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Discrimination of PD Signal using Wavelet Transform           

   for Insulation Diagnosis of GIS under HVDC

by Guoming Wang

Department of Electrical and Electronics Engineering

Graduate School of Korea Maritime and Ocean University

Busan, Republic of Korea

Abstract

Detection and analysis of partial discharge (PD) have been regard as the 

most effective method for condition monitoring and asset management of 

power apparatus in the heavy electric machine industry. However, PD 

detection sensitivity and accuracy are greatly influenced by on-site noise and 

interference, resulting in failures in PD severity assessment, defect 

identification or localization. Although denoising of PD signal under AC was 

well studied, related investigations under DC have not been carried out. With 

the rapid development of HVDC technology, it is a new challenge to 

eliminate noise from PD signal under DC for diagnosis of related power 

facilities. Therefore, this dissertation dealt with the discrimination of PD 

signal based on wavelet transform techniques for HVDC gas insulated 

structures (GIS), aiming to improve the sensitivity and accuracy of insulation 

diagnosis.
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Experimental setup was configured to generate PD signal under DC. The 

HVDC source was generated by a rectifier circuit that was composed of a 

dry-type transformer, a high-voltage diode, and a capacitor. Four types of 

artificial defects, namely protrusion on conductor (POC), protrusion on 

enclosure (POE), free particle (FP), and crack inside spacer (CIS) were used to 

simulate typical insulation defects in GIS. All of them were filled with 0.5

MPa SF6 and were placed inside a shielding box to reduce the external 

interference during PD detection.

Single PD pulses were acquired from four types of artificial defects and 

were used for optimizing the wavelet transform techniques in analyzing PD 

under DC. The correlation coefficient and dynamic time warping method were 

used to compare the similarity between PD pulses and various mother 

wavelets. It was verified that mother wavelet bior2.6 selected by dynamic 

time warping method was the most appropriate for analyzing PD signal under 

DC. A damped exponential pulse (DEP) and a damped oscillatory pulse (DOP) 

were simulated for selecting the optimal thresholding function and threshold. 

After comparing the signal-to-noise ratio (SNR), correlation coefficient (), and 

change in amplitude (A%), the medium thresholding function-automatic 

threshold was selected as the optimal combination.

Since pulse sequences rather than single pulses are practically used for PD 

analysis and evaluation, the optimized wavelet transform techniques were used 

to discriminate PD pulse sequences detected from the artificial defects and 

the effectiveness was compared with a high-pass filter. From the results, 

discrimination of PD signal using wavelet techniques resulted in higher values 

of reduction in noise as well as correlated coefficient, and lower value of 
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change in amplitude compared with the high-pass filter. The wavelet method 

was verified to be effective in denoising PD pulse sequences that were 

interfered by background noise, amplitude modulation radio interference, 

non-sinusoidal noise, and switching impulse. 

The wavelet transform techniques proposed in this dissertation successfully 

discriminated PD signal from on-site noise and interference. Results from this 

dissertation were expected to be applied for PD detection and analysis of 

HVDC GIS, by which accuracies of PD detection, risk assessment, defect 

identification and localization can be significantly improved.
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HVDC에서 GIS 절연진단을 위한 Wavelet 변환 기반의 
부분방전 신호 식별

왕 국 명

전기전자공학부
한국해양대학교 대학원

부산, 대한민국

초록

중전기 산업에서 부분방전의 검출 및 분석 기술은 전력설비의 상태진
단 및 자산관리를 위한 가장 효과적인 방법으로 간주되어 왔다. 그러나 
검출의 감도 및 정확도는 현장 노이즈에 영향을 받아 위험도 평가, 결함 
판별 또는 위치 추정의 오류를 유발한다. 교류전압에서 부분방전 신호의 
노이즈 제거는 활발히 연구되었지만, 최근 이슈가 되고 있는 HVDC에서 
관련 연구는 미흡한 실정이다. HVDC 기술이 급속히 발전되면서 관련 전
력설비 진단을 위하여, HVDC에서 부분방전 신호의 노이즈를 제거할 필
요가 있다. 이들 배경으로 본 논문에서는 HVDC 가스절연구조에서 절연
진단의 감도 및 정확도를 향상할 목적으로 웨이블릿 변환을 이용하여 부
분방전 신호를 식별하였다. 

직류에서 부분방전 신호를 발생하기 위하여 실험계를 구축하였다. 

HVDC는 몰드변압기, 고압 다이오드 및 커패시터로 구성된 정류회로로 
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발생시켰다. 가스절연구조에서 발생하는 절연결함을 모의하기 위하여 도
체돌출, 외함돌출, 자유입자 및 절연물 크랙 4종의 전극계를 제작하였다. 

전극계는 SF6 가스를 0.5 MPa로 충진하였으며, 차폐함을 사용하여 외부 
노이즈의 영향을 최소화하였다.

4종의 모의결함에서 부분방전 단일펄스를 검출하여 HVDC에서 부분방
전을 분석하기 위한 웨이블릿 변환 기술을 최적화하였다. 상관계수 및 동
적시간워핑 법을 이용하여 부분방전 펄스와 다양한 모웨이블릿의 유사성
을 비교하였다. 결과로부터 동적시간워핑 법에 의해 선정된 모웨이블릿 
bior2.6이 HVDC에서 부분방전 신호 분석에 가장 적합하였다. 최적의 문턱
함수 및 문턱값을 선정하기 위하여 감쇠 지수 펄스 및 감쇠 진동 펄스를 
모의하였으며, 신호-잡음비, 상관계수, 크기 변화를 비교한 결과, 중간 문
턱함수-자동 문턱값이 최적의 조합으로 선정되었다.

실제 부분방전 분석 및 평가 시 단일 펄스가 아닌 펄스 시퀀스가 사용
되기 때문에, 최적화된 웨이블릿 변환 기술을 이용하여 모의결함으로부터 
검출된 부분방전 신호를 식별하였으며, 그 효과를 고역 통과 필터와 비교
하였다. 결과로부터, 부분방전 신호 식별 시 고역통과필터에 비해 웨이블
리 기술이 잡음 감소와 상관계수가 높게, 크기 변화가 낮게 나타났다. 뿐
만 아니라 웨이블릿 방법은 배경 잡음, 진폭 변조 전파 장해, 비정현 잡음 
및 스위칭 임펄스로 간섭된 부분방전 신호를 식별하는 데 효과적이었다.

본 논문에서 제안한 웨이블릿 변환 기술은 현장의 노이즈로부터 부분
방전 신호를 성공적으로 식별하였다. 향후 HVDC에서 가스절연구조의 부
분방전 검출 및 분석에 적용될 것으로 예상되며, 부분방전 검출, 위험도 
평가, 결함 판별 및 위치 측정의 정확도가 향상될 수 있을 것으로 기대된
다.
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Chapter 1  Introduction

1.1 Research Background

  Failures of electrical power facilities are primarily resulted from poor 

insulation condition, causing serious economic, safety, and environmental 

issues. Condition monitoring and diagnosis are important methods to detect 

the insulation degradation at its early state and to ensure the reliability of 

power apparatuses. The diagnostic strategy for power facilities has been 

developed from run-to-failure, through maintenance as necessary, time-based 

maintenance, and condition-based maintenance, to the reliability-centered 

maintenance (RCM) that is advocated nowadays. The RCM strategy is a 

combination of the reactive, preventive, predictive, and proactive maintenance 

to maximize the reliability and availability of power apparatus[1-3]. The partial 

discharge (PD), which is a localized electrical discharge that partially bridges 

the insulation, causes progressive insulation deterioration and finally results in 

the failure of power equipment. Therefore, detection and characterization of 

PD on-site and on-line are important parts of RCM. 

  Based on the measurement of PD, insulation defects can be detected before 

the eventual breakdown, and therefore the reliability and availability of 

equipment can be significantly enhanced and the unplanned outage of power 

system can be decreased, making the operation intervals extend and the 

maintenance cost reduce. The safety of asset manager and service personnel 

can be also ensured owning to less risk of explosion and combustion 

accidents. In addition, the environmental risk such as leakage of harmful gas 

and greenhouse gas can be reduced[4].



- 2 -

  As a main indicator of electrical failure, detection, analysis, classification, 

and localization of PD under alternative current (AC) have been well 

studied[5-10]. Based on the different physical and chemical phenomena 

accompanying with PD, detection methods can be categorized into 

conventional method according to IEC 60270 and non-conventional methods, 

including the acoustic emission (AE), ultra-high frequency (UHF), optical 

detection, and dissolved gases methods. Generally, physical PD signals are 

analyzed in time or frequency domain, such as the single pulse, 

phase-resolved PD, time-resolved PD, and time-frequency method, and the 

dissolved gases are analyzed in terms of gas ratios. The parameters extracted 

from various patterns can be used for PD identification, which is realized by 

machine learning algorithms like the artificial neural network, fuzzy logic, and 

supported vector machine. In addition, PD source can be localized using the 

absolute and relative time of arrival of AE or UHF signal. 

  However, owing to the absence of phase information and the different 

recurrence mechanism, PD analysis methods under direct current (DC) are 

totally different from those under AC, although the detection methods are the 

same[11-13]. The pulse repetition rate and frequency under DC are much lower 

than those under AC[14]. As a result, parameters for PD classification are also 

different. Until now, PD under DC has not been studied in detail, and 

experience from PD under AC cannot be applied to DC directly, including 

the denoising method. As the high voltage direct current (HVDC) distribution 

and transmission systems increase rapidly all over the world, it is necessary 

to deal with PD under DC voltage for the purpose of risk assessment and 

asset management of related power facilities.
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  The gas insulated structures (GIS) such as switchgear and transmission line 

are filled with sulphur hexafluoride (SF6) gas and have high insulation and 

arc-extinguishing capability, ensuring their high reliability, compact size, and 

economical efficiency[15-16]. As a result, they are widely installed in 

space-limited locations, such as city substations, offshore plants, and electric 

railway systems. The gas insulated switchgear, which is composed of circuit 

breaker, disconnect switch, grounding switch, and other high voltage 

components, has been used for power transmission and distribution sine 

1960s. In addition, gas insulated transmission line (GIL) is regarded as a safe 

and flexible alternative to an overhead line. However, insulation defects 

generated during the manufacture, assembly, transportation, and operation are 

one of the primary causes of GIS failures. Owing to the large power supply 

capacity, these failures result in enormous economic losses and serious human 

injuries. Therefore, diagnostics of PD are implemented for condition 

monitoring of GIS to ensure their reliable operation.

