21 research outputs found

    Partial discharge denoising for power cables

    Get PDF
    Partial discharge (PD) diagnostics is considered a major and effective tool for the monitoring of insulating conditions of power cables. As such, a large amount of off-line or online PD measurements have been deployed in power cables during the past decades. However, challenges still exist in PD diagnostics for power cables. Noise is one of the challenges involved in PD measurement. This thesis develops new algorithms based on the characteristics of both PD signals and noise to improve the effectiveness of wavelet-based PD denoising. In the meantime, it presents new findings in the application of empirical mode decomposition (EMD) in PD denoising. Wavelet-based technique has received high attention in the area of PD denoising, it still faces challenges, however, in wavelet selection, decomposition scale determination, and noise estimation. It is therefore the first area of interest in this thesis to improve the effectiveness of existing wavelet-based technique in PD detection by incorporating proposed algorithms. These new algorithms were developed based on the difference of entropy between transformed PD signals and noise, and the sparsity of transformed PD signals corrupted by noise. One concern commonly expressed by critics of wavelet-based technique is a pre-defined wavelet is applied in wavelet-based technique. EMD is an algorithm that can decompose a signal based on the signal itself. Thus, the second area of interest in this thesis is to further investigate the application of EMD in PD denoising; a technique that does not require the selection of a pre-defined signal to represent the "unknown" signal of interest. A new method for relative mode selection (RMS) was proposed based on the entropy of each intrinsic mode function (IMF). Although this new method cannot outperform the existing ones, it reveals that RMS is not as important as claimed in the application of EMD in signal denoising. Also, PD signals, especially those with lower magnitudes, can receive serious distortion through EMD-based denoising. Finally, comparisons between wavelet-based and EMD-based denoising were implemented in the following aspects, i.e., executing time, distortion, effectiveness, adaptivity and robustness. Results unveil that improved wavelet-based technique is more preferable as it can present better performance in PD denoising.Partial discharge (PD) diagnostics is considered a major and effective tool for the monitoring of insulating conditions of power cables. As such, a large amount of off-line or online PD measurements have been deployed in power cables during the past decades. However, challenges still exist in PD diagnostics for power cables. Noise is one of the challenges involved in PD measurement. This thesis develops new algorithms based on the characteristics of both PD signals and noise to improve the effectiveness of wavelet-based PD denoising. In the meantime, it presents new findings in the application of empirical mode decomposition (EMD) in PD denoising. Wavelet-based technique has received high attention in the area of PD denoising, it still faces challenges, however, in wavelet selection, decomposition scale determination, and noise estimation. It is therefore the first area of interest in this thesis to improve the effectiveness of existing wavelet-based technique in PD detection by incorporating proposed algorithms. These new algorithms were developed based on the difference of entropy between transformed PD signals and noise, and the sparsity of transformed PD signals corrupted by noise. One concern commonly expressed by critics of wavelet-based technique is a pre-defined wavelet is applied in wavelet-based technique. EMD is an algorithm that can decompose a signal based on the signal itself. Thus, the second area of interest in this thesis is to further investigate the application of EMD in PD denoising; a technique that does not require the selection of a pre-defined signal to represent the "unknown" signal of interest. A new method for relative mode selection (RMS) was proposed based on the entropy of each intrinsic mode function (IMF). Although this new method cannot outperform the existing ones, it reveals that RMS is not as important as claimed in the application of EMD in signal denoising. Also, PD signals, especially those with lower magnitudes, can receive serious distortion through EMD-based denoising. Finally, comparisons between wavelet-based and EMD-based denoising were implemented in the following aspects, i.e., executing time, distortion, effectiveness, adaptivity and robustness. Results unveil that improved wavelet-based technique is more preferable as it can present better performance in PD denoising

    Enhanced partial discharge signal denoising using dispersion entropy optimized variational mode decomposition

    Get PDF
    This paper presents a new approach for denoising Partial Discharge (PD) signals using a hybrid algorithm combining the adaptive decomposition technique with Entropy measures and Group-Sparse Total Variation (GSTV). Initially, the Empirical Mode Decomposition (EMD) technique is applied to decompose a noisy sensor data into the Intrinsic Mode Functions (IMFs), Mutual Information (MI) analysis between IMFs is carried out to set the mode length K. Then, the Variational Mode Decomposition (VMD) technique decomposes a noisy sensor data into K number of Band Limited IMFs (BLIMFs). The BLIMFs are separated as noise, noise-dominant, and signal-dominant BLIMFs by calculating the MI between BLIMFs. Eventually, the noise BLIMFs are discarded from further processing, noise-dominant BLIMFs are denoised using GSTV, and the signal BLIMFs are added to reconstruct the output signal. The regularization parameter [Formula: see text] for GSTV is automatically selected based on the values of Dispersion Entropy of the noise-dominant BLIMFs. The effectiveness of the proposed denoising method is evaluated in terms of performance metrics such as Signal-to-Noise Ratio, Root Mean Square Error, and Correlation Coefficient, which are are compared to EMD variants, and the results demonstrated that the proposed approach is able to effectively denoise the synthetic Blocks, Bumps, Doppler, Heavy Sine, PD pulses and real PD signals

