5,729 research outputs found

    Impulsive stabilization of stochastic functional differential equations

    Get PDF
    AbstractThis paper investigates impulsive stabilization of stochastic delay differential equations. Both moment and almost sure exponential stability criteria are established using the Lyapunov–Razumikhin method. It is shown that an unstable stochastic delay system can be successfully stabilized by impulses. The results can be easily applied to stochastic systems with arbitrarily large delays. An example with its numerical simulation is presented to illustrate the main results

    Stability analysis of impulsive stochastic Cohen–Grossberg neural networks with mixed time delays

    Get PDF
    This is the post print version of the article. The official published version can be obtained from the link - Copyright 2008 Elsevier LtdIn this paper, the problem of stability analysis for a class of impulsive stochastic Cohen–Grossberg neural networks with mixed delays is considered. The mixed time delays comprise both the time-varying and infinite distributed delays. By employing a combination of the M-matrix theory and stochastic analysis technique, a sufficient condition is obtained to ensure the existence, uniqueness, and exponential p-stability of the equilibrium point for the addressed impulsive stochastic Cohen–Grossberg neural network with mixed delays. The proposed method, which does not make use of the Lyapunov functional, is shown to be simple yet effective for analyzing the stability of impulsive or stochastic neural networks with variable and/or distributed delays. We then extend our main results to the case where the parameters contain interval uncertainties. Moreover, the exponential convergence rate index is estimated, which depends on the system parameters. An example is given to show the effectiveness of the obtained results.This work was supported by the Natural Science Foundation of CQ CSTC under grant 2007BB0430, the Scientific Research Fund of Chongqing Municipal Education Commission under Grant KJ070401, an International Joint Project sponsored by the Royal Society of the UK and the National Natural Science Foundation of China, and the Alexander von Humboldt Foundation of Germany

    Existence, uniqueness and stability of random impulsive neutral partial differential equations

    Get PDF
    AbstractIn this paper, the existence, uniqueness and stability via continuous dependence of mild solution of neutral partial differential equations with random impulses are studied under sufficient condition via fixed point theory

    Qualitative behaviour of stochastic integro-differential equations with random impulses

    Get PDF
    In this paper, we study the existence and some stability results of mild solutions for random impulsive stochastic integro-differential equations (RISIDEs) with noncompact semigroups in Hilbert spaces via resolvent operators. Initially, we prove the existence of mild solution for the system is established by using Mönch fixed point theorem and contemplating Hausdorff measures of noncompactness. Then, the stability results includes continuous dependence of solutions on initial conditions, exponential stability and Hyers–Ulam stability for the aforementioned system are investigated. Finally, an example is proposed to validate the obtained resultsThe work of JJN has been partially supported by the Agencia Estatal de Investigacion (AEI) of Spain under Grant PID2020-113275GB-100, Co-financed by the Europen Community fund FEDER, as well as Xunta de Galicia grant ED431C 2019/02 for Competitive Reference Research Groups (2019-22). Open Access funding provided thanks to the CRUE-CSIC agreement with Springer NatureS

    Stability of attitude control systems acted upon by random perturbations

    Get PDF
    Mathematical models on stability of attitude control systems acted upon by random perturbation processe

    Multiscale Computations on Neural Networks: From the Individual Neuron Interactions to the Macroscopic-Level Analysis

    Full text link
    We show how the Equation-Free approach for multi-scale computations can be exploited to systematically study the dynamics of neural interactions on a random regular connected graph under a pairwise representation perspective. Using an individual-based microscopic simulator as a black box coarse-grained timestepper and with the aid of simulated annealing we compute the coarse-grained equilibrium bifurcation diagram and analyze the stability of the stationary states sidestepping the necessity of obtaining explicit closures at the macroscopic level. We also exploit the scheme to perform a rare-events analysis by estimating an effective Fokker-Planck describing the evolving probability density function of the corresponding coarse-grained observables
    corecore