  PD is evaluated using apparent charge that is expressed in picocoulomb

(pC). It is specified that the maximum permissible PD level for GIS should 

not exceed 5 pC[17]. However, when PD signals are buried in excessive noise 

or interference, they cannot be exactly discriminated, leading to a reduce in 

detection sensitivity and a failure of assessing PD severity. Furthermore, noise 

is a major bottleneck that influences the accuracy of defect identification and 

localization. In practice, the on-site noise and interference can be classified as

  (ⅰ) White noise from amplifier and ambient noise, which is a random 

signal with equal intensity at different frequencies.

  (ⅱ) Discrete spectral interferences (DSI) from communication system, 
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frequency modulation (FM) radio, and amplitude modulation (AM) radio, 

whose frequency bands are 890 MHz-1.88 GHz, 88 MHz-108 MHz, and 535

kHz-1,605 kHz, respectively. The communication interference and FM radio 

have frequency much higher than that of PD electrical current pulse, 

therefore, only the AM radio interference is taken into consideration when the 

conventional PD detection method is used.

  (ⅲ) Periodic non-sinusoidal noise from power electronics or other periodic 

switching operations.

  (ⅳ) Stochastic pulse-shaped interferences from infrequent switching operation, 

arcing between adjacent metallic contacts, and corona emitted from high 

voltage equipment[18-19].

  Although great efforts have been made to suppress the noise associated 

with PD measurement, the existing methods have inherent limitations. The 

balance circuit recommended in IEC 60270 requires addition experiment 

devices and is not suitable for on-line application[5]. The fast Fourier 

transform (FFT) only analyzes signals in frequency domain. Since actual PD 

pulses are non-periodic, transient, and irregular, and frequencies of various 

noises are not easily to be determined, the FFT method has difficulty in 

deciding the threshold[19]. When the digital filter is implemented, there is also 

difficulty in determining the optimal cutoff frequency. As a result, the noises 

cannot be completely removed and original PD signal may be distorted[20].

  Wavelet transform (WT), which was first introduced in practical application 

in mid-1980s, analyzes signal in both time and frequency domain 

simultaneously, and has been recognized as an effective method to 

discriminate PD from noise. Previous works, including selection of the most 
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appropriate wavelet, determination of decomposition level, and selection of 

threshold, have been done to reject noises from PD under AC[18-22]. However, 

there is few related research so far dealing with PD under HVDC.

1.2 Dissertation Outline

  This dissertation dealt with the discrimination of PD signal based on the 

wavelet transform for HVDC GIS, aiming to improve the detection sensitivity 

and accuracy. It is organized as follows.

  Chapter 2 introduced the occurrence mechanism of PD and the difference 

recurrence theories of PD under AC and DC. Furthermore, features of 

state-of-the-art PD detection methods, including conventional electrical method, 

and non-conventional AE, UHF, and chemical method were described. The 

PD analysis methods, in terms of pulse shape, phase-resolved partial discharge

(PRPD), 3-phase amplitude relation diagram (3-PARD), time-resolved partial 

discharge (TRPD), and time-frequency (TF) map were also discussed. Finally, 

the methodologies of wavelet transform and multi-resolution analysis (MRA) 

were explained.

  Chapter 3 firstly described the experiment configuration for PD detection 

under HVDC, and then gave the simulation of typical insulation defects in 

GIS, including protrusion on conductor (POC), protrusion on enclosure (POE), 

free particle (FP), and crack inside spacer (CIS). The optimal mother wavelet, 

decomposition level, thresholding function, and threshold were selected by 

denoising simulated and actually detected single PD pulses after comparing 

the signal-to-noise ratio (SNR), reduction in noise (RN), correlation coefficient

(), and change in amplitude (A%). From the results, the mother wavelet 
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bior2.6, medium thresholding function, automatic threshold were the optimal 

selection for discriminating PD signal under DC.

  Chapter 4 presented the discrimination of practical PD pulse sequences 

detected from the fabricated electrode systems under HVDC using the 

optimized wavelet transform techniques, and the effectiveness of denoising 

was compared with a high-pass filter that had a cutoff frequency of 800 kHz. 

A DEP-type PD sequence and a DOP-type PD sequence were denoised from 

the detected signal interfered by background noise, amplitude AM radio 

interference, non-sinusoidal noise, and switching impulse. Results showed the 

superiority of wavelet transform techniques over the high-pass filter in 

discriminating PD pulse sequence.

  Chapter 5 gave the overall conclusions and evaluations of discriminating 

PD signal in HVDC GIS using the optimized wavelet transform techniques 

proposed in this dissertation. Recommendation and expectation for future 

application were also discussed. 
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Chapter 2  Partial Discharge Review

 

2.1 Mechanism and Recurrence

  PD occurs when the local electrical stress is higher than the dielectric 

strength of insulation. Generally, PD is classified into four types: internal 

discharge, surface discharge, corona discharge, and discharge in electrical 

tree[14,23-24]. To be specific, typical insulation defects such as protrusion, 

moving particle, void inside spacer, and contamination are observed in the 

GIS, GIL, power transformer, and cable[25-27]. Although the magnitude of PD 

is usually small at the early stage, it causes progressive deterioration of 

insulation material and finally results in the failure of power facilities. 

2.1.1 PD under AC voltage

  The equivalent circuit and recurrence of PD in a cavity of insulation 

material under AC voltage are shown in Fig. 2.1[14]. Cc represents the 

capacitance of the cavity where the discharge occurs in the insulation, the 

capacitance of the dielectric in series with the cavity is represented by Cb 

and the sound part of the dielectric is represented by capacitance Ca. When 

AC voltage Va is applied to the sample and the voltage across the cavity Vc 

reaches the partial discharge inception voltage (DIV), a discharge occurs in 

the cavity. As a result of the opposite electric field induced by space charge, 

voltage Vc drops to a level at which the discharge extinguishes, this voltage 

is called partial discharge extinction voltage (DEV). A discharge finishes in 

the cavity and causes a current impulse. This process takes place in less than 

10-7s, so the current impulse appears as a vertical line corresponding to the 
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applied voltage. As the applied voltage increases, discharge recurs when Vc 

reaches DIV again. The same phenomenon occurs at the negative half of the 

applied voltage. 

(a) Equivalent circuit

(b) Recurrence of discharges

Fig. 2.1 PD under AC voltage
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2.1.2 PD under DC voltage

  Different from that under AC voltage, as a result of the absence of 

changes both in amplitude and polarity of the DC voltage, once PD occurs 

in the cavity, the opposite electric field induced by space charge makes PD 

extinguish. Discharge will recur until the induced field decreases to some 

degree due to the dissipation of space charge through the dielectric 

conductivity. In other words, the space charge disappears in the form of 

leakage current. Based on above consideration, the equivalent circuit for 

internal discharge under DC is presented by the extended circuit with some 

resistive elements in parallel with the corresponding capacitances, which is 

shown in Fig. 2.2(a). 

  The voltage across a cavity under DC is shown in Fig. 2.2(b). For PD 

occurrence, two conditions must be satisfied: an initiatory electron and a 

sufficient electric field. The initiatory electron may come from external 

environment such as radiation and field emission or from previous discharge. 

Since the acquirement of initiatory electrons is a stochastic process, a 

statistical time lag tL is needed, during which the voltage across the cavity 

increases from the minimum breakdown voltage Vmin to the DIV. A discharge 

occurs at t0 and then drops voltage across the cavity to the residual value Vr. 

For recurrence of PD, a recovery time tR is required, during which the 

voltage across the cavity increases from Vr to Vmin. The time interval between 

two successive PD is the sum of tL and tR
[12-13,28-29].

  The repetition rate of PD under DC voltage is much less than that under 

AC voltage, and it is thought that PD under DC is far less dangerous. 

However, with the increasing demand for HVDC application, related facilities 
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have been widely developed and their condition monitoring should also be 

carried out by investigating PD.

(a) Equivalent circuit

(b) Recurrence of discharges

Fig. 2.2 PD under DC voltage
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2.1.3 PD under impulse voltage

  Occurrence of PD under impulse voltage requires a higher voltage level 

compared with that under AC and DC voltage due to the low possibility to 

obtain an initiatory electron. PD occurrence under impulse voltage is shown 

in Fig. 2.3. Discharge pulse first occurs on the rising edge after the applied 

voltage reaches the discharge inception voltage and the starting electron is 

obtained. It remains energized until the crest of the impulse is reached. On 

the falling edge of impulse, discharges with smaller magnitudes occur in the 

opposite direction. PD under impulse voltage is usually tested by high-voltage 

impulse generator or switching impulse generator, the test levels are 

sufficiently high to ignite an internal discharge, surface discharge, corona 

discharge, or discharge in electrical tree where electric field is concentrated[14].

Fig. 2.3 PD under impulse voltage
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2.2. Detection and Measurement

  When PD occurs, it accompanies with various physical and chemical 

phenomena, based on which detection methods can be applied. Despite of 

different recurrence mechanisms under AC, DC, and impulse voltage, PD 

detection methods are the same. As shown in Fig. 2.4, PD detection and 

measurement methods can be classified into the conventional methods 

according to IEC 60270 and the non-conventional methods that mainly 

include acoustic emission (AE), electromagnetic transient, and chemical 

decomposition. In this section, PD detection mechanisms, features, 

applications, advantages, and disadvantages are introduced. 

