3,081 research outputs found

    Structural changes of lumbar muscles in non-specific low back pain

    Get PDF
    Background: Lumbar muscle dysfunction due to pain might be related to altered lumbar muscle structure. Macroscopically, muscle degeneration in low back pain (LBP) is characterized by a decrease in cross-sectional area and an increase in fat infiltration in the lumbar paraspinal muscles. In addition microscopic changes, such as changes in fiber distribution, might occur. Inconsistencies in results from different studies make it difficult to draw firm conclusions on which structural changes are present in the different types of non-specific LBP. Insights regarding structural muscle alterations in LBP are, however, important for prevention and treatment of non-specific LBP. Objective: The goal of this article is to review which macro- and/or microscopic structural alterations of the lumbar muscles occur in case of non-specific chronic low back pain (CLBP), recurrent low back pain (RLBP), and acute low back pain (ALBP). Study Design: Systematic review. Setting: All selected studies were case-control studies. Methods: A systematic literature search was conducted in the databases PubMed and Web of Science. Only full texts of original studies regarding structural alterations (atrophy, fat infiltration, and fiber type distribution) in lumbar muscles of patients with non-specific LBP compared to healthy controls were included. All included articles were scored on methodological quality. Results: Fifteen studies were found eligible after screening title, abstract, and full text for inclusion and exclusion criteria. In CLBP, moderate evidence of atrophy was found in the multifidus; whereas, results in the paraspinal and the erector spinae muscle remain inconclusive. Also moderate evidence occurred in RLBP and ALBP, where no atrophy was shown in any lumbar muscle. Conflicting results were seen in undefined LBP groups. Results concerning fat infiltration were inconsistent in CLBP. On the other hand, there is moderate evidence in RLBP that fat infiltration does not occur, although a larger muscle fat index was found in the erector spinae, multifidus, and paraspinal muscles, reflecting an increased relative amount of intramuscular lipids in RLBP. However, no studies were found investigating fat infiltration in ALBP. Restricted evidence indicates no abnormalities in fiber type in the paraspinal muscles in CLBP. No studies have examined fiber type in ALBP and RLBP. Limitations: Lack of clarity concerning patient definitions, exact LBP symptoms, and applied methods. Conclusions: The results indicate atrophy in CLBP in the multifidus and paraspinal muscles but not in the erector spinae. No atrophy was shown in RLBP and ALBP. Fat infiltration did not occur in RLBP, but results in CLBP were inconsistent. No abnormalities in fiber type in the paraspinal muscles were found in CLBP

    Individuals with Recurrent Low Back Pain Exhibit Significant Changes of Paraspinal Muscle Performance after Lumbar Multifidus Intramuscular Fine Wire Electrode Insertion

    Full text link
    STUDY DESIGN: Case control study. BACKGROUND: Recurrent low back pain (RLBP) is associated with paraspinal muscle dysfunction. Intramuscular electromyography (EMG) is a common tool for studying activation of the deep lumbar paraspinal muscles such as multifidi muscles, but it is currently currently unclear how muscle performance and activation are affected by the pain and micro-injury associated with intramuscular fine-wire electrode (IFWE) insertion and how it interacts with the presence of RLBP. OBJECTIVES: The purpose of this study was to examine how IFWE insertion into the lumbar multifidus affects paraspinal muscle strength and endurance in subjects with and without RLBP. METHODS: Forty subjects aged 18 - 40 were recruited; 20 subjects with a history of RLBP were compared with a group of 20 age-matched controls with no RLBP. Paraspinal extensor strength and endurance were measured under three conditions over three testing days. On Day 1, the baseline condition (BL), we obtained preliminary measures of discomfort, force production, endurance, and muscle activation. On Days 2 and 3, the participants randomly alternated between the two experimental conditions: (i) a wire-in condition (WI) in which the IFWE was inserted and remained within the muscle and (ii) a wire-out condition (WO) in which the IFWE was inserted and immediately removed. Participants were blinded to the order of the fine-wire conditions. Subjective pain levels were recorded via the Visual Analog Scale at specific time points throughout the testing protocol. RESULTS: Individuals with RLBP showed a significant decrease in strength in both conditions that involved IFWE insertion. Controls showed no significant difference in strength across conditions. Both groups exhibited similar performance in the endurance test. CONCLUSION: Our findings indicate IFWE insertion into lumbar multifidus may lead to reduced peak spinal extensor muscle force production in individuals with a history of RLBP compared to healthy controls

    An Investigation Into the Electrical Activity of Tender, Resting Paraspinal Muscles Using Surface Electromyography: A Pilot Study

