147,136 research outputs found

    Anti-phospholipid-antibodies in patients with relapsing polychondritis

    Get PDF
    Relapsing polychondritis (RP) is an extremly rare multisystemic disease thought to be of autoimmune origin. In order to assess if RP is associated with anti-phospholipid antibodies (aPL), clinical data and sera of 21 patients with RP were collected in a multicentre study. Concentration of anti-cardiolipin antibodies (aCL) (IgG-, IgM-and IgA-isotypes), anti-phosphatidylserine-antibodies (aPS) (IgG-and IgM-isotypes) and anti-β-2-glycoprotein I-antibodies (aβ2 GPI) were measured by ELISA. In eight patients aCL were found to be elevated. One patient had elevated aPS. No patient had elevated aβ2 GPI. No patient had clinical signs and symptoms of a aPL syndrome. Interestingly, the two RP patients with the highest aPL had concomitant systemic lupus erythematosus (SLE). Therefore the presence of elevated aPL in RP is probably more closely related to an associated SLE than to RP itself. There is no convincing evidence that aPL are associated with RP

    A minimal biochemical route towards de novo formation of synthetic phospholipid membranes.

    Get PDF
    All living cells consist of membrane compartments, which are mainly composed of phospholipids. Phospholipid synthesis is catalyzed by membrane-bound enzymes, which themselves require pre-existing membranes for function. Thus, the principle of membrane continuity creates a paradox when considering how the first biochemical membrane-synthesis machinery arose and has hampered efforts to develop simplified pathways for membrane generation in synthetic cells. Here, we develop a high-yielding strategy for de novo formation and growth of phospholipid membranes by repurposing a soluble enzyme FadD10 to form fatty acyl adenylates that react with amine-functionalized lysolipids to form phospholipids. Continuous supply of fresh precursors needed for lipid synthesis enables the growth of vesicles encapsulating FadD10. Using a minimal transcription/translation system, phospholipid vesicles are generated de novo in the presence of DNA encoding FadD10. Our findings suggest that alternate chemistries can produce and maintain synthetic phospholipid membranes and provides a strategy for generating membrane-based materials

    In vivo stability of ester- and ether-linked phospholipid-containing liposomes as measured by perturbed angular correlation spectroscopy

    Get PDF
    To evaluate liposome formulations for use as intracellular sustained-release drug depots, we have compared the uptake and degradation in rat liver and spleen of liposomes of various compositions, containing as their bulk phospholipid an ether-linked phospholipid or one of several ester-linked phospholipids, by perturbed angular correlation spectroscopy. Multilamellar and small unilamellar vesicles (MLVs and SUVs), composed of egg phosphatidylcholine, sphingomyelin, distearoyl phosphatidylcholine (DSPC), dipalmitoyl phosphatidylcholine (DPPC) or its analog dihexadecylglycerophosphorylcholine (DHPC), and cholesterol plus phosphatidylserine, and containing (111)In complexed to nitrilotriacetic acid, were injected intravenously in rats. Recovery of (111)In-labeled liposomes in blood, liver, and spleen was assessed at specific time points after injection and the percentage of liposomes still intact in liver and spleen was determined by measurement of the time-integrated angular perturbation factor ([G22(∞)] of the (111)In label. We found that MLVs but not SUVs, having DHPC as their bulk phospholipid, showed an increased resistance against lysosomal degradation as compared to other phospholipid-containing liposomes. The use of diacyl phospholipids with a high gel/liquid-crystalline phase-transition temperature, such as DPPC and DSPC, also retarded degradation of MLV, but not of SUV in the dose range tested, while the rate of uptake of these liposomes by the liver was lower

    The role of phospholipid as a solubility- and permeability-enhancing excipient for the improved delivery of the bioactive phytoconstituents of Bacopa monnieri

    Get PDF
    In an attempt to improve the solubility and permeability of Standardized Bacopa Extract (SBE), a complexation approach based on phospholipid was employed. A solvent evaporation method was used to prepare the SBE-phospholipid complex (Bacopa Naturosome, BN). The formulation and process variables were optimized using a central-composite design. The formation of BN was confirmed by photomicroscopy, Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), and Powder X-ray Diffraction (PXRD). The saturation solubility, the in-vitro dissolution, and the ex-vivo permeability studies were used for the functional evaluation of the prepared complex. BN exhibited a significantly higher aqueous solubility compared to the pure SBE (20-fold), or the physical mixture of SBE and the phospholipid (13-fold). Similarly, the in-vitro dissolution revealed a significantly higher efficiency of the prepared complex (BN) in releasing the SBE (\u3e 97%) in comparison to the pure SCE (~ 42%), or the physical mixture (~ 47%). The ex-vivo permeation studies showed that the prepared BN significantly improved the permeation of SBE (\u3e 90%), compared to the pure SBE (~ 21%), or the physical mixture (~ 24%). Drug-phospholipid complexation may thus be a promising strategy for solubility enhancement of bioactive phytoconstituents

    Coarse-Grained Models of Biological Membranes within the Single Chain Mean Field Theory

    Full text link
    The Single Chain Mean Field theory is used to simulate the equilibrium structure of phospholipid membranes at the molecular level. Three levels of coarse-graining of DMPC phospholipid surfactants are present: the detailed 44-beads double tails model, the 10-beads double tails model and the minimal 3-beads model. We show that all three models are able to reproduce the essential equilibrium properties of the phospholipid bilayer, while the simplest 3-beads model is the fastest model which can describe adequately the thickness of the layer, the area per lipid and the rigidity of the membrane. The accuracy of the method in description of equilibrium structures of membranes compete with Monte Carlo simulations while the speed of computation and the mean field nature of the approach allows for straightforward applications to systems with great complexity.Comment: Accepted for publication in Soft Matte

    NMR studies of membrane structure and dynamics

    Get PDF
    Over the past decade, there has been considerable interest in the motional state of the phospholipid bilayer membrane. The motivation underlying these efforts has been the contention that the phospholipid bilayer is the basic matrix in which membrane proteins are embedded to form the biological membrane, and that the permeability and mechanical properties of the membrane, as well as the enzymatic activity of membrane proteins, are dependent upon the fluidity of the bilayer, especially the motional state of the hydrocarbon chains
    corecore