (Gładziejewski 2016; 
Kiefer and Hohwy 2017, 2019; Williams 2017). In particular, the generative model constitutes 
a representation grounded in exploitable structural similarity (an S-representation), akin to car-
tographic maps or scale models. This essentially means that: (1) the generative model encodes 
a hierarchical relational structure of hidden or latent variables (‘hypotheses’); (2) the capacity to 
minimize the prediction error depends on the degree to which the model’s relational structure 
(including its dynamics) maps onto the nested causal structure which produces sensory states. 
For example, the conditional dependencies between hidden variables may map onto the causal 
relations between respective entities in the world, thus contributing to the successful prediction 
of the sensory input.4 Like maps, scale models and other paradigmatic cases of representations 
grounded in structural resemblance, the generative model is explicit in that its constituents (i.e. 
neurally implemented hidden variables; see section 3.2) act as separable representational vehicles 
that bear intentional content in virtue of their placement in a larger relational structure.5

As for the commitment to inference, the proponents of intellectualist PP see it as the latest 
incarnation of a historical lineage of theories that construe perception as unconscious inference 
(Gregory 1980; Helmholtz 1855). The idea is that the predictive brain updates its representa-
tions in a way that conforms to the famous Bayes rule:

P(H|D) = P(D|H) P(H)/P(D)

Note that this equation partially corresponds to inverting a generative model (notice the 
numerator on the right-hand side) to compute the posterior P(H|D). However, exact Bayesian 
inference requires one to calculate the right-hand-side denominator P(D). Because the value of 
P(D) is conditional on all the hypotheses that could potentially explain data, Bayesian inference 
is computationally intractable for any hypothesis space of non-trivial size. Thus, the idea is that 
the brain approximates Bayesian inference. Here is an outline of how this may work.

Think first of an exact Bayesian inference as an incremental process where, to use a catch-
phrase, yesterday’s posteriors become today’s priors. Assume that you start with some prior 
which is a normal (i.e. Gaussian, bell-shaped) probability distribution. Assume further that the 
sensory samples actually obtained are best explained by a hypothesis which is also defined as 
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a normal distribution (this is the likelihood). Making the assumption that we are dealing with 
normal distributions is mathematically crucial here, as distributions of this form can be fully 
described in terms of their mean and variance, which simplifies calculations. The distance 
between the means of both distributions (i.e. the prior and the likelihood) is the prediction error. 
A posterior is formed that updates the prior in light of the prediction error. The posterior turns 
into a prior in the next iteration of inference, and then a new posterior is formed in light of 
consecutive prediction error. Over time, this process of incrementally learning and revising your 
priors should reduce the average prediction error.

In PP, the brain is thought to implement an algorithm that indirectly maximizes the posterior 
probabilities of hypotheses solely by gradually minimizing the prediction error. That is achieved 
by way of applying a gradient descent on the prediction error, whereby the system ‘tinkers’ 
with the model to optimize its ability to minimize the error, eventually converging on a true 
posterior mean. This procedure will tend to produce results that reliably correspond to what 
exact Bayesian inference would yield. As Hohwy puts it, the crux is “to turn around the obser-
vation that inference leads to less prediction error, and say that, if a system is somehow able to 
continuously minimize prediction error, then the system will approximate Bayesian inference” 
(Hohwy 2020: 211).

2.3 Radical PP

A common thread unifying ‘radical’ approaches to PP consists in the denial that representations 
or inferences are involved in PP, or at least in proposing a substantially deflated reading of those 
commitments. However, beyond that, the radical camp is much more internally theoretically 
diverse.

There are two general ways in which the radical view is usually unpacked in the literature. 
One relies on interpreting the commitments of PP through the lens of Karl Friston’s Free 
Energy Principle (FEP; for useful discussions of FEP, see Friston 2010; Hipolito 2019; Kirchoff, 
Parr, et al. 2018). FEP is a mathematically sophisticated way of understanding self-organization 
in statistical terms and it applies to any system that manages to keep itself in a non-equilibrium 
steady state (i.e. which avoids dispersal or keeps itself separate from its environment). From this 
broad and abstract perspective, PP can be seen as a particular realization or ‘implementation’ 
of the FEP. Some authors have forcefully argued that the FEP-centric way of looking at things 
largely reconfigures how PP itself should be understood, namely as an enactive, nonrepresenta-
tional theory (Allen and Friston 2018; Bruineberg et al. 2016; Ramstead, Kirchoff, et al. 2020; 
however, see also more representation-friendly recent work on FEP in: Ramstead, Friston, 
et al. 2020). For the present purposes, however, I want to set the FEP aside. This is partly due 
to limitations of space, but also because the working assumption of this chapter that PP can 
stand on its own as an account of cognitive architecture, in a broad sense of being a theory of an 
overarching information processing strategy that underlies (much of) cognition. PP presumably 
applies to only some self-organizing systems, namely those equipped with mechanisms whose 
causal architecture realizes the computations postulated by the theory (Miłkowski 2013; Pic-
cinini 2015). PP thus construed can be held in a way that is agnostic with respect to its exact 
connection to the FEP (although see Hohwy 2021).

