117 research outputs found

    Power Decoupling Control for Single-Phase Grid-Tied PEMFC Systems With Virtual-Vector-Based MPC

    Get PDF
    The fuel cell grid-tied power generation system usually includes a dc-dc converter and a dc-ac inverter. In a single-phase system, inherent low-order current pulsations are introduced into the system, which can have harmful effects on the fuel cell stack. For example, reducing the output voltage and output efficiency, a reduction in service life, and even accelerates the degradation rate of the membrane electrode of a proton exchange membrane fuel cell (PEMFC). In addition, dc/ac coupling power can cause distortion in the dc input current and ac grid current. To eliminate the input ripple and ensure high ac power quality on the grid side, this paper proposes a novel power decoupling control for single-phase grid-tied PEMFC systems, which uses an improved model predictive control (MPC) algorithm. With the help of the virtual vector methods, which are realized by a two-stage optimization method, excellent tracking effect and robustness can be ensured. Simulations and experimental results show that the proposed algorithm can not only completely eliminate the input current ripple and reduce the total harmonic distortion (THD) of ac current on the grid side, but also improve the transient performance of the system

    Enhanced Automatic-Power-Decoupling Control Method for Single-Phase AC-to-DC Converters

    No full text
    Existing control schemes for single-phase ac-to-dc converters with active power-decoupling function typically involve a dedicated power-decoupling controller. Due to the highly coupled and nonlinear nature of the single-phase system, the design of the power-decoupling controller (typically based on the small-signal linear control techniques) is cumbersome, and the control structure is complicated. Additionally, with the existing power-decoupling control, it is hard to achieve satisfied dynamic responses and robust circuit operation. Following a recently proposed automatic-power-decoupling control scheme, this paper proposes a nonlinear control method that can achieve enhanced large-signal dynamic responses with strong disturbance rejection capability without the need for a dedicated power-decoupling controller. The proposed controller has a simple structure, of which the design is straightforward. The control method can be easily extended to other single-phase ac-to-dc systems with active power-decoupling function. Simulation and experimental results validate the feasibility of the proposed control method on a two-switch buck-boost PFC rectifier prototype

    Perturbation Estimation Based Nonlinear Adaptive Power Decoupling Control for DFIG Wind Turbine

    Get PDF
    This paper proposes a perturbation estimation based nonlinear adaptive power decoupling controller for doubly fed induction generator based wind turbines (DFIG-WTs). Perturbation states are defined to include the nonlinearities, uncertainties of the system model, the cross-coupling between control loops, and external disturbances. Perturbation observers are designed to estimate the fast time-varying perturbation states. With perturbation estimation, the DFIG-WT system is fully decoupled, and an output feedback control can be designed for the control of rotor currents. Rotor current references are calculated based on the steady-state relation between active/reactive power and rotor current, and stator dynamic is ignored. The performance of the proposed controller is evaluated and verified via both simulation and experimental tests

    Transformerless Microinverter with Low Leakage Current Circulation and Low Input Capacitance Requirement for PV Applications

    Get PDF
    The inevitable depletion of limited fossil fuels combined with their harmful footprint on the environment led to a global pursuit for alternative energy sources that are clean and inexhaustible. Renewable energies such as wind, biomass and solar are the best alternative energy candidates, with the latter being more suitable for GCC countries. Besides, the energy generated from photovoltaic (PV) modules is one of the elegant examples of harnessing solar energy, as it is clean, pollutant-free and modular. Furthermore, recent advances in PV technology, especially grid-connected PV systems revealed the preeminence of using multiple small inverters called (Microinverters) over using the conventional single inverter configuration. Specifically, the break-even cost point can be reached faster and the system modularity increases with microinverters usage. Nonetheless, due to microinverter’s small ratings designers prefer transformerless designs because transformer removal achieves higher efficiency and power density. However, the transformer removal results in loss of galvanic isolation that leads to dangerous leakage current circulation that affects system safety. Another issue with microinverters is that since they are installed outside their bulky DC-Link electrolytic capacitor lifetime deteriorates the system reliability because electrolytic capacitor failure rate increases as temperature increases. Moreover, the DC-Link capacitor is used to decouple the 2nd order power harmonic ripples that appear in single-phase systems. Thus, the objective of this thesis is to design an efficient transformerless microinverter that has low leakage current circulation and low input capacitance requirement with a minimum number of active switches. In other words, the objective is to increase the safety and the reliability of the system while maintaining the high efficiency. Eventually, the configuration selected is the transformerless differential buck microinverter with LCL filter and it is modeled with passive resonance damping and active resonance damping control