    A Research on Dimension Reduction Method of Time Series Based on Trend Division

    Get PDF
    The characteristics of high dimension, complexity and multi granularity of financial time series make it difficult to deal with effectively. In order to solve the problem that the commonly used dimensionality reduction methods cannot reduce the dimensionality of time series with different granularity at the same time, in this paper, a method for dimensionality reduction of time series based on trend division is proposed. This method extracts the extreme value points of time series, identifies the important points in time series quickly and accurately, and compresses them. Experimental results show that, compared with the discrete Fourier transform and wavelet transform, the proposed method can effectively process data of different granularity and different trends on the basis of fully preserving the original information of time series. Moreover, the time complexity is low, the operation is easy, and the proposed method can provide decision support for high-frequency stock trading at the actual level

    Robust Andrew's sine estimate adaptive filtering

    Full text link
    The Andrew's sine function is a robust estimator, which has been used in outlier rejection and robust statistics. However, the performance of such estimator does not receive attention in the field of adaptive filtering techniques. Two Andrew's sine estimator (ASE)-based robust adaptive filtering algorithms are proposed in this brief. Specifically, to achieve improved performance and reduced computational complexity, the iterative Wiener filter (IWF) is an attractive choice. A novel IWF based on ASE (IWF-ASE) is proposed for impulsive noises. To further reduce the computational complexity, the leading dichotomous coordinate descent (DCD) algorithm is combined with the ASE, developing DCD-ASE algorithm. Simulations on system identification demonstrate that the proposed algorithms can achieve smaller misalignment as compared to the conventional IWF, recursive maximum correntropy criterion (RMCC), and DCD-RMCC algorithms in impulsive noise. Furthermore, the proposed algorithms exhibit improved performance in partial discharge (PD) denoising.Comment: 5 pages, 5 figure

    Examination on the Denoising Methods for Electrical and Acoustic Emission Partial Discharge Signals in Oil

    Get PDF
    Partial discharge (PD) measurements either through electrical or acousticย emission approaches can be subjected to noises that arise from differentย sources. In this study, the examination on the denoising methods forย electrical and acoustic emission PD signal is carried out. The PD wasย produced through needle-plane electrodes configuration. Once the voltageย reached to 30 kV, the electrical and acoustic emission PD signals wereย recorded and additive white Gaussian noise (AWGN) was introduced. Theseย signals were then denoised using moving average (MA), finite impulseย response (FIR) low/high-pass filters, and discrete wavelet transform (DWT)ย methods. The denoising methods were evaluated through ratio to noise levelย (RNL), normalized root mean square error (NRMSE) and normalizedย correlation coefficient (NCC). In addition, the computation times for allย denoising methods were also recorded. Based on RNL, NRMSE and NCCย indexes, the performances of the denoising methods were analyzed throughย normalization based on the coefficient of variation (). Based on the currentย study, it is found that DWT performs well to denoise the electrical PD signalย based on the RNL and NRMSE index while MA has a good denoisingย NCC and computation time index for acoustic emission PD signal

    An Automatic Tool for Partial Discharge De-noising via Short Time Fourier Transform and Matrix Factorization

    Get PDF
    This paper develops a fully automatic tool for the denoising of partial discharge (PD) signals occurring in electrical power networks and recorded in on-site measurements. The proposed method is based on the spectral decomposition of the PD measured signal via the joint application of the short-time Fourier transform and the singular value decomposition. The estimated noiseless signal is reconstructed via a clever selection of the dominant contributions, which allows us to filter out the different spurious components, including the white noise and the discrete spectrum noise. The method offers a viable solution which can be easily integrated within the measurement apparatus, with unavoidable beneficial effects in the detection of important parameters of the signal for PD localization. The performance of the proposed tool is first demonstrated on a synthetic test signal and then it is applied to real measured data. A cross comparison of the proposed method and other state-of-the-art alternatives is included in the study

    Identification and Location of PD Defects in Medium voltage Underground Power Cables Using High Frequency Current Transformer