It is the second sort of arguments for the radical reading of PP that I do want to focus on 
here. These arguments purport to establish that the Bayesian, representation-centric rendering 
of the theory misconstrues the actual workings of PP-based systems.

When it comes to the representational commitment, authors that subscribe to the radi-
cal reading deny that any of the explanatory posits of PP, including the generative model, 
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play genuinely representational roles in the cognitive system. Kirchhoff and Robertson (2018) 
argue that, formally, minimizing the average prediction error is equivalent to maximizing 
mutual information between the internal states of the system and the states of the environ-
ment (mutual information is a measure of how well the generative model fares at reduc-
ing uncertainty about the states of the world). But this simply means that the internal states 
come to reliably covary or carry Shannon information regarding distal causes of sensory input. 
Now, most philosophers agree that carrying Shannon information is not sufficient for being 
a content-bearing, representational state (although see Isaac 2019). The functional profile of 
information carriers in cognitive theories often boils down to mere causal mediation (Hutto 
and Myin 2013; Ramsey 2007). On this view, then, the function of the generative model is too 
causal-mediator-like to count as representational (see also Hutto 2018; Orlandi 2016, 2018). 
Furthermore, this stance may be only apparently inconsistent with the fact that scientists and 
philosophers who subscribe to PP routinely employ content-involving vocabulary invoking 
‘hypotheses’ entertained by the brain. Such contentful states may be interpreted in a deflation-
ary way, as purely instrumental or fictional (i.e. not literally true) posits that help researchers 
make sense of how the internal dynamics of the cognitive system relate to the external envi-
ronment (Downey 2018).

As for the commitment to inference, proponents of radical PP argue that despite Bayes-
ian appearances, the framework does not postulate inferences in the full-bloodied sense of 
rational transitions between contentful states. This point has been very clearly fleshed out by 
Nico Orlandi (2016, 2018; see also Anderson 2017). Ever since Helmholtz (1855), the infer-
entialist view of perception is motivated by the ‘ambiguity of the senses’ argument, whereby 
the brain supposedly needs to rely on prior knowledge to decide between numerous possible 
explanations of the sensory input. But perhaps the sensory ambiguity is oversold here. Orlandi 
(2016, 2018) points to empirical research on natural scene statistics, which aims to discover 
recurring statistical patterns in images produced by natural environments (Geisler 2008). The 
proposal is that this research demonstrates that the sensory input is much less underdetermined 
by environmental causes than is often assumed. Thus, the structure of the input signal contains 
enough information to significantly reduce the uncertainty about its distal causes. Rather than 
search through an enormous hypothesis space (even using approximate shortcuts), the brain may 
simply rely on the sensory signal itself, assuming that the sensory/perceptual mechanisms are 
appropriately sensitive or attuned to the statistics of natural scenes. This approach does not have 
to deny that ‘priors’, in some sense of the word, may play a role in disambiguating the input if 
needed. But priors may be realized as mere processing biases (Orlandi 2016), which nudge the 
feedforward processing of signals towards ecologically valid interpretations (where ‘interpreta-
tion’ is read nonrepresentationally, e.g. as attunement to affordances). It would be superfluous 
and unjustified to consider such ecologically tuned processing inferential.

3. Explicit and Implicit Representation in Predictive Processing

3.1 Implicit ‘Representations’ in Predictive Processing

Let us now zoom in on the representational commitments of PP. The aim here is to argue that 
there are two quite different (although related) types of information-processing mechanisms that 
come under the common umbrella of ‘PP’. One type of mechanism merely implicitly ‘predicts’ 
sensory patterns and, overall, fits the radical reading of PP. The other type of mechanism relies 
on an explicit internal model of the environment, and hence fits the reading of PP favored by 
the ‘intellectualists’.
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My focus will be on PP as applied to perception. In this domain, PP overlaps with a family of 
algorithms traditionally dubbed ‘predictive coding’ (see Huang and Rao 2011; Spratling 2017). 
At heart, predictive coding is a computational strategy in which predictable patterns in some 
original signal are used to compress this signal by exclusively encoding the prediction errors, that 
is, those parts of the original signal that do not match the predictable patterns.