    A four-leg buck inverter for three-phase four-wire systems with the function of reducing DC-bus ripples

    Get PDF
    Three-phase four-wire inverters are usually used to feed unbalanced three-phase loads with neutral currents. The unbalanced three-phase loads also bring to second-order ripples in the DC bus, which should be mitigated by bulky DC-bus capacitors to improve the system performance. In this case, the DC capacitance is designed for the second-order ripple frequency instead of the switching frequency, so it can not be reduced even when SiC MOSFETs are adopted to achieve high switching frequency. Although various topologies of three-phase four-wire inverters has been proposed to provide the path for neutral currents, they cannot handle the second-order ripples. Also, some active power decoupling solutions can be adopted, but they require additional active swithes and components, which increases the cost of the system. In this paper, a four-leg buck inverter is proposed, which consists of four DC-DC buck converters. Each buck converter is independently controlled. This topology can not only provide neutral currents, but also reduce the second-order ripples in the DC bus with active power decoupling control. The proposed topology doesn't require any additional active switches comparing to the conventional topologies with neutral legs. The effectiveness of proposed topology is verified by the simulation in MATLAB/Simulink

    Integration of an Active Filter and a Single-Phase AC/DC Converter with Reduced Capacitance Requirement and Component Count

    Get PDF
    Existing methods of incorporating an active filter into an AC/DC converter for eliminating electrolytic capacitors usually require extra power switches. This inevitably leads to an increased system cost and degraded energy efficiency. In this paper, a concept of active-filter integration for single-phase AC/DC converters is reported. The resultant converters can provide simultaneous functions of power factor correction, DC voltage regulation, and active power decoupling for mitigating the low-frequency DC voltage ripple, without an electrolytic capacitor and extra power switch. To complement the operation, two closed-loop voltage-ripple-based reference generation methods are developed for controlling the energy storage components to achieve active power decoupling. Both simulation and experiment have confirmed the eligibility of the proposed concept and control methods in a 210-W rectification system comprising an H-bridge converter with a half-bridge active filter. Interestingly, the end converters (Type I and Type II) can be readily available using a conventional H-bridge converter with minor hardware modification. A stable DC output with merely 1.1% ripple is realized with two 50-μF film capacitors. For the same ripple performance, a 900-μF capacitor is required in conventional converters without an active filter. Moreover, it is found out that the active-filter integration concept might even improve the efficiency performance of the end converters as compared with the original AC/DC converter without integration

    Power Decoupling Control and Optimization for a Photovoltaic Inverter in D-Q Rotation Frame

    Get PDF
    In the past decade, solar energy, the fastest growing renewable energy, has been a growing interest in integration to the utility grid. Power electronics converters play important role in renewable energy integration, e.g., integrate the distributed photovoltaic (PV) panels to the grid. In many applications, particularly in the residential area, a single-phase rather than three-phase inverter is used to regulate the voltage from one form to the other while tracking the maximum power point of the PV system. The input voltage and current are DC and its maximum power is desired to be a constant value. However, in the single-phase PV inverter, the sinusoidal voltage and current waveform makes the output power pulsated with double frequency, which results in the power mismatch between the input and the output. Therefore, it is necessary to use energy buffer to balance the power, i.e., the power decoupling. In this work, a power decoupling method first is developed in d-q rotation frame and is optimized so that the energy buffer can be minimized. The power decoupling controller designed in the d-q frame has the superiority of simplicity so that the traditional proportional integral (PI) control can be used. Besides, a composite power decoupling method which includes both DC side passive and AC side active power decoupling is developed. Due to the use of two stage power decoupling, the energy buffer, e.g., capacitance at the DC and AC side, is minimized. Meanwhile, the important functions such as the maximum power point tracking (MPPT) and relatively high power quality are achieved

    A ripple reduction method for a two stages battery charger with multi-winding transformer using notch filter

    Get PDF
    This paper presents a two-stage battery charger consisting of a bridgeless Totem-pole power factor correction (TP-PFC) circuit and a full bridge converter with a multi-winding transformer. By using this transformer the cell equalizing operation can be achieved with no additional circuitry. In addition, a double-line frequency ripple reduction method is proposed to address the low frequency current ripples issues existing in both primary and secondary winding of the transformer which is caused by the voltage ripples across the intermediate DC link bus. Control and analysis of the converter at different operation modes is illustrated in detail and simulation results validate the effectiveness of the proposed converter and control algorithm

    Internal Dynamics Stabilization of Single-Phase Power Converters with Lyapunov-Based Automatic-Power-Decoupling Control

    Get PDF
    • …
    corecore