Fig. 2.4 Detection and measurement methods
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2.2.1 Conventional methods

  The conventional methods standardized in IEC 60270 detect PD current 

pulse using a coupling capacitor based on the series, parallel, or balanced 

circuit[5]. The coupling capacitor is intended to close the measuring circuit by 

transferring the high frequency PD pulse to the coupling device. 

Simultaneously the test voltage is attenuated to a harmless magnitude[30-31]. 

The measuring instruments are classified as wide-band and narrow-band 

instrument. The lower limit frequency , upper limit frequency , and 

bandwidth   of wide-band instrument, as well as bandwidth  

and midband frequency  of narrow-band instrument are given in Equation 

2.1 and Equation 2.2, respectively. 

30 kHz ≤  ≤ 100 kHz                 (2.1.1)

 ≤ 1 MHz                       (2.1.2)

100 kHz ≤  ≤ 900 kHz                (2.1.3)

9 kHz ≤  ≤ 30 kHz                  (2.2.1)

50 kHz ≤  ≤ 1 MHz                 (2.2.2)

It should be noted that the frequency requirements were revised in the third 

version of IEC 60270. The conventional methods are the only standardized 

means for quantification of PD, by measuring the apparent charge after a 

calibration procedure. The calibration is carried out by injecting current pulses 

with known charge magnitudes across the terminal of test object using a 

calibrator. The apparent charge is usually expressed in picocoulombs. The 
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basic partial discharge detection and calibration circuit according to IEC 

60270 are shown in Fig 2.5.

(a) Detection

(b) Calibration

Fig. 2.5 Test circuit according to IEC 60270
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2.2.2 Non-conventional methods

  Non-conventional methods are not suitable for quantitative measurement of 

PD, however, they are practically implemented for on-line detection, 

identification, and localization of PD source.

1) Acoustic emission

  AE signal is generated by the rapid release of energy from PD sources 

within the insulation material. The acoustic wave propagates in all direction 

within the power facilities and the propagation is complex owing to the 

changes in propagation mode and velocity, reflection, and refraction[32-34]. 

Such signal can be detected by an AE sensor with a piezoelectric element 

that converts the acoustic wave into electrical signal. A typical detection 

circuit of AE method is shown in Fig. 2.6, which consists of a decoupler to 

separate acoustic signals from power source, an amplifier, and a filter. 

Fig. 2.6 Detection circuit of AE method
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  A typical AE signal in time and frequency domain is shown in Fig. 2.7. 

The ultrasonic AE signal is measured in frequency range of 20 kHz - 500 kHz 

in oil-immersed power transformer[35] and in 20 kHz - 250 kHz in GIS[36]. The 

AE method has advantages of low cost, easy installation, immunity to 

electromagnetic noise, and availability in PD localization, whereas it suffers 

from limitations of high attenuation and low sensitivity[10,37]. 

(a) Time domain

(b) Frequency domain

Fig. 2.7 Typical AE signal
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  AE method is usually carried out for localizing the PD source in power 

transformer in the factory and in the field based on the all-acoustic system or 

electrical-acoustic method. The all-acoustic method localizes PD using at least 

four sensors based on the relative arrival times of the acoustic signals 

reaching each sensor, which is also called time difference of arrival method. 

Electrical PD signal such as the current or UHF pulse can be considered as 

detected synchronously with PD occurrence. Therefore, they can be used as a 

trigger for AE sensors. The absolute time of arrival (TOA), which means time 

difference between electric and acoustic signal, is the propagation time for 

AE signal traveling from the PD source to sensor location. Based on the 

TOA, localization can be realized by the following non-linear equation:

                  



  







  

              (2.3)

                  



  



where (, , ) (    ) are the coordinates of AE sensors,  are time 

of arrival of three AE signals relative to the electrical pulse, respectively.  

is the velocity of acoustic signal in insulation oil, which is 1,413 m/s at 

20°C. Unknown quantity (, , ) is the coordinate of PD source to be 

calculated.

  The structure-borne propagation mode of AE signal should be taken into 

consideration when PD localization is conducted. Generally, there are three 

typical propagation paths for an AE signal transmitting from the PD source 
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to sensors mounted on the outside of a transformer tank: direct acoustic path, 

reflection path in insulation oil, and structure-borne path via oil and then the 

tank steel. Also, the acoustic signals are classified by transverse  wave  and  

longitudinal wave according to the oscillation form. The acoustic signal  

propagates in insulation oil only by the form of longitudinal wave, while 

propagates by the forms of both transverse wave and longitudinal wave in 

tank steel. The velocity of transverse wave in steel is lower than that of 

longitudinal wave in steel but greater than that of acoustic wave in oil. In 

addition, attenuation of acoustic signal propagating in steel is more serious 

than that in oil. Therefore, the AE signal propagating in structure-borne 

arrives at sensor earlier with lower magnitude than propagating in direct path 

and thus the direct acoustic path is suggested for PD localization[32].

  The threshold method is achieved by moving the cursor over the magnitude 

of waves in steel to estimate TOA of acoustic signals. It is a manual method 

but has high precision. For accurate and automatic localization of defect, 

various criterions are used for determination of the TOA. The cumulative 

energy criterion focuses the keen on the energy curve of AE signal that 

eventually approaches to a constant. The energy criterion is equal to the 

cumulative energy subtracted by a negative trend and TOA is the minimum 

point on the energy curve. The Akaike information criterion estimates the 

TOA using the global minimum value. The cross correlation method is used 

to calculate the similarity between two signals. The time of maximum cross 

correlation value represents the TOA. By comparing these methods, it is 

verified that the energy criterion has the highest performance from the 

perspectives of precise and automatic determination of TOA[38-39]. 
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2) Electromagnetic transient

  PD pulse has a short time of less than 1 ns and a pulse width of a few 

ns, such pulse excites electromagnetic transient that covers frequency range of 

high frequency (HF, 3 MHz - 30 MHz), very high frequency (30 MHz - 300

MHz), and ultra high frequency (UHF, 300 MHz - 3 GHz)[40]. 

  In the HF/VHF range, various sensors based on the capacitive and 

inductive measurement principles are used for PD detection, including the 

capacitive probe, transient earth voltage, high frequency current transformer, 

and Rogowski coils[41-43]. 

  The UHF method has achieved its rapid application in on-line and on-site 

monitoring owning to the advantages of great immunity against external 

disturbance, high sensitivity, and localization ability. As shown in Fig 2.8, the 

UHF sensor can be broadly classified into internal sensor such as drain valve 

sensor, and external sensor like window sensor. The sensitivity of internal 

sensor was confirmed to be 0.3 pC at signal-to-noise ratio (SNR) of 3 

whereas that of the external sensor was confirmed to be 2 pC at SNR=3. As 

shown in Table 2.1, from the perspectives of sensitivity, frequency bandwidth, 

directivity, size, and assembly, it is confirmed that the semicircular dipole 

UHF sensor has the highest performance compared with the disk, monopole, 

logarithmic periodical, and spiral senor[26,44]. When the UHF method is 

applied, the interference from video broadcasting and mobile communication, 

and the sensitivity verification proposed by CIGREWG15/33. 03.05 should be 

taken into consideration[45-46]. Since high-performance data acquisitions unit 

and processors are necessary to deal with the UHF signals, the related test 

equipment and system are more costly than other methods.
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(a) Drain valve sensor (b) Window sensor
Fig. 2.8 UHF sensors[26]

Table 2.1 Types of UHF antennas[44]

● : Excellent, ○ : Good, × : Not good

Shape

Antenna Disk Semicircular 
dipole Monopole Logarithmic 

periodical Spiral

Sensitivity ○ ● ● ● ●
Frequency
bandwidth ● ● × ● ●
Directivity ● ○ ○ ○ ○
Size(small) ○ ○ ○ × ×

Assembly ● ● × × ×

Evaluation ○ ● × × ×
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  The magnitude of UHF signal is usually expressed in dBm. The conversion 

of UHF signal magnitude into the apparent charge has been studied for  

on-site and on-line quantitative evaluation of PD using UHF sensors. 

Conversion experiment is carried out by simultaneously measuring the UHF 

pulse and the PD current pulse and by matching the magnitudes. The results 

is show in Fig. 2.9. It can be seen that relationships between the magnitude 

of UHF signal and the amplitude of apparent discharge follow a single 

curve[3]. However, these results are seriously influenced by the complicated 

propagation path of UHF signal from the PD site to the sensor, including 

reflection, refraction, and diffraction. Such drawbacks can be resolved by 

locating the PD source first and then compensating the attenuation factor of 

magnitude of UHF signal.

Fig. 2.9 Conversion of UHF signal magnitude into apparent charge 
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3) Chemical decomposition

  Discharge causes decomposition of insulation material in the oil or gas 

insulated power apparatus owning to the released high energy, chemical 

detection methods are based on the analysis of the decomposition products. In 

the oil-immersed transformer, the dissolved gas analysis method specified by 

IEC 60599 and IEEE C57.104 analyzes the ratios of C2H2/C2H4, CH4/H2, and 

C2H4/C2H6 to identify faults such as PD, discharge of low energy (D1), 

discharge of high energy (D2), and thermal fault (T1 : T < 300 ℃, T2 : 300 ℃<

T < 300℃, T3 : T > 300℃), as shown in Fig. 2.10[47-49]. In the GIS, 

concentration ratios of decomposition products of SF6 such as SOF2/SO2F2, 

CF4/CO2, and (SOF2+SO2F2)/(CO2+CF4) are confirmed to indicate the PD 

energy and source type[50].