Consider a seminal work on predictive coding that obtains at the very earliest stages of vision 
(Srinivasan et al. 1982; see also Huang and Rao 2011; Spratling 2017). Retinal ganglion cells 
encode a signal that is sent, through the optic nerve, for further processing upstream in the 
visual cortex. However, this signal itself is an output of information processing that takes place 
within the retina, starting at photoreceptors and then mediated by layers composed of bipolar, 
horizontal and amacrine cells. The synaptic connections between those layers are often set 
up in such a way that a ganglion cell will be triggered if the light intensity at the center of its 
receptive filed differs from the weighted sum of the intensities of ‘pixels’ surrounding the center. 
Crucially, this process is ecologically grounded in the statistics of natural scenes. Small patches 
of retinal images tend to be uniform in light intensity, which means that, usually, the center of 
the ganglion cell’s receptive field matches its surround. From this perspective, the activation of 
a ganglion cell signifies a prediction error between an ecologically grounded ‘prediction’ and the 
image sampled from the environment.

Note that this canonical example of predictive coding underlying early vision is in some 
crucial respects different from how PP is usually portrayed in the literature (including the brief 
exposition I provided in section 2). The processing is purely feedforward (but also includes lat-
eral inhibition, see Srinivasan et al. 1982) rather than bidirectional. The retina cannot be mean-
ingfully described as estimating the external causes of the pattern to which it is (predictively) 
sensitive. The prediction errors encoded in activations of ganglion cells are not used to correct 
the internal hypotheses about the causes of input. What is at stake here is more accurately 
described in terms of the retina producing a sparse encoding of the raw input image by subtract-
ing spatial (and temporal, see Srinivasan et al. 1982) redundancies (see also Barlow 1961).6 The 
resulting message is encoded in fewer bits and can be effectively ‘squeezed’ through the infor-
mational bottleneck of the optic nerve.

Even in this simple case, representational notions may prove useful in making sense of what 
the retina is doing. One may say that the retinal processing ‘predicts’ that input images are 
locally uniform in terms of light intensity, or that the ganglion cells encode errors with respect 
to a ‘hypothesis’ or ‘prediction’ that the center of a receptive field matches the surround. What 
should we make of such intentional ascriptions? I propose that the best way to read them is by 
appeal to a notion of ‘implicit’ representation (Clapin 2002; Dennett 1983; Haugeland 1991; 
Ramsey 2007: Ch. 5; Ramsey: this volume). Although this notion is ambiguous and has his-
torically meant different things for different authors, for the present purposes I interpret it in a 
way that is nicely illustrated by the famous Dennett’s classic example of a chess-playing com-
puter program to which one attributes the desire to take the queen early (see also Ramsey, this 
volume). Although there is no localized, separable, causally active internal vehicle that bears 
this content, the overall dispositional pattern of the program’s behavior embodies the desire 
implicitly. To generalize, the hallmark of implicit representations in the present sense is the 
lack internal structures where separable items act as vehicles that encode intentional contents. 
Instead, on this notion, (implicit-) representational ascriptions are grounded in the fact that a 
given information-processing system is wired in a way that allows it to embody dispositions to 
behave or respond ‘as if ’ it (explicitly) represented the world to be certain way.

In the context of PP in particular, the notion of implicit representation would cover cases where 
the cognitive machinery is set up so as to allow the organism to be attuned to or appropriately 
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responsive to relevant statistical regularities, without explicitly representing those regularities or 
the causal structures that subserve them (see Orlandi 2016). So, to get back to the retina example, 
the ‘knowledge’ or ‘predictions’ one may want to attribute to the retina are implicitly embodied 
in the capacity or disposition to turn raw light intensity distributions into sparse messages. This 
disposition is tuned to natural statistics of retinal images, and hence the retina implicitly embodies 
‘knowledge’ or ‘prediction’ of those statistics. Of course, the retina has this disposition in virtue 
of its feedforward synaptic wiring. But it would be misleading to say that this wiring is explicitly 
encoding a model or a representation of how the signals are generated.7

A worry may be raised that the retina is a special case and that the example hardly gener-
alizable beyond the very periphery of perceptual processing.8 However, it seems that the case 
is generalizable to a non-trivial degree, and that it is just one illustration of a larger recurring 
strategy where, due to the hard-wiring of the nervous system, purely feedforward processing 
implicitly ‘predicts’ the natural statistics of the input (for an extensive review, see Teufel and 
Fletcher 2020). Other examples may include the findings that in the primary visual cortex, 
neurons tuned to the cardinal orientations outnumber those tuned to oblique orientations, 
echoing natural orientation statistics (Li et al. 2003); or that neurons in the visual cortex tuned 
to particular object categories tend to have their receptive fields predictively biased towards 
locations usually occupied by the objects belonging to those categories (Kaiser, Quek, et al. 
2019). Akins (1996) provides an intriguing case of more imperative (desire-like) ‘predictions’ of 
this kind, whereby the variable distribution of thermoreceptors on different parts of the body 
(e.g. the scalp vs the hands) implicitly embodies preferences regarding how cold/hot the organ-
ism can allow those parts to become.

