407,061 research outputs found

    Ligula intestinalis (Cestoda: Pseudophyllidea): an ideal fish-metazoan parasite model?

    Get PDF
    Since its use as a model to study metazoan parasite culture and in vitro development, the plerocercoid of the tapeworm, Ligula intestinalis, has served as a useful scientific tool to study a range of biological factors, particularly within its fish intermediate host. From the extensive long-term ecological studies on the interactions between the parasite and cyprinid hosts, to the recent advances made using molecular technology on parasite diversity and speciation, studies on the parasite have, over the last 60 years, led to significant advances in knowledge on host-parasite interactions. The parasite has served as a useful model to study pollution, immunology and parasite ecology and genetics, as well has being the archetypal endocrine disruptor

    The effect of salinity on transovarial transmission of a microsporidian infecting Gammarus duebeni

    Get PDF
    This is an investigation of the impact of salinity on transovarial transmission and burden of a microsporidian sex ratio distorter in the inter-tidal crustacean Gammarus duebeni. Exposure of parasitized mothers to increased salinity during the gonotrophic cycle caused an increase in parasite burden in the follicle cells and a decrease in burden in the oocytes. It appears that salinity impedes parasite transmission from the follicle cells to the oocytes during host oogenesis. A lower proportion of the young were infected in broods from elevated salinity and, in infected offspring, parasite burden was lower than in control embryos. Parasite replication occurred during embryogenesis. However, the pattern of parasite growth did not differ between salinities, indicating that differences in parasite burden could be attributed to a reduction in the initial parasite burden transmitted to the gamete, rather than to a reduction in parasite replication during host embryogenesis. We discuss our findings with respect to parasite/host dynamics and the ecology of the host

    Heterogeneities in leishmania infantum infection : using skin parasite burdens to identify highly infectious dogs

    Get PDF
    Background: The relationships between heterogeneities in host infection and infectiousness (transmission to arthropod vectors) can provide important insights for disease management. Here, we quantify heterogeneities in Leishmania infantum parasite numbers in reservoir and non-reservoir host populations, and relate this to their infectiousness during natural infection. Tissue parasite number was evaluated as a potential surrogate marker of host transmission potential. Methods: Parasite numbers were measured by qPCR in bone marrow and ear skin biopsies of 82 dogs and 34 crab-eating foxes collected during a longitudinal study in Amazon Brazil, for which previous data was available on infectiousness (by xenodiagnosis) and severity of infection. Results: Parasite numbers were highly aggregated both between samples and between individuals. In dogs, total parasite abundance and relative numbers in ear skin compared to bone marrow increased with the duration and severity of infection. Infectiousness to the sandfly vector was associated with high parasite numbers; parasite number in skin was the best predictor of being infectious. Crab-eating foxes, which typically present asymptomatic infection and are non-infectious, had parasite numbers comparable to those of non-infectious dogs. Conclusions: Skin parasite number provides an indirect marker of infectiousness, and could allow targeted control particularly of highly infectious dogs

    Evolution of malaria virulence in cross-generation transmission through selective immune pressure

    Get PDF
    Theoretical arguments and some mathematical models of host-parasite coevolution (e.g. [1- 6]) suggest host immunity as the driving source for the evolution of parasite virulence. Imperfect vaccines in particular, can play the role and recent work [7] sets to test these ideas experimentally, using the mouse malaria model, Plasmodium chabaudi. To this end the authors evolve parasite lines in immunized and nonimmunized (“naïve”) mice using serial passage of infected blood samples. They find parasite lines evolved in immunized mice become more virulent than those evolved in naive mice. Furthermore, this feature persisted even when the evolved strains were transmitted through mosquitoes. 
Here we develop a mathematical model of parasite dynamics that qualitatively reproduces the experimental results of [7]. Our model accounts for the basic in-host processes: (i) production and depletion of red blood cells (RBC); (ii) immune-modulated parasite growth/ replication, (iii) immune stimulation and clearing of parasite. Besides we introduce multiple parasite strains with variable levels of virulence, and allow random mutations during replication process. The virulence is represented by a single parameter – immune stimulation threshold. So more virulent strains have higher “tolerance levels”, hence increased RBC depletion (anemia). 
Numeric simulations with our model exhibit, as in [7] the overall evolution of virulence in serial passage of parasite strains, and its enhancement through partial (imperfect) immunization

    Host-Parasite Co-evolution and Optimal Mutation Rates for Semi-conservative Quasispecies

    Full text link
    In this paper, we extend a model of host-parasite co-evolution to incorporate the semi-conservative nature of DNA replication for both the host and the parasite. We find that the optimal mutation rate for the semi-conservative and conservative hosts converge for realistic genome lengths, thus maintaining the admirable agreement between theory and experiment found previously for the conservative model and justifying the conservative approximation in some cases. We demonstrate that, while the optimal mutation rate for a conservative and semi-conservative parasite interacting with a given immune system is similar to that of a conservative parasite, the properties away from this optimum differ significantly. We suspect that this difference, coupled with the requirement that a parasite optimize survival in a range of viable hosts, may help explain why semi-conservative viruses are known to have significantly lower mutation rates than their conservative counterparts