Fig. 2.10 Identification of faults by gas ratios
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2.3 Analysis Methods

  There are various of analysis methods used to evaluate the risk level of 

PD, to extract the discharge features for further defect classification, and to 

denoise PD signal, including the pulse shape, phase-resolved partial discharge

(PRPD), 3-phase amplitude relation diagram (3-PARD), time-resolved partial 

discharge (TRPD), time-frequency (TF) map, and wavelet transform (WT).

1) Pulse shape

  An example of PD pulse is shown in Fig. 2.11 and the features used to 

describe the pulse shape are given as following[10].

  Rise time () : time from 0.1 to 0.9 times of peak value at the rising side

  Decay time () : time from 0.9 to 0.1 times of peak value at the falling side

  Pulse width () : time interval between 0.5 times of peak value at both  

the rising and falling sides

  Kurtosis : an indicator for the steepness of a probability distribution and 

defined as


  




∙




                       (2.4) 

where  is the mean and  is the standard deviation. The normal distribution 

has a kurtosis value of 3. Data with kurtosis higher than 3 tend to a steep 

distribution while data with kurtosis lower than 3 tend to distribute evenly.

  Skewness : a measure of symmetry of a distribution around the sample and 

defined as
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 
  




∙




                       (2.5)

Negative value for the skewness indicates data are skewed left and positive 

value for the skewness indicates data are skewed right. Symmetric data which 

are called normal distribution have a skewness value of zero.

  Apparent charge (q) : used for evaluation of PD level and can be calculated 

by integrating the pulse 





 








                 (2.6)

where  is the current pulse and  is voltage pulse across the detection 

impedance .

Fig. 2.11 Typical features of a PD pulse
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2) Phase-resolved partial discharge 

  The PRPD method is a mostly used method for analysis of PD and for 

identification of defect type. It is an accumulation of the PD data under AC, 

including the phase on which discharge occurs, discharge magnitude, and 

number of discharge. The PD data can be acquired by the electrical or UHF 

method. Fig. 2.12 shows typical PRPD patterns in the protrusion on conductor 

and void inside spacer defect in GIS, which are acquired using the UHF 

sensor[3]. This method is unavailable under DC because of the absence of 

phase.

(a) Protrusion on conductor

(b) Void inside spacer

Fig. 2.12 Typical phase-resolved partial discharge patterns 
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  An effective defect identification method based on PRPD pattern is 

artificial neural network, which analyzes the magnitude and phase distribution 

of PD pulses. The neural network is comprised of an input layer, one or 

more hidden layer, and a output layer. A typical structure of neural network 

is demonstrated in Fig. 2.13. The neurons in the input layer are as many as 

the number of extracted parameters. The hidden layer is used to connect the 

neurons in the input and output layer. The number of neurons in the output 

layer is the same as that of the possible defects. In addition, a sigmoid 

function is used to determine the activation function. During the training 

procedure, a back propagation algorithm is applied to update the weights and 

biases until the allowable error is less than expected value. Then, the updated 

weights and biases are rewritten into the network to replace their initial 

values and are finally used for real-time defect identification. 

Fig. 2.13 Structure of artificial neural network
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3) 3-phase amplitude relation diagram

  The 3-PARD is used for analyzing three-phases PD by synchronous 

multi-channel acquisition. As shown in Fig. 2.14, 3-PARD describes the 

relations among amplitudes of a single PD pulse in one phase and its 

induced signals in the other two phases. PD signals generated from different 

sources and locations appear specific 3-PARD patterns and can be analyzed 

separately in real-time. The 3-PARD method enables noise to be clearly 

separated from actual PD signal as well as an easy separation of overlapped 

PD patterns[51-52].

(a) Creation

(b) Separation of noise from PD

Fig. 2.14 3-phase amplitude relation diagram pattern[51]
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4) Time-resolved partial discharge

  The TRPD method is used to investigate the statistical characteristics of 

pulse sequences under DC voltage. It includes two basic quantities: discharge 

magnitude  and time of discharge occurrence . Fig. 2.15 demonstrates the 

PD sequences. The measured quantities are time-based discharge sequences 

(, ).     and     are the time intervals of  to 

its preceding and successive discharge, respectively. Based on the basic 

quantities and derived quantities, the discharge distribution and density 

function can be established: PD magnitude as a function of time , 

relation between discharge magnitude and time interval to its preceding 

discharge  , relation between discharge magnitude and time interval to 

its successive discharge , density function of the discharge magnitude 

, and density function of the time interval . An example of TRPD 

pattern is shown in Fig. 2.16[11,29].

Fig. 2.15 PD pulse sequences 



- 29 -

(a) PD sequences

(b)   (c) 

(d)   (e) 

Fig. 2.16 An example of time-resolved partial discharge pattern
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5) Time-frequency map

  The TF method is an analysis of PD in time and frequency domain by 

extracting the equivalent time  and the equivalent frequency   from each 

PD pulse[42]. The detected signal s(t) is normalized by:

 











                    (2.7)

 and   are the standard deviations which mean the effective range of 

time around the time gravity and the effective range of bandwidth around the 

frequency gravity, respectively and are given by:

  








                   (2.8)

 





∞

 

                    (2.9) 

where   is the Fourier transform of the normalized signal,  is the time 

gravity of   and given by:

  




                       (2.10) 

  Based on the above analysis, the TF map can be established. The TF map 

provides method for separation of PD signal from the noise and for PD 

identification as shown in Fig. 2.17.
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(a) Protrusion

(b) Crack

Fig. 2.17 Time-frequency map acquired from different insulation defects
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6) Wavelet transform techniques

  In this dissertation, the WT techniques are applied for discriminating PD 

signal under HVDC. As the Fourier transform decomposes a signal into a 

family of complex sinusoids, WT decomposes a signal into a family of 

wavelets. The family of wavelets contains the dilated and translated versions 

of a prototype function, which is called the mother wavelet, such as 

Daubechies (db), Biorthogonal (bior), CoifletXX (coif), and 

Symlet (sym) wavelet. Integer  indicates the order of the wavelet. The 

higher the order, the smoother the wavelet. Examples of mother wavelet 

waveform are shown in Fig. 2.18. 

db02 db07 db14

bior1.3 bior2.6 bior6.8

coif1 coif3 coif5

sym3 sym5 sym8

Fig. 2.18 Waveform of mother wavelet
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  The family of dilated and translated wavelets are given by

 


∙


                    (2.11)

where  is the mother wavelet. The scale factor  determines the 

amplitude and duration of the dilated wavelets to ensure that each of them 

has the same energy, and the shift factor  corresponds to a translation of 

scaled wavelet in the time domain[18-20,53]. Fig. 2.19 shows the dilated and 

translated wavelet with different values of  and , and the corresponding 

fast Fourier transform (FFT). A wavelet with a small scale factor has a high 

amplitude, a short time duration, a wide frequency bandwidth, and a high 

central frequency, whereas a wavelet with a large scale factor has a low 

amplitude, a long time duration, a narrow frequency bandwidth, and a low 

central frequency. Therefore, a given signal can be decomposed from the time 

domain into a series of dilated and translated versions of a mother wavelet, 

thus characterizing the signal in both time and frequency domain 

simultaneously. 

  The continuous wavelet transform (CWT) of a given time-domain signal 

 is defined as Equation 2.12. Since the CWT calculates the wavelet 

coefficients at every possible scale for every time instant, it is excessively 

redundant and computationally intensive. Furthermore, the original signal 

cannot be well reconstructed from the CWT coefficients[14,19]. In addition, the 

majority of measured signals are available as discrete-time sample. Therefore, 

CWT is seldom used whereas the discrete wavelet transform (DWT) is effective
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 in overcoming these drawbacks.



 


             (2.12)

 (a) In time domain 

(b) Corresponding FFT

Fig. 2.19 Dilation and translation of mother wavelet
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  In DWT, the mother wavelet is dilated and translated discretely by 

selecting  ,   
, where  and  are positive integers. Therefore,




∙
        (2.13)

when   and  , the DWT is called a dyadic-orthonormal WT, which 

is actually an band filter from the perspective of signal processing. Therefore, 

the DWT can be obtained by using multi-resolution analysis (MRA) to 

decompose a given signal with different time and frequency resolutions[6,54-56]. 

Fig. 2.20 shows an example of the decomposition of the original signal into 

three levels by MRA.

Fig. 2.20 Decomposition of a signal into three levels by MRA

  In the MRA, the time-domain signal is fed through a series of high pass 

filters (HPF) and low pass filters (LPF) using down-sampling. The outputs of 

HPF and LPF define the detail coefficients (D) and approximation coefficients
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(A), respectively. The approximation component is then fed through the HPF 

and LPF again and decomposed at the next level. The result of the MRA is 

a series of approximation coefficients at the maximum decomposition level 

and detail coefficients at every decomposition level. Filters used in MRA are 

called analysis filters. 

  The original signal can be perfectly reconstructed by inverse discrete 

wavelet transform (IDWT), during which signals at every level are passed 

through a set of synthesis filters using up-sampling[57-58].

  There are three steps for wavelet denoising.

  1. Select a mother wavelet, a level , and compute the wavelet 

decomposition coefficients of a given signal from level 1 to .

  As to the mother wavelet, the linear relationship between phase and 

frequency is expected to ensure that the time delay due to frequency is 

constant, which in turn ensures that the signal will not be distorted during 

decomposition or overlapped after reconstruction[21,59]. The correlation 

coefficient  can be used to evaluate the similarity between the PD signal 

and the wavelet function. It is defined as

  





  

 


 

 




 

 



              (2.14)

where  and  represent the PD signal and the wavelet function, 

respectively, and   and   are their average values. The value of  is 
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between 0 and 1. The larger the value of , the greater the similarity 

between the two signals. Therefore, the optimal wavelet for a PD signal is 

the one that has the maximum value of . As defined in Equation 2.14, two 

signals should have the same length. However, this is hard to achieve since 

PD signal is usually acquired with a higher record length compared with the 

wavelet. Therefore, they must be normalized by resampling and shifting as 

the following procedures before correlation coefficient calculation[58].

  a. Normalize the peak magnitudes of PD signal  and mother wavelet 

function  as 1.

  b. Calculate the signal lengths of  and , which can be assumed 

to be  and , respectively.

  c. Resample the length of  with a sampling interval of  so that 

two signals have the same length.

  d. Detect the peak times of  and , and shift  with a time 

difference so that their peaks are at the same time.