    Get PDF
    Abnormal resting paraspinal muscle activity has been claimed to be responsible for changes in spinal tissue texture which are detectible by manual palpation. This pilot study investigated whether there was significant electrical activity in paraspinal musculature that was tender and that appeared to have altered tissue texture on palpation. Sixteen healthy volunteers between 18 and 35 years of age had their thoracic erector spinae mass palpated bilaterally from spinal levels T3 to T10 to identify paraspinal regions exhibiting altered tissue texture relative to the contralateral muscle mass. Surface electromyography (sEMG) was used to measure electrical activity in the muscle mass at the selected levels. No significant differences in electrical activity were observed between the tender and non-tender muscle masses, although a large difference existed in the one symptomatic subject. All muscle sites displayed EMG activity at rest, although the source of activity is not clear. A number of methodological problems with the EMG recording were encountered and are discussed. Future research is recommended using symptomatic participants

    No excess of mitochondrial DNA deletions within muscle in progressive multiple sclerosis

    Get PDF
    BACKGROUND: Mitochondrial dysfunction is an established feature of multiple sclerosis (MS). We recently described high levels of mitochondrial DNA (mtDNA) deletions within respiratory enzyme-deficient (lacking mitochondrial respiratory chain complex IV with intact complex II) neurons and choroid plexus epithelial cells in progressive MS. OBJECTIVES: The objective of this paper is to determine whether respiratory enzyme deficiency and mtDNA deletions in MS were in excess of age-related changes within muscle, which, like neurons, are post-mitotic cells that frequently harbour mtDNA deletions with ageing and in disease. METHODS: In progressive MS cases (n=17), known to harbour an excess of mtDNA deletions in the central nervous system (CNS), and controls (n=15), we studied muscle (paraspinal) and explored mitochondria in single fibres. Histochemistry, immunohistochemistry, laser microdissection, real-time polymerase chain reaction (PCR), long-range PCR and sequencing were used to resolve the single muscle fibres. RESULTS: The percentage of respiratory enzyme-deficient muscle fibres, mtDNA deletion level and percentage of muscle fibres harbouring high levels of mtDNA deletions were not significantly different in MS compared with controls. CONCLUSION: Our findings do not provide support to the existence of a diffuse mitochondrial abnormality involving multiple systems in MS. Understanding the cause(s) of the CNS mitochondrial dysfunction in progressive MS remains a research priority

    Severe Lumbar Disability Is Associated With Decreased Psoas Cross-Sectional Area in Degenerative Spondylolisthesis

    Get PDF
    Study Design: Retrospective cohort. Objectives: Alterations in lumbar paraspinal muscle cross-sectional area (CSA) may correlate with lumbar pathology. The purpose of this study was to compare paraspinal CSA in patients with degenerative spondylolisthesis and severe lumbar disability to those with mild or moderate lumbar disability, as determined by the Oswestry Disability Index (ODI). Methods: We retrospectively reviewed the medical records of 101 patients undergoing lumbar fusion for degenerative spondylolisthesis. Patients were divided into ODI score ≤40 (mild/moderate disability, MMD) and ODI score \u3e40 (severe disability, SD) groups. The total CSA of the psoas and paraspinal muscles were measured on preoperative magnetic resonance imaging (MRI). Results: There were 37 patients in the SD group and 64 in the MMD group. Average age and body mass index were similar between groups. For the paraspinal muscles, we were unable to demonstrate any significant differences in total CSA between the groups. Psoas muscle CSA was significantly decreased in the SD group compared with the MMD group (1010.08 vs 1178.6 mm2, P =.041). Multivariate analysis found that psoas CSA in the upper quartile was significantly protective against severe disability (P =.013). Conclusions: We found that patients with severe lumbar disability had no significant differences in posterior lumbar paraspinal CSA when compared with those with mild/moderate disability. However, severely disabled patients had significantly decreased psoas CSA, and larger psoas CSA was strongly protective against severe disability, suggestive of a potential association with psoas atrophy and worsening severity of lumbar pathology. © The Author(s) 2018

