13,841 research outputs found

    Screening by coral green fluorescent protein (GFP)-like chromoproteins supports a role in photoprotection of zooxanthellae

    No full text
    Green fluorescent protein (GFP)-like pigments are responsible for the vivid colouration of many reef-building corals and have been proposed to act as photoprotectants. Their role remains controversial because the functional mechanism has not been elucidated. We provide direct evidence to support a photoprotective role of the non-fluorescent chromoproteins (CPs) that form a biochemically and photophysically distinct group of GFP-like proteins. Based on observations of Acropora nobilis from the Great Barrier Reef, we explored the photoprotective role of CPs by analysing five coral species under controlled conditions. In vitro and in hospite analyses of chlorophyll excitation demonstrate that screening by CPs leads to a reduction in chlorophyll excitation corresponding to the spectral properties of the specific CPs present in the coral tissues. Between 562 and 586 nm, the CPs maximal absorption range, there was an up to 50 % reduction of chlorophyll excitation. The screening was consistent for established and regenerating tissue and amongst symbiont clades A, C and D. Moreover, among two differently pigmented morphs of Acropora valida grown under identical light conditions and hosting subclade type C3 symbionts, high CP expression correlated with reduced photodamage under acute light stress

    Phototesting and photoprotection in LE

    Get PDF
    Photosensitivity and induction of skin lesions following UV radiation is a common problem of patients with cutaneous and systemic forms of lupus erythematosus. The detrimental effect of UV radiation to patients with lupus erythematosus was already recognized in the last century. Skin lesions can now be provoked under standardized conditions allowing the diagnosis and classification of patients with photosensitive disorders. The aim of this review is to give an overview on the history, test procedure and test results in patients with lupus erythematosus

    Rapid colour changes in Euglena sanguinea (Euglenophyceae) caused by internal lipid globule migration

    Get PDF
    The accumulation of red pigments under chronic stress is a response observed in most groups of oxygenic photoautotrophs. It is thought that the red pigments in the cell shield the chlorophyll located underneath from the light. Among these red pigments, the accumulation of carotenoids is one of the most frequent cases. However, the synthesis or degradation of carotenoids is a slow process and this response is usually only observed when the stress is maintained over a period of time. In the Euglenophyte Euglena sanguinea, this is due to the accumulation of a large amount of free and esterified astaxanthin (representing 80% of the carotenoid pool). While reddening is a slow and sometimes irreversible process in other phototrophs, reducing the efficiency of light harvesting by chlorophyll, in E. sanguinea it is highly dynamic, capable of shifting from red to green (and vice-versa) in 10-20 min. This change is not due to de novo carotenogenesis, but to the relocation of cytoplasmic lipid globules where astaxanthin accumulates. Thus, red globules migrate from the centre of the cell to peripheral locations when photoprotection is demanded. This protective system seems to be so efficient that other classical mechanisms are not operative in this species. For example, despite the presence and operation of the diadino-diatoxanthin cycle, nonphotochemical quenching (NPQ) is almost undetectable. Since E. sanguinea forms extensive floating colonies, reddening can be observed at much greater scale than at a cellular level, the mechanism described here being one of the fastest and most dramatic colour changes attributable to photosynthetic organisms at cell and landscape level. In sum, these data indicate an extremely dynamic and efficient photoprotective mechanism based on organelle migration more than on carotenoid biosynthesis that prevents excess light absorption by chlorophylls reducing the need for other protective processes related to energy dissipation.This work was supported by the Basque Government [UPV/EHU-GV IT-1018-16] [UPV/EHU PPG17/67 – GV IT-1040-16], and by the Spanish Ministry of Economy and Competitiveness (MINECO) and the European Research and Development Foundation (FEDER) through (i) [CTM2014-53902-C2-2-P] national grant and (ii) a “Juan de la Cierva-Incorporación” postdoctoral grant [IJCI-2014-22489] to BFM

    Sunscreens - Which and what for?

    Get PDF
    It is well established that sun exposure is the main cause for the development of skin cancer. Chronic continuous UV radiation is believed to induce malignant melanoma, whereas intermittent high-dose UV exposure contributes to the occurrence of actinic keratosis as precursor lesions of squamous cell carcinoma as well as basal cell carcinoma. Not only photocarcinogenesis but also the mechanisms of photoaging have recently become apparent. In this respect the use of sunscreens seemed to prove to be more and more important and popular within the last decades. However, there is still inconsistency about the usefulness of sunscreens. Several studies show that inadequate use and incomplete UV spectrum efficacy may compromise protection more than previously expected. The sunscreen market is crowded by numerous products. Inorganic sunscreens such as zinc oxide and titanium oxide have a wide spectral range of activity compared to most of the organic sunscreen products. It is not uncommon for organic sunscreens to cause photocontact allergy, but their cosmetic acceptability is still superior to the one given by inorganic sunscreens. Recently, modern galenic approaches such as micronization and encapsulation allow the development of high-quality inorganic sunscreens. The potential systemic toxicity of organic sunscreens has lately primarily been discussed controversially in public, and several studies show contradictory results. Although a matter of debate, at present the sun protection factor (SPF) is the most reliable information for the consumer as a measure of sunscreen filter efficacy. In this context additional tests have been introduced for the evaluation of not only the protective effect against erythema but also protection against UV-induced immunological and mutational effects. Recently, combinations of UV filters with agents active in DNA repair have been introduced in order to improve photoprotection. This article reviews the efficacy of sunscreens in the prevention of epithelial and nonepithelial skin cancer, the effect on immunosuppression and the value of the SPF as well as new developments on the sunscreen market. Copyright (C) 2005 S. Karger AG, Basel