    Get PDF
    Fault location is an important diagnostic task in condition monitoring of underground medium voltage cables. Available solutions are well capable of determining the location of a single partial discharge (PD) defect on a cable section. In case several PD defects are active simultaneously along a cable section, the interpretation of the measured data becomes complex to identify the presence of more than one PD sources. In this paper, experimental investigation of two PD defects/sources at different locations on a medium voltage (MV) cable section is presented. A high frequency current transformer is used for single end PD measurements. Time domain reflectometry-based in-depth study of the reflected pulses provides the most valuable information to identify the presence of PD sources which further leads to the location of the individual PD sources. In this paper, the proposed solution is presented for two PD sources, however, the same methodology can be extended to locate multiple PD sources on the cable.fi=vertaisarvioitu|en=peerReviewed

    Discrimination of PD Signal using Wavelet Transform for Insulation Diagnosis of GIS under HVDC

    Get PDF
    ์ค‘์ „๊ธฐ ์‚ฐ์—…์—์„œ ๋ถ€๋ถ„๋ฐฉ์ „์˜ ๊ฒ€์ถœ ๋ฐ ๋ถ„์„ ๊ธฐ์ˆ ์€ ์ „๋ ฅ์„ค๋น„์˜ ์ƒํƒœ์ง„๋‹จ ๋ฐ ์ž์‚ฐ๊ด€๋ฆฌ๋ฅผ ์œ„ํ•œ ๊ฐ€์žฅ ํšจ๊ณผ์ ์ธ ๋ฐฉ๋ฒ•์œผ๋กœ ๊ฐ„์ฃผ๋˜์–ด ์™”๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๊ฒ€์ถœ์˜ ๊ฐ๋„ ๋ฐ ์ •ํ™•๋„๋Š” ํ˜„์žฅ ๋…ธ์ด์ฆˆ์— ์˜ํ–ฅ์„ ๋ฐ›์•„ ์œ„ํ—˜๋„ ํ‰๊ฐ€, ๊ฒฐํ•จ ํŒ๋ณ„ ๋˜๋Š” ์œ„์น˜ ์ถ”์ •์˜ ์˜ค๋ฅ˜๋ฅผ ์œ ๋ฐœํ•œ๋‹ค. ๊ต๋ฅ˜์ „์••์—์„œ ๋ถ€๋ถ„๋ฐฉ์ „ ์‹ ํ˜ธ์˜ ๋…ธ์ด์ฆˆ ์ œ๊ฑฐ๋Š” ํ™œ๋ฐœํžˆ ์—ฐ๊ตฌ๋˜์—ˆ์ง€๋งŒ, ์ตœ๊ทผ ์ด์Šˆ๊ฐ€ ๋˜๊ณ  ์žˆ๋Š” HVDC์—์„œ ๊ด€๋ จ ์—ฐ๊ตฌ๋Š” ๋ฏธํกํ•œ ์‹ค์ •์ด๋‹ค. HVDC ๊ธฐ์ˆ ์ด ๊ธ‰์†ํžˆ ๋ฐœ์ „๋˜๋ฉด์„œ ๊ด€๋ จ ์ „๋ ฅ์„ค๋น„ ์ง„๋‹จ์„ ์œ„ํ•˜์—ฌ, HVDC์—์„œ ๋ถ€๋ถ„๋ฐฉ์ „ ์‹ ํ˜ธ์˜ ๋…ธ์ด์ฆˆ๋ฅผ ์ œ๊ฑฐํ•  ํ•„์š”๊ฐ€ ์žˆ๋‹ค. ์ด๋“ค ๋ฐฐ๊ฒฝ์œผ๋กœ ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” HVDC ๊ฐ€์Šค์ ˆ์—ฐ๊ตฌ์กฐ์—์„œ ์ ˆ์—ฐ์ง„๋‹จ์˜ ๊ฐ๋„ ๋ฐ ์ •ํ™•๋„๋ฅผ ํ–ฅ์ƒํ•  ๋ชฉ์ ์œผ๋กœ ์›จ์ด๋ธ”๋ฆฟ ๋ณ€ํ™˜์„ ์ด์šฉํ•˜์—ฌ ๋ถ€๋ถ„๋ฐฉ์ „ ์‹ ํ˜ธ๋ฅผ ์‹๋ณ„ํ•˜์˜€๋‹ค. ์ง๋ฅ˜์—์„œ ๋ถ€๋ถ„๋ฐฉ์ „ ์‹ ํ˜ธ๋ฅผ ๋ฐœ์ƒํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์‹คํ—˜๊ณ„๋ฅผ ๊ตฌ์ถ•ํ•˜์˜€๋‹ค. HVDC๋Š” ๋ชฐ๋“œ๋ณ€์••๊ธฐ, ๊ณ ์•• ๋‹ค์ด์˜ค๋“œ ๋ฐ ์ปคํŒจ์‹œํ„ฐ๋กœ ๊ตฌ์„ฑ๋œ ์ •๋ฅ˜ํšŒ๋กœ๋กœ ๋ฐœ์ƒ์‹œ์ผฐ๋‹ค. ๊ฐ€์Šค์ ˆ์—ฐ๊ตฌ์กฐ์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์ ˆ์—ฐ๊ฒฐํ•จ์„ ๋ชจ์˜ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ๋„์ฒด๋Œ์ถœ, ์™ธํ•จ๋Œ์ถœ, ์ž์œ ์ž…์ž ๋ฐ ์ ˆ์—ฐ๋ฌผ ํฌ๋ž™ 4์ข…์˜ ์ „๊ทน๊ณ„๋ฅผ ์ œ์ž‘ํ•˜์˜€๋‹ค. ์ „๊ทน๊ณ„๋Š” SF6 ๊ฐ€์Šค๋ฅผ 0.5MPa๋กœ ์ถฉ์ง„ํ•˜์˜€์œผ๋ฉฐ, ์ฐจํํ•จ์„ ์‚ฌ์šฉํ•˜์—ฌ ์™ธ๋ถ€ ๋…ธ์ด์ฆˆ์˜ ์˜ํ–ฅ์„ ์ตœ์†Œํ™”ํ•˜์˜€๋‹ค. 4์ข…์˜ ๋ชจ์˜๊ฒฐํ•จ์—์„œ ๋ถ€๋ถ„๋ฐฉ์ „ ๋‹จ์ผํŽ„์Šค๋ฅผ ๊ฒ€์ถœํ•˜์—ฌ HVDC์—์„œ ๋ถ€๋ถ„๋ฐฉ์ „์„ ๋ถ„์„ํ•˜๊ธฐ ์œ„ํ•œ ์›จ์ด๋ธ”๋ฆฟ ๋ณ€ํ™˜ ๊ธฐ์ˆ ์„ ์ตœ์ ํ™”ํ•˜์˜€๋‹ค. ์ƒ๊ด€๊ณ„์ˆ˜ ๋ฐ ๋™์ ์‹œ๊ฐ„์›Œํ•‘ ๋ฒ•์„ ์ด์šฉํ•˜์—ฌ ๋ถ€๋ถ„๋ฐฉ์ „ ํŽ„์Šค์™€ ๋‹ค์–‘ํ•œ ๋ชจ์›จ์ด๋ธ”๋ฆฟ์˜ ์œ ์‚ฌ์„ฑ์„ ๋น„๊ตํ•˜์˜€๋‹ค. ๊ฒฐ๊ณผ๋กœ๋ถ€ํ„ฐ ๋™์ ์‹œ๊ฐ„์›Œํ•‘ ๋ฒ•์— ์˜ํ•ด ์„ ์ •๋œ ๋ชจ์›จ์ด๋ธ”๋ฆฟ bior2.6์ด HVDC์—์„œ ๋ถ€๋ถ„๋ฐฉ์ „ ์‹ ํ˜ธ ๋ถ„์„์— ๊ฐ€์žฅ ์ ํ•ฉํ•˜์˜€๋‹ค. ์ตœ์ ์˜ ๋ฌธํ„ฑํ•จ์ˆ˜ ๋ฐ ๋ฌธํ„ฑ๊ฐ’์„ ์„ ์ •ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ๊ฐ์‡  ์ง€์ˆ˜ ํŽ„์Šค ๋ฐ ๊ฐ์‡  ์ง„๋™ ํŽ„์Šค๋ฅผ ๋ชจ์˜ํ•˜์˜€์œผ๋ฉฐ, ์‹ ํ˜ธ-์žก์Œ๋น„, ์ƒ๊ด€๊ณ„์ˆ˜, ํฌ๊ธฐ ๋ณ€ํ™”๋ฅผ ๋น„๊ตํ•œ ๊ฒฐ๊ณผ, ์ค‘๊ฐ„ ๋ฌธํ„ฑํ•จ์ˆ˜-์ž๋™ ๋ฌธํ„ฑ๊ฐ’์ด ์ตœ์ ์˜ ์กฐํ•ฉ์œผ๋กœ ์„ ์ •๋˜์—ˆ๋‹ค. ์‹ค์ œ ๋ถ€๋ถ„๋ฐฉ์ „ ๋ถ„์„ ๋ฐ ํ‰๊ฐ€ ์‹œ ๋‹จ์ผ ํŽ„์Šค๊ฐ€ ์•„๋‹Œ ํŽ„์Šค ์‹œํ€€์Šค๊ฐ€ ์‚ฌ์šฉ๋˜๊ธฐ ๋•Œ๋ฌธ์—, ์ตœ์ ํ™”๋œ ์›จ์ด๋ธ”๋ฆฟ ๋ณ€ํ™˜ ๊ธฐ์ˆ ์„ ์ด์šฉํ•˜์—ฌ ๋ชจ์˜๊ฒฐํ•จ์œผ๋กœ๋ถ€ํ„ฐ ๊ฒ€์ถœ๋œ ๋ถ€๋ถ„๋ฐฉ์ „ ์‹ ํ˜ธ๋ฅผ ์‹๋ณ„ํ•˜์˜€์œผ๋ฉฐ, ๊ทธ ํšจ๊ณผ๋ฅผ ๊ณ ์—ญ ํ†ต๊ณผ ํ•„ํ„ฐ์™€ ๋น„๊ตํ•˜์˜€๋‹ค. ๊ฒฐ๊ณผ๋กœ๋ถ€ํ„ฐ, ๋ถ€๋ถ„๋ฐฉ์ „ ์‹ ํ˜ธ ์‹๋ณ„ ์‹œ ๊ณ ์—ญํ†ต๊ณผํ•„ํ„ฐ์— ๋น„ํ•ด ์›จ์ด๋ธ”๋ฆฌ ๊ธฐ์ˆ ์ด ์žก์Œ ๊ฐ์†Œ์™€ ์ƒ๊ด€๊ณ„์ˆ˜๊ฐ€ ๋†’๊ฒŒ, ํฌ๊ธฐ ๋ณ€ํ™”๊ฐ€ ๋‚ฎ๊ฒŒ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ์›จ์ด๋ธ”๋ฆฟ ๋ฐฉ๋ฒ•์€ ๋ฐฐ๊ฒฝ ์žก์Œ, ์ง„ํญ ๋ณ€์กฐ ์ „ํŒŒ ์žฅํ•ด, ๋น„์ •ํ˜„ ์žก์Œ ๋ฐ ์Šค์œ„์นญ ์ž„ํŽ„์Šค๋กœ ๊ฐ„์„ญ๋œ ๋ถ€๋ถ„๋ฐฉ์ „ ์‹ ํ˜ธ๋ฅผ ์‹๋ณ„ํ•˜๋Š” ๋ฐ ํšจ๊ณผ์ ์ด์—ˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ ์ œ์•ˆํ•œ ์›จ์ด๋ธ”๋ฆฟ ๋ณ€ํ™˜ ๊ธฐ์ˆ ์€ ํ˜„์žฅ์˜ ๋…ธ์ด์ฆˆ๋กœ๋ถ€ํ„ฐ ๋ถ€๋ถ„๋ฐฉ์ „ ์‹ ํ˜ธ๋ฅผ ์„ฑ๊ณต์ ์œผ๋กœ ์‹๋ณ„ํ•˜์˜€๋‹ค. ํ–ฅํ›„ HVDC์—์„œ ๊ฐ€์Šค์ ˆ์—ฐ๊ตฌ์กฐ์˜ ๋ถ€๋ถ„๋ฐฉ์ „ ๊ฒ€์ถœ ๋ฐ ๋ถ„์„์— ์ ์šฉ๋  ๊ฒƒ์œผ๋กœ ์˜ˆ์ƒ๋˜๋ฉฐ, ๋ถ€๋ถ„๋ฐฉ์ „ ๊ฒ€์ถœ, ์œ„ํ—˜๋„ ํ‰๊ฐ€, ๊ฒฐํ•จ ํŒ๋ณ„ ๋ฐ ์œ„์น˜ ์ธก์ •์˜ ์ •ํ™•๋„๊ฐ€ ํ–ฅ์ƒ๋  ์ˆ˜ ์žˆ์„ ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€๋œ๋‹ค.Contents โ…ฐ Lists of Figures and Tables โ…ฒ Abstract โ…ต Chapter 1 Introduction 1 1.1 Research Background 1 1.2 Dissertation Outline 5 Chapter 2 Partial Discharge Review 7 2.1 Mechanism and Recurrence 7 2.2 Detection and Measurement 12 2.3 Analysis Methods 23 Chapter 3 Experiment and Optimization 45 3.1 Experimental Setup 45 3.2 Optimization of Wavelet Transform 49 Chapter 4 Discrimination of PD Sequences 66 4.1 DEP-type Pulse Sequence 70 4.2 DOP-type Pulse Sequence 79 Chapter 5 Conclusions 89Docto
    corecore