  Other than the correlation coefficient method, another method applied for 

selecting wavelet is called dynamic time warping (DTW)[6,60-62]. The DTW is 

used for evaluating the similarity between two discrete signals with different 

lengths. It is widely applied in data mining and information retrieval.

  Assuming there are two time-domain signals with lengths  and ,

                          (2.15)

                         (2.16)
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  Then an × matrix using the square distance is given as 

  
                   (2.17)

  The warp path across the matrix defines the correspondence of  from  

to  from  and is given as

     ≤≤     (2.18)

where  is the length of warp path. This path can be found by dynamic 

programming, which determines the contribution of neighboring cells in the 

matrix to the global matrix  by

                   








 
 
 

              (2.19)

 is the cumulative distance of . The optimal warp path between 

 and  is the one that has minimal distance among all possible warp 

paths, which can be described by

                    
 



                  (2.20)

  The optimal mother wavelet always has a minimum DTW value associated 
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with the original PD signal. Certain criterion must be taken into consideration 

when the DTW is applied. The boundary condition ensures every index of 

two time-domain signals is used in the warp path. The monotonicity 

condition preserves the warp path without overlap. The step size condition 

limits the warp path from long jump. 

  For determining the decomposition level, it is difficult to distinguish the 

PD signal from interferences if a lower level is used[16]. However, much 

more time will be spent if the level of decomposition is redundant[18]. The 

optimal decomposition level is the one with which WT avoids time wastage 

and has sufficient resolution to recognize noises. The method for determining 

the maximum level is given by

     log
 



                   (2.21)

where  approximates the value to the largest integer no greater than the 

data in the parenthesis, and  and  are the lengths of the signal and the 

decomposition filter, respectively. This method ensures that the signal length 

at the highest level is not less than that of 
[22,63].

  2. Apply a thresholding function   with a threshold  to the detail 

coefficients at each level.

  The application of thresholding function and threshold to the wavelet 

coefficients determines how these coefficients will be modified in order to 

effectively suppress the noisy component in a signal. This is conducted by 
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retaining the detail coefficients associated with the PD signal and discarding 

those related with noise. The mostly used thresholding function are the hard, 

soft, and medium thresholding, whose responses are shown in Fig 2.21[6,57].

Fig. 2.21 Responses of hard, soft, and medium thresholding function

  Hard thresholding function processes data in a way that wavelet coefficients 

whose absolute values are greater than the threshold are kept and those lower 

than the threshold are set to zero. The hard thresholding function is given by

 
   

 
                     (2.22)

where  is the original decomposition coefficient,  is the result after 

thresholding, and  is the threshold[35].

  Soft thresholding function sets the coefficients below  to zero whereas 
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those greater than  are retained and brought closer to zero by subtracting 

them from . The soft thresholding function is described as

                        
 












   
  

  ≤
                (2.23)

  Hard thresholding function is recommended for PD denoising since it 

provides a higher signal-to-noise ratio (SNR) after reconstruction[21,22]. 

However, it loses continuity at , resulting in a roughly reconstructed signal. 

In addition, soft thresholding function reduces the magnitude of PD pulse and 

therefore reduces the SNR. A medium thresholding function whose values are 

between the hard and soft thresholding function and provides good continuity 

is expressed as


 













  

  ≤
       (2.24)

where  is a positive integer.

  Four methods, including the automatic level-dependent threshold, Stain’s 

unbiased risk estimate (SURE), hybrid compromising between universal and 

SURE, and minimax threshold are widely used as the threshold[21,64]. 

  The automatic level-dependent threshold   is a modified version of the 

universal threshold that only estimates the noise variance using the detail 

coefficients at the first decomposition level. Since the detail coefficients at 

the first level are mainly considered as noise, the universal threshold 
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eliminates too much of the PD signal energy.   estimates the noise level 

based on the detail coefficients at each decomposition level. It is defined as

 


×ln                    (2.25)

where  is the threshold at level , and  and  are the median and 

the length of the detail coefficients at that level, respectively. Constant  

varies between 0.4 and 1 and is usually suggested to be 0.6745[21]. Since the 

automatic level-dependent threshold considers the coefficient fluctuation at 

each decomposition level, it is more practical to suppress noise with a small 

elimination of the original signal.

  The SURE method firstly estimates the risk for a particular threshold using 

the following equation

                      (2.26)

where  is the wavelet coefficient, and  is the ascending version of 

the wavelet coefficient. The Stein’s unbiased risk  for the threshold is 

defined as



∙
 





          (2.27)
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Suppose risk is the minimum of  and the threshold can be determined 

by 

                         (2.28)

  The hybrid threshold   is defined as a compromise between the universal 

and the SURE threshold. The modified hybrid threshold is developed as a 

combination of the universal threshold method and the Stain’s unbiased risk 

estimate method depending on the parameter  and bound , which are given 

by




  





                       (2.29)

 


 

                         (2.30)

when  , the universal threshold is applied. When ≥, the Stain’s 

unbiased risk estimate method is implemented. 

  The minimax threshold  proposed by Donoho and Johnstone estimates 

the threshold using the minimax principle and is given as

    
  ≤

             (2.31)
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  3. Reconstruct signal using the modified detail coefficients from level 1 to 

 and the original approximation coefficients at level .

  Previous works about denoisng of PD signals based on wavelet techniques 

were all dealt with pulses under AC, whereas related studies under DC have 

not be carried out. Table 2.2 shows an overview of applying WT in 

discriminating PD signal under AC.

Table 2.2 Overview of applying WT in discriminating PD signal under AC

Wavelet Level Function Threshold Noise Ref.

bior1.5 10 hard
noise 
based

white noise [18]

db7
db12

10 - -
white noise, AM 

periodic interference
pulsive interference

[19]

db10 - hard automatic white noise, corona [21]

db7 7 hard - white noise, AM [22]

db10 3 Soft SURE white noise, DSI [65]



- 45 -

Chapter 3  Experiment and Optimization

3.1 Experimental Setup

  Configuration of experimental setup is illustrated in Fig. 3.1. A HVDC 

source was generated by a rectifier circuit that was composed of a dry-type 

transformer, a 100 kV diode, and a 0.5 μF capacitor. The transformer with a 

maximum output of 50 kV and 30 mA was PD-free. It was immersed in 

insulation oil to ensure that there was no corona occurring adjacent to the 

high voltage connection. A resistor R was used in the test circuit for limiting 

the current that may damage the measuring instruments. Artificial defects 

filled with SF6 gas were placed inside a shielding box to reduce the external 

interference. The length, width, and height of the shielding box were 1,020

mm, 720 mm, and 760 mm, respectively[3,29]. 

  The applied voltage was measured by a high-voltage capacitive divider

(Div., North Star High Voltage, VD-100). It had a capacitance of 25 pF and 

a voltage ratio of 10,000:1. For accurate measurement, PD signals generated 

from the artificial defects were detected through a 50 Ω non-inductive resistor 

that was connected between the defect and the ground. A digital storage 

oscilloscope (DSO, Yokogawa, DL9140) with a sampling rate of 5 GS/s and a 

bandwidth of 1 GHz, as well as a data acquisition unit (DAQ, National 

Instruments, NI-5114) with a sampling rate of 250 MS/s and a bandwidth of 

50 MHz were used for signal acquisition. To avoid an electric potential 

difference, the transformer, voltage divider, artificial defects, and measuring 

instruments were grounded.
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(a) Circuit diagram 

(b) Photograph

① Voltage regulator       ② Dry-type transformer      ③ Shielding box 
④ High-voltage divider     ⑤ Detection resistor         ⑥RG-58
DSO : digital storage oscilloscope   DAQ : data acquisition unit

Fig. 3.1 Experimental setup
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  PD occurs at insulation defects generated during the manufacture, assembly, 

and transportation procedures of GIS, where the local electrical stress is 

higher than the insulation strength. Most of such defects can be detected in 

the factory test or commissioning test, whereas there are still some micro 

ones hard to be found. Left without checking, these defects cause progressive 

deterioration of the dielectric material even though facilities operate at their 

rated voltage. Since PD presents different patterns depending on the type of 

insulation defects, it is necessary to study their specific characteristics. As 

shown in Fig. 3.2, typical insulation defects in GIS include protrusion on 

conductor (POC), protrusion on enclosure (POE), free particle (FP), and crack 

inside spacer (CIS). In this dissertation, four artificial defects were fabricated. 

They were filled with 0.5 MPa SF6 with a purity of 99.99%. To avoid any 

pollution of SF6, a vacuum pump was used to vacuumed the defects for 30 

minutes before gas injection. Fig. 3.3 shows the photographs of POC and FP. 

  In the POC and POE, a needle electrode with a curvature radius of 5 μm 

and a plane electrode with a diameter of 80 mm were used. The distance 

between two electrodes was 3 mm. The needle electrode was used to 

represent a micro-size metallic protrusion on the conductor or chamber of gas 

insulated structures. The plane electrode was made of tungsten copper and its 

edge was rounded to prevent corona occurring due to the concentration of 

electric field. The FP, which is the most common defect, was fabricated with 

a 1 mm-diameter aluminum sphere to simulate a free moving metallic particle. 