I submit that the understanding of representational states as merely implicit in feedforward 
processing biases fits the radical view of PP much better than the intellectualist one. The line 
between implicit representationalism and nonrepresentationalism is thin. We may treat inten-
tional talk in such contexts as aiming to highlight how the internal processing relates to the 
statistics of natural scenes. For example, the center-surround antagonism of the retinal ganglion 
cells makes sense once you consider what those cells are doing in the context of natural image 
statistics. However, this sort of connection to the environment is arguably not literally represen-
tational (Downey 2018), and may be more parsimoniously cashed out in terms of ecological 
embeddedness of perceptual/sensory mechanisms (Orlandi 2016, 2018). Relatedly, it has been 
forcefully argued that the notion of implicit ‘representation’ does not even pick out represen-
tations in an explanatorily valuable sense of the term (Ramsey 2007: Ch. 5; see also Ramsey, 
Chapter 1, this volume), which, in line with the radical view, invites a purely nonrepresenta-
tional reading.

3.2 Predictive Processing and Explicit Representations

The way PP is usually understood in the literature today originates from a significant extension 
of vanilla predictive coding, put forward by Rao and Ballard (1999), and subsequently refined 
by Friston (2005; see also a precursor to this approach in Dayan, Hinton et al. 1995; Hinton 
2007). I want to argue that this development constitutes a shift from implicit PP to a version 
that relies on an explicit model of the environment.

Consider an extremely simple, informal illustration of this extended predictive coding, 
which I  adopt from Bogacz (2017), who in turn draws on the model proposed by Friston 
(2005). Imagine a simple organism trying to perceptually estimate the value of some hidden 
environmental variable, V. Assume that V is the size of an item of food, which the organism 
needs to estimate while only having direct access to a sensory signal, s (corresponding to, say, a 
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state of a light receptor). This signal depends causally on V, such that s is a function of V, g(V). 
Suppose further that the organism is equipped with a prior expectation Vp about what the most 
likely size of a food item is before obtaining any input. Given some technical details which I will 
leave out here, the job faced by the organism is then equivalent to computing P(V|s), that is, a 
posterior distribution over V, given s.

Importantly, in this model, instead of establishing the whole posterior distribution, the 
organism attempts to estimate a determinate value φ, which encodes the most likely value 
of V, given the current sensory signal, s (see Figure 9.1). The idea is that the system may 
start with a random guess, and then engage in a recursive trial-and-error procedure (gradient 
descent) to gradually bring φ closer to the mean of the posterior distribution. This process 
relies on minimizing the prediction error. The estimate φ generates an inhibitory prediction 
signal that is a function of φ, g(φ). This prediction is propagated downwards and compared to 
s, giving rise to a prediction error εs, which measures the difference between s and the predic-
tion. The error is weighted according to the variance Σs of the sensory signal, and propagated 
up the hierarchy to allow revision of φ. Simultaneously, the updating of φ is driven by a prior 
estimate Vp. Again, this is realized by minimizing the prediction error εp, i.e. the difference 
between φ and Vp, weighted by the variance of the prior, Σp (see Figure 9.1). The upshot is 
that φ is constrained both by the incoming sensory signals and the prior, weighted by their 
respective reliabilities.

At the implementational level, the variables s, φ, εs and εp correspond to occurently active 
nodes and may be implemented in the activity of individual neurons or neural populations. 
The prior Vp acts as a model parameter and is encoded in the strength of a synaptic feedback 
connection between a ‘tonically active’ neuron and the node encoding φ (Bogacz 2017; see also 
Friston 2005). The values of Σp, Σs similarly act as parameters and are implemented in self-
inhibitory synaptic connections of the error nodes.

Now, what this sort of scheme and the retinal predictive coding have in common is that they 
both rely on the idea that predictions (in a broad sense) are used to compute prediction errors to 
efficiently encode data.9 However, there are crucial differences as well. The model just discussed 
involves a bidirectional information flow that includes feedback projections. Under this regime, 
predictions correspond to descending inhibitory signals. The ascending prediction error signals 
are not the endpoint of processing, but allow the correction of internal estimates.