    Safety of Needle Electromyography in Critically Ill Patients

    Get PDF
    Introduction: To evaluate the safety of needle electromyography (EMG) in critically ill intensive care unit (ICU) patients who are on anticoagulants and have comorbidities that increase the risk of bleeding and infections. Methods: We conducted a retrospective chart review of critically ill patients who underwent needle EMG studies. The most common complications followed by needle EMG were reviewed and classified based upon common terminology criteria for adverse events (CTAC) criteria. Descriptive statistics were reported using the frequencies and percentages for categorical variables. The mean and interquartile range is used for continuous variables. All analyses were conducted using the Statistical Package for the Social Sciences (IBM SPSS Statistic Version 21, IMB Inc., Chicago, IL. Results: Twenty-nine patients were included. 17 (58.6%) were males with a mean age of 60.8 +/- 16.7 years.  The mean PT, PTT, and INR were 15.2 sec, 36.5 seconds, and 1.13, respectively. Fourteen (48.2%) patients in this cohort were treated with low molecular weight heparin (LMWH), and an additional 8 (27.5%) patients were administered subcutaneous (SC) heparin for deep vein thrombosis prophylaxis. Therapeutic heparin was being used in 3 (10.3%) patients and sequential compression devices (SCDs) in 4 (13.7%) patients. A total of 228 muscles were tested. Among them, 38 (16.6%) were deep muscles. There were no major bleeding complications at the time of the procedure and for the next seven days in any of the patients, including those with multiple medical comorbidities. All our patients met the grade 1 scale in the severity of adverse events criteria proposed by CTCAE. Conclusion: Needle EMG is safe in critically ill ICU patients on anticoagulants and multiple comorbidities including those that increase the risk of bleeding and infection

    Cross-sectional area of the paraspinal muscles and its association with muscle strength among fighter pilots : A 5-year follow-up

    Get PDF
    Background: A small cross sectional area (CSA) of the paraspinal muscles may be related to low back pain among military aviators but previous studies have mainly concentrated on spinal disc degeneration. Therefore, the primary aim of the study was to investigate the changes in muscle CSA and composition of the psoas and paraspinal muscles during a 5-year follow up among Finnish Air Force (FINAF) fighter pilots. Methods: Study population consisted of 26 volunteered FINAF male fighter pilots (age: 20.6 (±0.6) at the baseline). The magnetic resonance imaging (MRI) examinations were collected at baseline and after 5 years of follow-up. CSA and composition of the paraspinal and psoas muscles were obtained at the levels of 3-4 and 4-5 lumbar spine. Maximal isometric strength tests were only performed on one occasion at baseline. Results: The follow-up comparisons indicated that the mean CSA of the paraspinal muscles increased (p <0.01) by 8% at L3-4 level and 7% at L4-5 level during the 5-year period. There was no change in muscle composition during the follow-up period. The paraspinal and psoas muscles' CSA was positively related to overall maximal isometric strength at the baseline. However, there was no association between LBP and muscle composition or CSA. Conclusions: The paraspinal muscles' CSA increased among FINAF fighter pilots during the first 5 years of service. This might be explained by physically demanding work and regular physical activity. However, no associations between muscle composition or CSA and low back pain (LBP) experienced were observed after the five-year follow-up. © 2019 The Author(s).Peer reviewe

    Hypogravity reduces trunk admittance and lumbar muscle activation in response to external perturbations

    Get PDF
    Reduced paraspinal muscle size and flattening of spinal curvatures have been documented after spaceflight. Assessment of trunk adaptations to hypogravity can contribute to develop specific countermeasures. In this study, parabolic flights were used to investigate spinal curvature and muscle responses to hypogravity. Data from five trials at 0.25g, 0.50g and 0.75g were recorded from six participants, positioned in a kneeling-seated position. During the first two trials, participants maintained a normal, upright posture. In the last three trials, small-amplitude perturbations were delivered in the anterior direction at the T10 level. Spinal curvature was estimated using motion capture cameras. Trunk displacement and contact force between the actuator and participant were recorded. Muscle activity responses were collected using intramuscular electromyography (iEMG) of the deep and superficial lumbar multifidus, iliocostalis lumborum, longissimus thoracis, quadratus lumborum, transversus abdominis, obliquus internus and obliquus externus muscles. The root mean square iEMG and the average spinal angles were calculated. Trunk admittance and muscle responses to perturbations were calculated as closed-loop frequency response functions. Compared with 0.75g, 0.25g resulted in: lower activation of the longissimus thoracis (P=0.002); lower responses of the superficial multifidus at low frequencies (P=0.043); lower responses of the superficial multifidus (P=0.029) and iliocostalis lumborum (P=0.043); lower trunk admittance (P=0.037) at intermediate frequencies; and stronger responses of the transversus abdominis at higher frequencies (p=0.032). These findings indicate that exposure to hypogravity reduces trunk admittance, partially compensated by weaker stabilizing contributions of the paraspinal muscles and coinciding with an apparent increase of the deep abdominal muscle activity
    corecore