The CIS was designed to simulate deficiency in the spacer of gas insulated 

structures that may result from mechanical impact. It was fabricated using an 

epoxy insulation plate with a diameter of 80 mm and a thickness of 5 mm.
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Fig. 3.2 Typical insulation defects in GIS

(a) Protrusion on conductor

(b) Free particle

Fig. 3.3 Artificial defects
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3.2 Optimization of Wavelet Transform

3.2.1 Selection of the optimal mother wavelet and decomposition level 

  50 single PD pulses were acquired from each artificial defect for selecting 

the optimal mother wavelet. The correlation coefficient (CC) and dynamic 

time warping (DTW) method were used to compare the similarity between PD 

pulses and various mother wavelets. The mother wavelet with the maximum 

CC value or the minimum warp path in DTW method is preferable for 

analyzing PD pulses. Typical PD pulses detected from four defects are shown 

in Fig. 3.4. Fig. 3.5 and Fig. 3.6 show the results of optimal mother wavelet 

selection using the CC and DTW method, respectively.

  When CC method was used, PD pulses showed the highest similarity with 

wavelet bior6.8 in the POC, POE, and CIS. In the FP, the CC value of 

single pulse with bior2.8 was 0.65 and was 0.54 with bior6.8. Since the type 

of defect is unknown before the PD identification, bior6.8 was selected as the 

optimal wavelet for uniform analysis by the CC method. It can be seen from 

Fig. 3.6 that the best wavelet for analyzing PD pulses in four defects based 

on the DTW method was consistently bior2.6, which presented the minimal 

warp path with discharge pulses. The effectiveness of denoising using these 

two different wavelets was compared after determining the thresholding 

function and threshold.

  The Equation 2.21 was used for determining the decomposition level. The 

signal length of single PD pulse was 5,000. The wavelet bior6.8 and bior2.6 

have a length of 17 and 13, respectively. Therefore, the optimal 

decomposition level was calculated as 8 for two different types of mother 

wavelets.
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Fig. 3.4 Typical single PD pulses
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Fig. 3.5 Selection of mother wavelet using CC method
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Fig. 3.6 Selection of mother wavelet using DTW method
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3.2.2 Selection of the optimal thresholding function and threshold 

  The average rise time (), decay time (), and pulse width () of single 

PD pulses are shown in Table 3.1. These parameters were used to determine 

the simulated pulse waveform for selecting the optimal thresholding function 

and threshold. 

Table 3.1 Parameters of single PD pulses

Defect   [ns]  [ns]  [ns]

POC 18 45 46

POE 18 51 53

FP 11 83 58

CIS 30 35 65

  Based on the parameters of detected single PD pulses, a damped 

exponential pulse (DEP) was used to simulate pulses in the POC, POE as 

well as FP, and a damped oscillatory pulse (DOP) was used to simulate 

pulses in the CIS. Simulated pulses are given by


 

                   (3.1)

    
 

               (3.2)

where  is the peak value and is assumed to be 1,  and  are damping 

coefficients that determine the pulse waveform, and  is the oscillatory 
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frequency of DOP[18]. According to Table 3.1, the rise time, decay time, and 

pulse width were 15 ns, 60 ns, and 50 ns for DEP, and were 30 ns, 35 ns, 

and 65 ns for DOP. The lengths of two pulses were 5,000. Waveforms of 

simulated pulses are illustrated in Fig. 3.7.

  

(a) DEP

(b) DOP

Fig. 3.7 Simulated single PD pulses
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  These two types of simulated pulses interfered by Gaussian white noise 

were used to select the optimal thresholding function from hard, soft, and 

medium methods, and to select the optimal threshold from automatic 

level-dependent, SURE, hybrid, and minimax method. The noisy signals were 

decomposed by bior6.8 and bior2.6 wavelet into 8 levels and then denoised 

by various combinations of thresholding functions and thresholds. The 

optimization was carried out by calculating the signal-to-noise ratio (SNR), 

reduction in noise (RN), correlation coefficient (), and change in amplitude

(A%) between the original and denoised signal[59].

  The SNR defines the effectiveness of denoising and is given by

SNR log


 






  



 

                    (3.3)

where  and  are the simulated signal and the denoised signal, 

respectively.  is the signal length and  is the index number. The 

correlation coefficient given in Equation 2.14 indicates the similarity between 

two signals and therefore reflects the degree of distortion of PD pulses after 

denoising by different methods.

  The RN and A%  are defined as

RNlog
  



                  (3.4)
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A


×                      (3.5)

where  and  are peak values of the simulated signal and the denoised 

signal, respectively. After denoising by different thresholding functions and 

thresholds, noise should be eliminated effectively while the original signal 

should not be distorted. Therefore, an acceptable denoising method 

corresponds to the largest SNR, RN, and correlation coefficient, as well as 

the lowest A%. 

  The simulated pulses immersed in Gaussian white noise were decomposed 

into 8 levels by bior6.8 and bior2.6, and then denoised by a threshold and 

thresholding function. The same result was obtained by two mother wavelets. 

The sampling rate of signal acquisition was 2.5 GS/s, thus the maximum 

frequency of single PD pulse was 1.25 GHz. The MRA decomposed the 

frequency band of signal into half by down-sampling at each decomposition 

level, making the detail components (D) go through the high pass filter and 

the approximation components (A) go through the low pass filter, which is to 

be decomposed again at the next level. Therefore, the frequency bands of 

detail components () and the frequency bands of approximation 

components () at each decomposition level can be expressed by Equation 

3.6 and 3.7 as following

 




×
  ≤

 

×
                (3.6)
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   ≤


×
                  (3.7)

where  is the decomposition level and is an integer in range of 1 - 8.

  Fig. 3.8 and Fig. 3.9 show the discrimination of DEP by medium 

function-automatic threshold and hard function-minimax threshold combination, 

which were the best and the worst situation, respectively. The high-frequency 

noise located in detail components of D1-D5 distributed in a frequency range 

of 39 MHz-1.25 GHz. The PD-related components were mainly detail 

components D6-D8 and approximate component A8, covering the frequency 

up to 39 MHz. The thresholding function and threshold were only applied to 

process detail components whereas the approximate component was retained.

  In Fig. 3.8 and Fig. 3.9, the SNR of original signal (simulated PD 

interfered by white noise) was –45.61 dB. When the medium 

function-automatic threshold was applied, the high-frequency noise components 

were well eliminated and the simulated signal was well reconstructed, as the 

red signal shown in Fig. 3.8. Denoising resulted in a SNR of 12.59 dB, 

which was improved by 58.20 dB. The correlation coefficient was 0.97, 

showing high consistency between the simulated signal and denoised signal. 

The A% was 0.67, which indicated that the simulated pulse was not 

distorted. On the contrary, when the hard function-minimax threshold was 

implemented, noise components were not eliminated thoroughly and the 

simulated pulse was still interfered. The SNR and correlation coefficient were 

3.62 dB and 0.74, both of which were lower than those obtained by medium 

function-automatic threshold. The A% was 46.49, meaning serious distortion 
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of the simulated pulse.

  The effectiveness of denoising was also verified by the signal energy at 

each decomposition level, which was calculated by 

Signalenergy
 




                    (3.8)

  

where  is the component at each decomposition level and  is the signal 

length. The comparison of signal energy is shown in Fig. 3.10. The energies 

of components related with noise at lower levels were reduced by hard 

function-minimax threshold, and were significantly reduced by medium 

function-automatic threshold. The results of discrimination of DEP by 

different combinations are shown in Table 3.2. Therefore, medium 

function-automatic threshold was selected.

  Fig. 3.11 and Fig. 3.12 show the discrimination of DOP by medium 

function-automatic threshold and hard function-SURE threshold, respectively. 

The SNR of original signal was –2.08 dB and was increased to 17.86 dB 

after applying the medium function-automatic threshold. The correlation 

coefficient and A% were 0.99 and 8.76, respectively. The comparison of 

signal energy is shown in Fig. 3.13. And the results of discrimination of 

DOP by different combinations are shown in Table 3.3. Therefore, medium 

function -automatic threshold, which was the same as for DEP, was selected 

for denosing DOP.

  Based on above analysis, the medium-automatic combination was selected 

as the optimal thresholding function and threshold.
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Fig. 3.8 Discrimination of DEP by medium function-automatic threshold
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Fig. 3.9 Discrimination of DEP by hard function-minimax threshold
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Fig. 3.10 Comparison of signal energy for DEP

Table 3.2 Discrimination results of DEP  

Function Threshold SNR [dB] γ A%

Hard

Automatic 4.94 0.82 43.95

SURE 3.40 0.73 23.95

Hybrid 6.17 0.87 43.93

Minimax 3.62 0.74 46.49

Soft

Automatic 10.96 0.97 4.89

SURE 9.22 0.94 7.32

Hybrid 9.97 0.97 3.69

Minimax 11.89 0.97 7.09

Medium

Automatic 12.59 0.97 0.67

SURE 8.64 0.93 8.84

Hybrid 12.73 0.97 2.41

Minimax 11.30 0.96 10.13
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Fig. 3.11 Discrimination of DOP by medium function-automatic threshold
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Fig. 3.12 Discrimination of DOP by hard function-SURE threshold
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Fig. 3.13 Comparison of signal energy for DOP

Table 3.3 Discrimination results of DOP 

Function Threshold SNR [dB] γ A%

Hard

Automatic 8.22 0.92 61.79

SURE 6.16 0.87 60.83

Hybrid 9.73 0.95 61.38

Minimax 6.49 0.88 61.06

Soft

Automatic 10.21 0.99 9.41

SURE 13.31 0.98 28.81

Hybrid 14.86 0.99 16.35

Minimax 11.14 0.99 13.34

Medium

Automatic 17.86 0.99 8.76

SURE 12.68 0.97 33.58

Hybrid 12.61 0.99 14.66

Minimax 15.61 0.99 18.88
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3.2.3 Discrimination of single PD pulses

  In order to evaluate the selected thresholding function and threshold and to 

compare the validity of mother wavelets selected by two methods, the bior6.8 

and bior2.6 were applied to denoise the detected PD pulses with medium 

function-automatic threshold. As there was not a reference signal (simulated 

pulse) for the actually detected pulses, the RN rather than SNR was 

considered for comparing the effectiveness of denioising. Results of denoising 

detected single PD pulses are shown in Table 3.4. It can be seen that 

denoising with bior2.6 that was selected by the DTW method resulted in a 

higher values of RN and correlation coefficients, and lower value of A%, 

compared with the bior6.8 selected by the CC method. The correlation 

coefficients were nearly 1, which meat that the denoised signals were almost 

the same with the original signals. Therefore, bior2.6 was selected as the 

optimal mother wavelet to discriminate PD signal under HVDC. 