Most importantly for the present purposes, on the scheme discussed earlier, the descending 
predictions are based on the estimates of the cause(s) of the input signal. The prior assumptions 
about the causal structure generating the sensory input are encoded in Vp.10 The ‘best guess’ 
about the current state of the environment is encoded in φ. The relation between φ and the 
prediction signal g(φ) encodes the functional relations between the worldly causes and their 

Sensory
signal

Posterior
estimate

Prior
estimate

S �s �p

g(�)

Vp

Vp
�

�p�s

Figure 9.1  The bidirectional predictive coding scheme, adapted from Bogacz (2017). Arrows signify 
excitatory connections, and the lines ending with circles signify inhibitory connections. See 
main text for details.
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sensory effects. Because prior assumptions about the most likely causes of the sensory input and 
about how these causes generate the input correspond to specifiable components of the neural 
architecture, we may say that the generative model is explicitly encoded. Furthermore, the idea 
that this model constitutes an explicit representation gets traction once we recognize that, func-
tionally, it fits the ‘job description’ of a representation (Ramsey 2007). Like many things we pre-
theoretically regard as representations, it relies on structural similarity, allows learning through 
error correction, guides adaptive action (in realistic models which encompass both perception 
and action) and can potentially underpin more off-line types of cognition (see Gładziejewski 
2016 for an extensive defense of this view).11

As should be clear from the preceding discussion, the idea that PP postulates an explicit 
internal representation of the environment is very much in line with the intellectualist reading 
of PP. Crucially, however, the point here is not to argue whether the cognitive system engages 
in PP by implicitly ‘predicting’ natural scene statistics (rehabilitating the radical view of PP) or 
by storing an explicit model of the environment (rehabilitating intellectualism). Instead, it is 
perfectly sound to think that the cognitive system could rely on both strategies. Not only could 
these strategies peacefully co-exist, but they may functionally complement each other in inter-
esting ways.

In fact, some empirical results and theoretical considerations give leverage to the idea that 
intellectualism and radicalism about PP can be married along those lines. In visual perception, a 
rapid (150ms) feedforward phase of processing is followed by a second phase, carried out using 
feedback projections (Kreiman and Serre 2020). From the PP perspective, the initial feedfor-
ward sweep could correspond to ‘implicit’ predictions, and the onset of the ‘feedback’ phase 
would demarcate the point at which explicit generative model(s) kicks in. This would also sug-
gest a functional division of labor, as we know that while the initial phase enables quick object 
recognition, the feedback phase is required to interpret the meaning of complex visual scenes 
by flexibly relating them to background knowledge (see Kreiman and Serre 2020 for an exten-
sive discussion).12 Relatedly, it has been argued that the ‘predictions’ implicit in feed-forward 
processing track context-invariant regularities in the sensory input, and the job of mechanisms 
corresponding to (what I construe as) explicit PP is to flexibly track context-dependent sensory 
patterns (Teufel and Fletcher 2020; see also the distinction between ‘structural’ and ‘contextual’ 
priors in Seriès and Seitz 2013).13

Philosophically, this discussion sheds new light on the old idea – due to Ryle (1949/2000), 
and raised in the cognitive-scientific context by Dennett (1983) – that explicit knowledge-that 
requires a background of practical abilities (implicit ‘know-how’). The conciliatory view of PP 
vindicates this overall approach in the following way. Orlandi (2016) notes that a challenge to 
intellectualist PP lies in the sheer vastness of the space of all the prior hypotheses that the cog-
nitive system could bring to bear when interpreting the sensory input. How does the system 
constrain this space to only consider a subset of (relevant) hypotheses? The present view suggests 
that much of the computational or epistemic load is distributed to implicit machinery. This way, 
the explicit machinery is freed from the need to learn and represent certain prior assumptions 
(that small patches of the retinal input tend to be uniform; that vertical and horizontal edges 
dominate visual scenes; that clouds are usually found in the upper side of the visual field; that it 
is more dangerous to expose one’s head to cold than it is to expose one’s hands, etc.). Instead, 
much of what is ‘known’ or ‘predicted’ about the environment is implicit in feedforward infor-
mation-processing mechanisms. Speculatively, perhaps the abstract priors regarding space, time, 
or objecthood that structure perception are (at least in part) implicitly embodied in this way. If 
true, this would dovetail with the Kantian reading of the implicit/explicit distinction in cogni-
tive science (Clapin 2002).



D
ow

nl
oa

de
d 

B
y:

 1
0.

3.
97

.1
43

 A
t: 

10
:1

0 
19

 O
ct

 2
02

3;
 F

or
: 9

78
10

03
01

45
84

, c
ha

pt
er

9,
 1

0.
43

24
/9

78
10

03
01

45
84

-1
2

Predictive Processing, Implicit and Explicit

137

4. Implicit Bayesian Inference in Predictive Processing

Are PP-based cognitive systems inferential? What would it mean to say that they are? Here 
again I want to recommend a conciliatory approach, on which predictive cognitive systems are 
partially inferential. In particular, they are inferential to the degree to which they use explicit 
generative models. Intellectualists about PP get this part of the story right. However, the part 
of the story that encompasses computational strategies where feedforward processing implicitly 
embodies predictions is non-inferential, in line with claims made by the ‘radicals’.