    Are all hosts created equal? Partitioning host species contributions to parasite persistence in multihost communities

    Get PDF
    Many parasites circulate endemically within communities of multiple host species. To understand disease persistence within these communities, it is essential to know the contribution each host species makes to parasite transmission and maintenance. However, quantifying those contributions is challenging. We present a conceptual framework for classifying multihost sharing, based on key thresholds for parasite persistence. We then develop a generalized technique to quantify each species’ contribution to parasite persistence, allowing natural systems to be located within the framework. We illustrate this approach using data on gastrointestinal parasites circulating within rodent communities and show that, although many parasites infect several host species, parasite persistence is often driven by just one host species. In some cases, however, parasites require multiple host species for maintenance. Our approach provides a quantitative method for differentiating these cases using minimal reliance on system-specific parameters, enabling informed decisions about parasite management within poorly understood multihost communities

    Horizontal transfer of parasitic sex ratio distorters between crustacean hosts

    Get PDF
    Parasitic sex ratio distorters were artificially transferred within and between crustacean host species in order to study the effects of parasitism on host fitness and sex determination and to investigate parasite–host specificity. Implantation of Nosema sp. to uninfected strains of its Gammarus duebeni host resulted in an active parasite infection in the gonad of recipient females and subsequent transovarial parasite transmission. The young of artificially infected females were feminized by the parasite, demonstrating that Nosema sp. is a cause of sex ratio distortion in its host. In contrast, we were unable to cross-infect Armadillidium vulgare with the feminizing microsporidian from G. duebeni or to cross-infect G. duebeni with the feminizing bacterium Wolbachia sp. from A. vulgare

    The multifunctional autophagy pathway in the human malaria parasite, Plasmodium falciparum.

    Get PDF
    Autophagy is a catabolic pathway typically induced by nutrient starvation to recycle amino acids, but can also function in removing damaged organelles. In addition, this pathway plays a key role in eukaryotic development. To date, not much is known about the role of autophagy in apicomplexan parasites and more specifically in the human malaria parasite Plasmodium falciparum. Comparative genomic analysis has uncovered some, but not all, orthologs of autophagy-related (ATG) genes in the malaria parasite genome. Here, using a genome-wide in silico analysis, we confirmed that ATG genes whose products are required for vesicle expansion and completion are present, while genes involved in induction of autophagy and cargo packaging are mostly absent. We subsequently focused on the molecular and cellular function of P. falciparum ATG8 (PfATG8), an autophagosome membrane marker and key component of the autophagy pathway, throughout the parasite asexual and sexual erythrocytic stages. In this context, we showed that PfATG8 has a distinct and atypical role in parasite development. PfATG8 localized in the apicoplast and in vesicles throughout the cytosol during parasite development. Immunofluorescence assays of PfATG8 in apicoplast-minus parasites suggest that PfATG8 is involved in apicoplast biogenesis. Furthermore, treatment of parasite cultures with bafilomycin A 1 and chloroquine, both lysosomotropic agents that inhibit autophagosome and lysosome fusion, resulted in dramatic morphological changes of the apicoplast, and parasite death. Furthermore, deep proteomic analysis of components associated with PfATG8 indicated that it may possibly be involved in ribophagy and piecemeal microautophagy of the nucleus. Collectively, our data revealed the importance and specificity of the autophagy pathway in the malaria parasite and offer potential novel therapeutic strategies

    Genome-wide diversity and gene expression profiling of Babesia microti isolates identify polymorphic genes that mediate host-pathogen interactions

    Get PDF
    Babesia microti, a tick-transmitted, intraerythrocytic protozoan parasite circulating mainly among small mammals, is the primary cause of human babesiosis. While most cases are transmitted by Ixodes ticks, the disease may also be transmitted through blood transfusion and perinatally. A comprehensive analysis of genome composition, genetic diversity, and gene expression profiling of seven B. microti isolates revealed that genetic variation in isolates from the Northeast United States is almost exclusively associated with genes encoding the surface proteome and secretome of the parasite. Furthermore, we found that polymorphism is restricted to a small number of genes, which are highly expressed during infection. In order to identify pathogen-encoded factors involved in host-parasite interactions, we screened a proteome array comprised of 174 B. microti proteins, including several predicted members of the parasite secretome. Using this immuno-proteomic approach we identified several novel antigens that trigger strong host immune responses during the onset of infection. The genomic and immunological data presented herein provide the first insights into the determinants of B. microti interaction with its mammalian hosts and their relevance for understanding the selective pressures acting on parasite evolution
    corecore