Table 3.4 Discrimination results of single PD pulses

Defects
bior6.8 bior2.6

RN γ A% RN γ A%

POC -30.50 0.996 3.18 -30.00 0.996 3.15

POE -25.48 0.989 5.38 -25.36 0.991 2.81

FP -25.43 0.996 3.06 -24.05 0.996 2.10

CIS -16.93 0.978 2.70 -12.70 0.986 2.49

Average -24.59 0.990 3.58 -23.02 0.992 2.64
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Chapter 4  Discrimination of PD Sequences

  From the pre-denoising of single discharge pulse, it was verified that 

mother wavelet bior2.6, medium thresholding function, automatic threshold 

were the optimal selection for dealing with single PD pulse under HVDC. 

During on-site PD condition monitoring, pulse sequences rather than single 

pulse are acquired for evaluating the severity of insulation defect, for 

extracting discharge features and finally for classifying the defect type, such 

as the TRPD method introduced in Section 2.3. In this chapter, therefore, the 

optimized wavelet transform techniques were used to discriminate practical PD 

pulse sequences and the effectiveness was compared with a high-pass filter 

that had a cutoff frequency of 800 kHz. A DEP-type PD sequence and a 

DOP-type PD sequence that were interfered by background noise, amplitude 

modulation (AM) radio interference, non-sinusoidal noise, and switching 

impulse were used to verify the effect of wavelet de-nosing. 

  Different with previous studies that used calibrated or simulated PD pulse 
[19,21], the DEP-type and DOP-type pulse sequences in this paper were actually 

detected from four types of electrode systems, all of which inherently 

contained the background noise generated from the detection system. Fig. 4.1 

shows the sequences with different pulse magnitudes in the FP and CIS. 

Given the low PD repetition rate under DC, pulse sequences in 20 ms were 

acquired for further denoising. There were 3 pulses in the DEP-type pulse 

sequences and 2 pulses were acquired in the DOP-type pulse sequences. 

  Fig. 4.2 shows three types of noises commonly presented in PD detection. 

The noises were also acquired in 20 ms and detail information was indicated 
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in the inset graph. AM radio signal with a central frequency of 600 kHz and 

a magnitude of 10 mV generated from a signal generator was externally 

injected to the PD pulse sequence to present the DSI. Fig. 4.2(b) is a 

periodic non-sinusoidal noise with main component of 2 kHz to simulate 

interference from power electronics. A switching impulse shown in Fig. 4.2(c) 

that had a pulse width higher than that of PD pulse was used to represent 

the stochastic pulse-shaped interferences.

(a) DEP-type pulse

(b) DOP-type pulse

Fig. 4.1 PD pulse sequences
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(a) AM radio interference

(b) Non-sinusoidal noise

(c) Switching impulse

Fig. 4.2 Noises in PD detection
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  The proposed wavelet denoising method was developed based on LabVIEW 

program. The virtual instruments (VI) block diagram is shown in Fig. 4.3, 

which is mainly composed of discrete wavelet transformation VI and subVI 

of threshold, thresholding function as well as denoising evaluation. The 

interfered signal was first decomposed into 8 levels using bior2.6 mother 

wavelet by discrete wavelet transformation, generating the detail coefficients at 

all levels and the approximation coefficients at the highest level. In the loop, 

the detail coefficients at each decomposition level were extracted respectively 

and then modified by the selected medium thresholding function and 

automatic threshold. A shift register was used to pass detail coefficients from 

previous iteration through the loop to the next iteration. Finally, the modified 

detail coefficients and the original approximation coefficients were used for 

signal reconstruction. Effectiveness of denoising was verified by the 

evaluation subVI, in which the reduction in noise, correlation coefficient, and 

change in amplitude were calculated.

 

Fig. 4.3 VI block diagram of wavelet denoising
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4.1 DEP-type Pulse Sequence
  Fig. 4.4 shows discrimination of DEP-type pulse sequence interfered by 

AM interference using the high-pass filter with cutoff frequency of 800 kHz 

and  the wavelet method. In Fig. 4.4(a), the original signal with three PD 

pulses that had different magnitudes was detected from the FP electrode 

system. Such signal was interfered by AM interference with central frequency 

of 600 kHz. It can be seen that the original signal was immersed in the 

noise and it is hard to distinguish the second discharge pulse from the 

interfered signal by visual inspection. The SNR of interfered signal was –
23.59 dB. Fig 4.4(b) and (c) show denoising of the interfered signal using 

high-pass filter and wavelet method, respectively. After denoising by high-pass 

filter, the background noise and AM interference were not completely 

eliminated. As a result, the denoised signal had a reduction in noise (RN) of 

6.65, a correlation coefficient (CC) of 0.07 with the original signal, and a 

change in amplitude (A%) of 25.21%. On the contrary, both the background 

noise and AM interference were significantly reduced by the wavelet method. 

Details of the application of medium thresholding function-automatic threshold 

to the detail coefficients and the signal reconstruction are illustrated in Fig. 

4.5. Detail coefficients that were related with PD were retained whereas that 

associated with noise were suppressed, the approximation coefficients were 

not modified. The denoised signal was reconstructed by all of the modified 

detail components D1–D8 and the original approximation component A8. The 

RN, CC, and A% values of signal denoised by wavelet method were 11.64

dB, 0.17, and 23.36%, respectively, all of which showed the superiority 

compared with the high-pass filter method.
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(a) Original signal and interfered signal

(b) Denoised by filter

(c) Denoised by wavelet method

Fig. 4.4 Discrimination of DEP-type pulse interfered by AM interference
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Fig. 4.5 Elimination of AM interference in DEP-type pulse by wavelet method
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  Discrimination of DEP-type pulse interfered by periodic non-sinusoidal 

noise is shown in Fig. 4.6. The noise contained 2 kHz component with 

magnitude of 20 mV and other components with frequencies lower than 2 kHz 

and lower magnitudes. As shown in Fig. 4.6(a), the second PD pulse was 

completely buried in the non-sinusoidal noise and it was impossible to be 

identified without the help of denoising. The SNR of interfered signal was –
24.55 dB. Although applying the high-pass filter can reduce the periodic 

non-sinusoidal noise, background noise was also remained, as shown in Fig. 

4.6(b). Denoising by the high-pass filter method resulted in a reduction in 

noise of 0.19 dB, a correlation coefficient of 0.13, and a change in amplitude 

of 29.41%. Decomposition of the interfered signal into 8 levels using the 

optimized wavelet method (mother wavelet bior2.6, medium thresholding 

function, automatic threshold) is shown in Fig. 4.7. It was indicated that the 

detail components D1-D5 contained PD signal whereas the detail components 

D6-D8 were related with the background noise and the periodic 

non-sinusoidal noise. However, denoising with wavelet method did not 

eliminate the noise-related coefficients in detail components D6-D8. It was 

therefore only detail components at levels 1-5 were used for signal 

reconstruction, as the denoised signal shown in Fig. 4.6(c). From visual 

inspection, both the background noise and the periodic non-sinusoidal noise 

were significantly reduced. Denoising using the wavelet method resulted in a 

reduction in noise of 0.71, dB, a correlation coefficient of 0.17, and a change 

in amplitude of 27.67%, all of which revealed the higher performance of 

wavelet method compared with the high-pass filter method.
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(a) Original signal and interfered signal

(b) Denoised by filter

(c) Denoised by wavelet method

Fig. 4.6 Discrimination of DEP-type pulse interfered by non-sinusoidal noise
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Fig. 4.7 Elimination of non-sinusoidal noise in DEP-type pulse by wavelet method
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  Fig. 4.8 shows discrimination of DEP-type pulse sequence that was 

interfered by switching impulse. Compared with PD pulses shown in Fig 3.3, 

the switching impulse in Fig. 4.8(a) had longer pulse width. The peak 

magnitude of switching impulse was 30 mV and the magnitude of the third 

PD pulse was 34.84 mV. From the interfered signal shown in Fig. 4.8(a), the 

third discharge pulse was totally merged with the switching impulse and it 

was impossible to be discriminated by visual inspection. Owing to the 

background noise and switching impulse, the SNR of interfered signal was –
15.38 dB. Fig. 4.8(b) illustrates the denoising result using the high-pass filter 

with cutoff frequency of 800 kHz. It can be seen that only partial background 

noise and switching impulse were suppressed and the third discharge pulse 

was still buried in the noise and hard to be identified. After denoising by 

high-pass filter, the reduction in noise was –12.72 dB. The correlation 

coefficient and change in amplitude were 0.15 and 18.24%, respectively. In 

Fig. 4.9, the interfered signal was decomposed into 8 levels using bior2.6 as 

mother wavelet and then was denoised using medium thresholding function 

and automatic threshold. The blue and red signal presented the interfered and 

denoised PD sequence at each decomposition level, respectively. Denoised 

signal was reconstructed by all of the modified detail components from D1 to 

D8. The denoising result using wavelet method is shown in Fig. 4.8(c), the 

background noise was completely removed and most of the switching impulse 

were suppressed. Denoising using wavelet method resulted in a reduction in 

noise of –7.14 dB, which was higher than that obtained from the high-pass 

filter method. The correlation coefficient and change in amplitude were 0.20 

and 13.89%, respectively. 
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(a) Original signal and interfered signal

(b) Denoised by filter

(c) Denoised by wavelet method

Fig. 4.8 Discrimination of DEP-type pulse interfered by switching impulse
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Fig. 4.9 Elimination of switching impulse in DEP-type pulse by wavelet method
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4.2 DOP-type Pulse Sequence
  The DOP-type pulse sequence detected from the crack electrode system and 

interfered by AM interference as well as background noise is shown in Fig. 