To put this discussion in context, the questions surrounding the status of Bayesian inference 
in cognitive science reach beyond PP. PP is just one incarnation of a larger trend of employing 
Bayesian probability theory to model cognitive phenomena (c.f. Griffiths et al. 2008). Accord-
ing to one influential criticism, Bayesian cognitive modeling confounds descriptive use of 
Bayesian mathematics with an explanatory use (Bowers and Davis 2012; Colombo and Seriès 
2012; Jones and Love 2011). Bayesian models typically aim to establish that human perfor-
mance on some cognitive task overlaps with an optimal Bayesian solution. However, the mere 
fact that subject’s response patterns can be captured using Bayesian formalism does not any way 
guarantee that the internal causal mechanisms responsible for those patterns perform or implement 
Bayesian inference.

We may situate this against an even wider philosophical background, as the issue at hand 
relates to a distinction between behavior that conforms to a rule and behavior that is guided by a 
rule (Davies 2015). Quine (1970) once used this distinction to argue against Chomskyan lin-
guistics. He pointed out that the fact that linguistic behavior conforms to a set of syntactic rules 
(to which a subject has no conscious access) does not imply that these rules genuinely guide 
this behavior. In fact, one might posit a completely different set of unconscious rules which 
correspond to the very same set of behaviors, and, as long as we rely on behavioral data alone 
(which was Quine’s assumption), there will be no principled way to decide which rules guide 
the behavior. The aforementioned criticism of modern Bayesian models in cognitive science 
boils down to raising a similar point: the fact that task performance conforms to the Bayes rule 
does not imply that it is guided by it.

A natural way out of this problem for anyone subscribing to a Bayesian-inferential view of 
cognition (including those who buy into intellectualist PP) would consist in trying to spell out 
conditions under which a given system is guided by the Bayes rule. Arguably, these conditions 
should have to do with whether the Bayesian inferences postulated by a cognitive model map 
onto or correspond to causal transactions within a cognitive mechanism responsible for a given 
explanandum phenomenon (Miłkowski 2013; Piccinini 2015). This, however, is easier said than 
done, as one needs to steer the account so that it avoids specifying, on the one hand, conditions 
that are too restrictive or, on the other hand, excessively liberal ones. An exemplary approach 
belonging to the former category would require the Bayes rule to be explicitly (even if without 
conscious awareness of the subject) encoded or stored in the mechanism, and have each par-
ticular instance of inference ‘consult’ and the follow this rule. Because exact Bayesian inference 
is intractable, such an account would be utterly naïve.

An example of the opposite, too-relaxed sort of approach would consist in simply equating 
predictive coding, in all its forms (see Spratling 2017), with Bayesian inference. A position of 
this kind would treat even the predictive coding scheme employed by the retina as an instance 
of Bayesian inference. This would be gratuitous to say the least, as retinal processing hardly aims 
to estimate the most likely hypotheses about the causes of sensory stimulation. Its function, 
to repeat, is to produce a sparse encoding of the raw image registered by photoreceptors. In 
fact, predictive coding is best seen as an ‘algorithmic motif ’, which may serve several different 
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computational goals, Bayesian inference being just one (Aitchison and Lengyel 2017). To gen-
eralize this point, whenever the cognitive system ‘predicts’ states of affairs simply by virtue of 
the implicit attunement of feedforward processing to natural scene statistics, the usage of hefty 
cognitivist notions like ‘inference’ will be at least deeply problematic. Proponents of radical PP 
are right in this respect.

How about the cases like the one discussed in section 3.2, where the prediction error mini-
mization relies on an explicit model of the environment? This is where an argument can be 
made that, in line with intellectualist PP, genuine (approximate) Bayesian inferences sometimes 
guide the cognitive system. Of course, an explicit inscription of the Bayes rule is nowhere to 
be found in Figure 9.1. However, the proposal here is that although the representations at play 
are explicitly encoded, the rule of processing (i.e. the Bayes rule) is itself implicit in the causal 
transitions between the representational states. In other words, although the updating of rep-
resentational states merely conforms to Bayes rule (without explicitly following it), the states 
undergoing the updating are states of components of an internal causal mechanism, and so there 
is a clear sense in which the rule guides perception, rather than merely describes it. That causal 
transitions conform to Bayes rule should already be clear from the preceding discussion in sec-
tions 2.2 and 3.2. Two considerations are crucial. First, the computational goal of a mechanism 
like the one present in Figure  9.1 corresponds to the computational objective of Bayesian 
(perceptual) inference, i.e. it consists in estimating the most likely causes of the sensory signal. 
Second, as long as the output posterior estimate (φ) relies on prediction error minimization, 
with the prior estimate (Vp) and the current sensory samples (s) serving as inputs, the result will 
tend to approximate the true posterior distribution that exact Bayesian inference would yield.14

Before I conclude, I want to briefly sketch out another, perhaps more revealing sense in 
which implicit inference is at play in PP. What I have in mind here is inspired by a solution 
proposed by Evans (1981) to the aforementioned problem raised by Quine. Evans put forward 
an account of non-behavioral evidence that could determine whether the behavior of a given 
system merely conforms to a rule or is guided by it. The account relies on the notion of ‘causal 
systematicity’. Put simply, according to this view, the rule is guiding the system as long the 
behavioral manifestations of said rule have a common causal origin in the system.