    Identifying the psychosocial predictors of ultraviolet exposure to the face in patients with xeroderma pigmentosum:A study of the behavioural factors affecting clinical outcomes in this genetic disease

    Get PDF
    BACKGROUND: For patients with xeroderma pigmentosum (XP), the main means of preventing skin and eye cancers is extreme protection against ultraviolet radiation (UVR), particularly for the face. We have recently developed a methodology for objectively measuring photoprotection behaviour (‘UVR dose to facial skin’) and have found that the degree of photoprotection varies greatly between patients with XP. We have previously identified factors affecting photoprotection behaviour in XP using a subjective measure of photoprotection. Here, we have used this objective methodology to identify the factors which determine photoprotection behaviour in XP. METHODS: We studied 29 psychological, social, demographic and clinical variables in 36 patients with XP. We have previously objectively measured UVR protection (by measuring the dose of UVR reaching the skin of the face over a 3-week period) in these patients. Here, we use linear mixed-effects model analysis to identify the factors which lead to the differences in degree of photoprotection observed in these patients. RESULTS: Psychosocial factors accounted for as much of the interindividual variation in photoprotection behaviour (29%) as demographic and clinical factors (24%). Psychosocial factors significantly associated with worse UVR protection included: automaticity of the behaviours, and a group of beliefs and perceptions about XP and photoprotection known to associate with poor treatment adherence in other diseases. CONCLUSIONS: We have identified factors contributing to poor photoprotection in XP. Identifying these potentially reversible psychosocial features has enabled us to design an intervention to improve photoprotection in patients with XP, aiming to prevent skin and eye cancers in these patients

    Existing antioxidant levels are more important in acclimation to supplemental UV-B irradiation than inducible ones: Studies with high light pretreated tobacco leaves

    Get PDF
    Greenhouse grown tobacco plants were exposed to supplemental ultraviolet irradiation (280-400 nm, UV-B centered) for 6 days and changes in their photosynthesis (gas exchange and electron transport) and general and specific antioxidant activities were measured. UV irradiation corresponded to 8.95 kJ m-2 d-1 biologically effective dose and was supplemented to below ambient (200 μmol m-2 s-1 photon flux density) photosynthetic photon flux density (PPFD, 400-700 nm). Two groups of plants, which were different in their leaf antioxidant capacities due to one of them having been acclimated to high irradiance (1000 μmol m-2 s-1 PPFD) before the UV treatment, responded differently. High light pretreated leaves lost approximately 25% of photosynthetic activity during the UV exposure and showed no change either in the amounts of UV-absorbing pigments or antioxidant levels. On the other hand, leaves which were exposed to UV irradiation without the preceding high light acclimation had 60% lower photosynthesis by the end of the treatment, and increased antioxidant activities. Our results emphasize the importance of base antioxidant levels over inducible pools in leaf responses to low doses of UV irradiation and may also contribute to hypotheses on acclimation under field conditions

    The Functional Significance of Black-Pigmented Leaves: Photosynthesis, Photoprotection and Productivity in Ophiopogon planiscapus ‘Nigrescens’

    Get PDF
    Black pigmented leaves are common among horticultural cultivars, yet are extremely rare across natural plant populations. We hypothesised that black pigmentation would disadvantage a plant by reducing photosynthesis and therefore shoot productivity, but that this trait might also confer protective benefits by shielding chloroplasts against photo-oxidative stress. CO2 assimilation, chlorophyll a fluorescence, shoot biomass, and pigment concentrations were compared for near isogenic green- and black-leafed Ophiopogon planiscapus ‘Nigrescens’. The black leaves had lower maximum CO2 assimilation rates, higher light saturation points and higher quantum efficiencies of photosystem II (PSII) than green leaves. Under saturating light, PSII photochemistry was inactivated less and recovered more completely in the black leaves. In full sunlight, green plants branched more abundantly and accumulated shoot biomass quicker than the black plants; in the shade, productivities of the two morphs were comparable. The data indicate a light-screening, photoprotective role of foliar anthocyanins. However, limitations to photosynthetic carbon assimilation are relatively small, insufficient to explain the natural scarcity of black-leafed plants
    corecore