4.10(a). There were two discharge pulses with magnitudes of 71 mV and 55

mV in the sequence. The AM interference had a central frequency of 600

kHz and a magnitude of 10 mV. It can be seen that the oscillation of the 

first pulse at negative part cannot been discriminated as it was superposed on 

the positive rising edge of AM interference. The SNR of DOP-type pulse 

sequence contained background noise and AM interference was –20.45 dB. 

Denoising of the interfered signal using the 800 kHz high-pass filter is shown 

in Fig. 4.10(b). Only partial background noise and AM interference were 

removed and the denoising resulted in a reduction in noise of 4.55 dB, a 

correlation coefficient of 0.10, and a change in amplitude of 24.15 %. Fig. 

4.11 demonstrates the decomposition of the interfered signal into 8 levels 

using the mother wavelet bior2.6, medium thresholding function, and 

automatic threshold. Detail coefficients at each level were modified and all of 

the detail components from D1 to D8 were used for signal reconstruction. 

The denoising result obtained from wavelet method is shown in Fig. 4.10(c). 

It was indicated that the background noise and AM interference were 

significantly eliminated and the oscillation of the first pulse at negative part 

was also recovered. After denoising by the wavelet method, the reduction in 

noise was 6.03 dB. The correlation coefficient and change in amplitude were 

0.17 and 22.41%, respectively. Wavelet transform technique shown its higher 

performance in suppressing background noise and AM interference compared 

with the high-pass filter.
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(a) Original signal and interfered signal

(b) Denoised by filter

(c) Denoised by wavelet method

Fig. 4.10 Discrimination of DOP-type pulse interfered by AM interference
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Fig. 4.11 Elimination of AM interference in DOP-type pulse by wavelet method
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  Fig. 4.12 demonstrates the elimination of periodic non-sinusoidal noise from 

interfered DOP-type pulse sequence. In Fig. 4.12(a), the interfered signal had 

a SNR of –23.20 dB. The non-sinusoidal noise had main component with 

frequency of 2 kHz and magnitude of 20 mV and other components with 

magnitudes lower than 20 mV. It can be seen that the first PD pulse with 

magnitude of 71 mV merged with the noise pulse, resulting in an increase in 

the peak magnitude of pulse sequence. This case may lead to an 

overvaluation of the PD severity and cause an erroneous diagnosis result. The 

result of denoising using the high-pass filter is shown in Fig. 4.12(b). 

Applying the high-pass filter suppressed the periodic non-sinusoidal, however, 

there were still remained interference in the denoised signal. The reduction in 

noise, correlation coefficient, and change in amplitude of filter method were 

1.04 dB, 0.16, and 28.27%, respectively. Fig. 4.13 illustrates the original 

detail components of interfered signal in 8 levels and the modified detail 

components that were denoised by bior2.6 mother wavelet, medium 

thresholding function, and automatic threshold. As denoising of DEP-type 

pulse sequence interfered by non-sinusoidal noise, most of PD-related 

components were observed in detail components D1-D5, they were therefore 

denoised and then used for signal reconstruction. Although denoised by 

wavelet method, the detail components D6-D8 were found to be related with 

background noise and periodic non-sinusoidal noise, therefore, they were 

discarded instead of being used for signal reconstruction. Fig. 4.12(c) shows 

the denoised signal obtained by wavelet method. The reduction in noise was 

1.87 dB. The correlation coefficient and change in amplitude were 0.17 and 

24.90%, respectively.
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(a) Original signal and interfered signal

(b) Denoised by filter

(c) Denoised by wavelet method

Fig. 4.12 Discrimination of DOP-type pulse interfered by non-sinusoidal noise
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Fig. 4.13 Elimination of non-sinusoidal noise in DOP-type pulse by wavelet method



- 85 -

  Fig. 4.14 shows the discrimination of DOP-type pulse interfered by 

switching impulse. It can be seen from Fig. 4.14(a) that although the 

switching impulses between 15 ms and 20 ms were not superposed with PD 

pulses, they can be erroneously identified as discharge pulses, resulting 

mistake in counting the discharge number. After polluting by the switching 

impulse, the signal had a SNR of –10.37 dB. Result of denoising the 

interfered signal using the 800 kHz high-pass filter is shown in Fig. 4.14 (b). 

After applying the high-pass filter, the  peak magnitude of switching impulse 

was reduced from 35 mV to 27 mV. However, the background noise and 

switching impulse still remained in the original signal and can be observed 

by visual inspection. In Fig. 4.14 (b), the reduction in noise was –8.81 dB. 

The correlation coefficient was 0.15 and the change in amplitude after 

denoising was 20.11%. The interfered signal was decomposed into 8 levels 

using mother wavelet bior2.6 and then the detail components were denoised 

by medium thresholding function and automatic threshold. The details of 

decomposition and denosing are shown in Fig. 4.15, where the blue and red 

signal presented the interfered and denoised PD components at each 

decomposition level, respectively. All of the modified detail components in 8 

levels were used for reconstructing the denoised signal and the denoising 

result is shown in Fig. 4.14(c). It was revealed that both the background 

noise and the switching impulse were greatly eliminated. The peak magnitude 

of switching impulse was reduced to 15 mV. Denoising using wavelet method 

resulted in a reduction in noise of –4.15 dB, a correlation coefficient of 0.21, 

and a change in amplitude of 15.58%. The denoising results showed the 

superiority of wavelet method compared with the high-pass filter method.
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(a) Original signal and interfered signal

(b) Denoised by filter

(c) Denoised by wavelet method

Fig. 4.14 Discrimination of DOP-type pulse interfered by switching impulse
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Fig. 4.15 Elimination of switching impulse in DOP-type pulse by wavelet method
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  A summary of results of PD signal discrimination is shown in Table 4.1. 

The wavelet method showed its effectiveness in denoising DEP-type PD 

sequence and DOP-type PD sequence that were interfered by background 

noise, amplitude modulation radio interference, non-sinusoidal noise, and 

switching impulse. It was also indicated that discrimination of PD signal 

using wavelet techniques resulted in higher values of reduction in noise as 

well as correlated coefficient, and lower value of change in amplitude 

compared with the high-pass filter. Therefore, the optimized wavelet method 

can be applied to on-line PD detection in GIS under HVDC for improving 

the detection sensitivity and the accuracy of insulation diagnosis. 

Table 4.1 Results of PD signal discrimination

Pulse 
sequence

Noise
Wavelet Filter

RN CC A% RN CC A%

DEP

AM 11.64 0.17 23.36 6.65 0.07 25.21

Non-sinusoidal 0.71 0.17 27.67 0.19 0.13 29.41

Switching impulse -7.14 0.20 13.89 -12.72 0.15 18.24

DOP

AM 6.03 0.17 22.41 4.55 0.10 24.15

Non-sinusoidal 1.87 0.17 24.90 1.04 0.16 28.27

Switching impulse -4.15 0.21 15.58 -8.81 0.15 20.11

Average 1.49 0.18 21.30 -1.52 0.13 24.23
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Chapter 5  Conclusions

  This dissertation dealt with discrimination of PD signals interfered by 

noises and interferences using wavelet transform for on-line condition 

monitoring and diagnosis of HVDC GIS, aiming to improve the detection 

sensitivity and further the accuracy of severity assessment.

  Single PD pulses were extracted from typical insulation defects in GIS, 

including protrusion on conductor (POC), protrusion on enclosure (POE), free 

particle (FP), and crack inside spacer (CIS), for determining the optimal 

mother wavelet. The correlation coefficient and dynamic time warping method 

were used to compare the similarity between PD pulses and various mother 

wavelets. It was verified that mother wavelet bior2.6 selected by dynamic 

time warping method was the most appropriate for analyzing PD signal under 

HVDC. 

  A damped exponential pulse (DEP) and a damped oscillatory pulse (DOP) 

were simulated for selecting the optimal thresholding function and threshold. 

Application of medium thresholding function-automatic threshold in denosing 

DEP resulted in the highest signal-to-noise ratio (SNR) of 12.59 dB, the 

highest correlation coefficient of 0.97, and the lowest change in amplitude of 

0.67. The similar results were obtained from denosing of DOP using medium 

function-automatic threshold. The SNR of noisy signal was increased to 17.86

dB. The correlation coefficient and change in amplitude  were 0.99 and 8.76, 

respectively. Therefore, the medium-automatic combination was selected as the 

optimal thresholding function and threshold.
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  The optimized wavelet techniques were used for discriminating DEP-type 

and DOP-type PD sequences that were actually detected from artificial defects  

and interfered by background noise, amplitude modulation radio interference, 

periodic non-sinusoidal noise, and switching impulse. Although the PD pulses 

were immersed in the noises and cannot be distinguished by visual 

inspection, they can be recovered after applying wavelet denoising. Denoising 

with the wavelet method resulted in an average reduction in noise of 1.49

dB, correlation coefficient of 0.18, and change in amplitude of 21.30, all of 

which showed the superiority of wavelet method compared with the high-pass 

filter method.

  The proposed wavelet techniques were verified to be effective in 

discriminating PD signals from noises and interferences. Results from this 

dissertation were expected to be applied for insulation diagnosis of HVDC 

GIS, by which accuracies of PD detection, risk assessment, defect 

identification and localization can be significantly improved.
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