Take an illustrative example (Davies 1995, 2015). Suppose that a person’s behavior conforms 
to a rule according to which if a word starts with ‘b’, then its pronunciation starts with the 
sound /B/. We intend to establish whether the person’s behavior is also guided by this rule. To 
achieve this, the proposal goes, we need to verify whether particular behaviors that conform to 
this rule are causally mediated by a single state of the subject. That is, under the hypothesis that 
the /b/-B rule guides the system, the particular instantiations of behavior conforming to this 
rule count as manifestations of a complex disposition underpinned by a single internal causal 
state. If, however, we found out that that the person’s brain stores a long look-up table such that 
each instantiation of the rule-conforming behavior is generated by a different causal state, the 
claim that the person is guided by the ‘b’-/B/ rule would be falsified.

Note now that in (explicitly representational) PP, the error-minimizing brain gradually 
uncovers the hidden causal structure that produces the sensory input (Clark 2013b; Friston 
2005; Kiefer and Hohwy 2017; Hohwy 2013). Over time, through learning (or iterated percep-
tual inference), the raw stream of sensory stimulation is ‘unmixed’ into a generative model com-
prising latent variables that capture the complex, nonlinear interactions between the worldly 
causes of the sensory input. The structure of the model can be expressed as a Bayesian network 
(see Danks 2014 for an extensive discussion of cognitive representations construed as Bayes-
ian networks). That is, the model can be regarded as a network comprising (1) nodes that 
encode the values of latent variables,15 and (2) edges which encode dependencies between 



D
ow

nl
oa

de
d 

B
y:

 1
0.

3.
97

.1
43

 A
t: 

10
:1

0 
19

 O
ct

 2
02

3;
 F

or
: 9

78
10

03
01

45
84

, c
ha

pt
er

9,
 1

0.
43

24
/9

78
10

03
01

45
84

-1
2

Predictive Processing, Implicit and Explicit

139

those variables. On this view, each single node – simply in virtue of its position within a larger 
relational structure – systematically encodes a whole range of inferential connections16 between 
itself and other nodes (see also Clark 2013a; Kiefer 2017, 2019; Williams 2018). In addition, 
the network is productive in that, in principle, the system could endogenously tinker with the 
values of certain variables to run counterfactual simulations that do not have to correspond to 
any previous perception (see also Clark 2013a; Kiefer and Hohwy 2017; Williams 2020).

What this amounts to is that whenever the cognitive system brings a given latent variable to 
bear on a cognitive process – be it online in perceptual inference or in counterfactual imagery – 
this process will be mediated by a single node in the network. This cognitive story becomes 
causal once we allow the generative model to be explicitly encoded in the system so that the 
nodes correspond to internal causal states or components of a causal mechanism (although the 
exact implementational details may turn out quite messy). Hence, we may expect the inferential 
transitions attributable to the system to map onto causal transitions in the system (see also Kiefer 
2017, 2019). Seen this way, the predictive cognitive system – to the extent that it encodes an 
explicit generative model of the environment – embodies causal systematicity that allows it to 
count as inferentially guided rather than merely inferentially describable.

5. Conclusions

In this chapter, I set out to show that the implicit/explicit distinction in cognitive science – in 
particular, as regarding the nature of representation and the rules of information processing – 
can illuminate our understanding of predictive processing. I proposed that depending on the 
details, PP may come in two flavors: (1) explicitly representational and implicitly inferential, 
or (2) implicitly representational and non-inferential. This distinction at least partially maps 
onto the ‘intellectualist’ and ‘radical’ readings of PP, respectively. The upshot is that ‘intel-
lectuals’ and ‘radicals’ may both get part of the story right, in that there is some theoretical 
and empirical traction to the claim that the brain uses both aforementioned strategies to deal 
with sensory uncertainty. This position also restores the classical idea that explicit cognition 
is built on top of implicit know-how. In the present, PP-based guise, this means the compu-
tational strain on explicit, Bayesian mechanisms is reduced by the fact that those mechanisms 
process signals already ‘filtered’ by expectations implicitly embodied by feedforward process-
ing biases.17

Related topics

Chapters 1, 10, 11

Notes
 1 Readers already familiar with PP may wish to skip this part and proceed straight to section 2.2.
 2 For expository purposes, I  am considering a simple, non-hierarchical model with just one level of 

hypotheses that directly predict the flow of input. Things become more complex in hierarchical mod-
els, where predictions that a hypothesis at a given level makes about sensory data are mediated by a set 
of hypotheses at intermediate levels of the generative model (see main text).

 3 This is not to deny that some attempts to peacefully marry the two interpretations have been made 
(see Allen and Friston 2018; Clark 2016; Constant et al. 2019; Dołęga 2017; Korbak 2021; Rutar et al. 
2022).

 4 It may be noted that similarity does not have to constitute a strict isomorphism between the two 
structures. Partial mapping will suffice as long as it is exploitable for the system (see Gładziejewski 
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and Miłkowski 2017). Moreover, this view of representation is largely sympathetic to embodied and 
action-centric theories of cognition, as it essentially treats representations as guides of adaptive action 
(Gładziejewski 2016; Williams 2017).

 5 Note that there is a particular sense in which structural representations may also represent implicitly. 
Namely, some relations which are not explicitly encoded in the structure of the representational vehicle 
may be implicit in this structure in that it is possible to infer them from the relations that are explicitly 
represented (for discussions of ‘implicit’ representation understood in terms of representation that is 
derivable from an explicit representation, see Dennett 1983; Ramsey 2007, this volume).

 6 This is not to suggest that there is a dichotomy between producing a sparse encoding of a signal and 
estimating or modeling its causes. Explicit generative models of causal structures that generate input (to 
be discussed in section 3.2) also encode compressed information about sensory data. The point here is 
that in the case of the retina, creating a sparse code of the input signal is the sole computational goal 
which is achieved without modeling the causes of the signal.

 7 This claim is consistent with the idea that there is also an entirely non-semantic meaning of ‘prediction’ 
(as a matching between two non-semantic, physical signals) on which the activities of neighboring 
‘surround’ bipolar cells in the retina predict the activity of ‘center’ cells, and the activity of the output 
ganglion cell is determined by the degree to which this prediction is ‘accurate’ (see also Anderson and 
Chemero 2013; Cao 2020).

 8 I am indebted to Alex Kiefer for raising this point.
 9 In cases like the one just discussed, the internal model of how the sensory data are generated (see main 

text) constitutes an informationally parsimonious encoding of the data (Huang and Rao 2011).
 10 The example assumes that a single variable is sufficient to describe the environment. In more realistic 

scenarios, prior knowledge would encompass multiple interrelated (also hierarchically) hidden vari-
ables mirroring, to some biologically affordable degree, the complex causal dependencies in the envi-
ronment. In those more sophisticated cases the idea that (explicit) PP involves structural representations 
becomes clearer.

 11 Note that in our example, φ will covary with or carry Shannon information about the sizes of food 
items. It would be manifestly wrong, however, to draw from this a conclusion that the whole set-up 
boils down to using detectors or causal mediators. In explicit PP, the covariance is established through 
predictive, error-corrected modeling of the environment. More generally, what is decisive in figuring 
out whether representations are involved in a given story is the mechanics of how the informational 
relationship is established, for example, through modeling vs detector-like causal dependence (see 
Kiefer and Hohwy 2017).

 12 It needs to be stressed that, for now, this is a speculative interpretation of empirical results that requires 
further research. It may be the case that the distinction between the feedforward sweep and the feed-
back phase does not map nicely onto the distinction between implicit predictions/representations 
(embodied in feedforward processing biases) and the explicit generative model. I am grateful to Alex 
Kiefer for pointing this out.

 13 Note, however, that the invariant-and-inflexible vs contextual-and-flexible division may be oversim-
plified, as there are demonstrations of flexible adaptation to changing input statistics taking place even 
at the earliest, retinal stage of visual processing (Hosoya et al. 2005).

 14 There are other relevant considerations that I leave out here for the sake of space. These have to do 
with the fact that representational transitions in mechanisms of this kind should naturally exhibit truth-
preservation and tend to maximize coherence among representations, which are traditional hallmarks 
of genuinely inferential processes (see Kiefer 2017 for an extensive discussion).

 15 Importantly, the contents encoded by the nodes do not have to correspond to personal-level concep-
tual or propositional contents. Because the nodes in Bayesian networks are ‘atomic’ and lack a con-
stituent syntactic structure, doubt has been cast over whether these networks (and PP in general) can 
capture the ‘rich’ systematicity of human thought (Williams 2018; see Kiefer 2019 for an attempt to 
answer this challenge).

 16 Note, however, that the claim is not that the system performs Bayesian inference simply in virtue of the 
fact that it encodes a Bayesian network (Bayesian networks do not have to undergo Bayesian updating, 
see Danks 2014).

 17 I thank Alex Kiefer for his insightful critical remarks on the previous version of this chapter. My work 
on this chapter was kindly supported by the National Science Center in Poland (grant no. 2019/33/B/
HS1/00677).
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