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Abstract
In this paper, we study the existence and some stability results ofmild solutions for ran-
dom impulsive stochastic integro-differential equations (RISIDEs) with noncompact
semigroups in Hilbert spaces via resolvent operators. Initially, we prove the existence
of mild solution for the system is established by using Mönch fixed point theorem
and contemplating Hausdorff measures of noncompactness. Then, the stability results
includes continuous dependence of solutions on initial conditions, exponential stabil-
ity and Hyers–Ulam stability for the aforementioned system are investigated. Finally,
an example is proposed to validate the obtained results.

Keywords Stochastic integro-differential equations · Random impulse · Noncompact
semigroup · Hyers–Ulam stability · Mean-square exponential stability

1 Introduction

Impulsive effects are widespread natural phenomena brought on by instantaneous per-
turbations at certain moments, such as various biological models including thresholds,
exploding explosivemodels in biological theory inmedicine, the optimal controlmodel
in economics, and othermodels so on [1]. In the past several decades, differential equa-
tions with impulses are frequently used to simulate processes that are subject to abrupt
changes at discrete moments, and the dynamics of impulsive differential equations
have attracted a large number of experts; for example, see [1–3]. Furthermore, due to
a combination of uncertainty and complexity, mathematical models cannot ignore the
stochastic aspects since real-world systems and natural phenomena are almost always
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affected by stochastic disturbances. For elementary study of stochastic differential
equations (SDEs) reader may refer to [4–14]. (Partial) differential equations driven by
stochastic processes or equations with random impulses give a natural and useful way
to describe a variety of impulsive occurrences in order to take them into consideration.
Impulse in general occurs as deterministic or random models. Nevertheless by natural
phenomena, the impulses often occurs at random time points. Many researches have
been undergone solving various differential equations with fixed time impulses [1, 15,
16]. In reality, they have been widely used in the fields of medicine, biology, economy,
finance and so on. For example, the classical stock price model [17] of the form

d(S(t)) = uS(t)dt +�S(t)dBt , t ≥ 0, t �= ζk,

S(ζk) = bkS(ζ
−
k ), k = 1, 2, · · · ,

S(0) = S0,

is described using an impulsive SDEs. Here, Bt is a Brownian motion or Wiener pro-
cess, S(t) represents the price of the stock at time t , and {ζk} represents the release
time of the important information relating to the stock, S(ζ−

k ) = limt→ζk−0 S(t)
and S0 ∈ R. In reality, {ζk} is a sequence of random variables, which satisfies
0 < ζ1 < ζ2 < · · · ,. In particular, Wu and his team [18] first looked at random
impulsive differential equations and solved boundedness of solutions through Lya-
punov technique. Furthermore, Wu et.al [19] investigated existence and uniqueness
of stochastic differential equations with random impulses. Zhou and Wu [20] estab-
lished the existence and uniqueness of solutionswith random impulses under Lipschitz
conditions. Recently, in [21] the authors have contributed the existence and Hyers–
Ulam stability ofmild solutions for random impulsive stochastic functional differential
equations by considering the system,

d(x(t)) = f(t, xt )dt + g(t, xt )dω(t), t ≥ t0, t �= ξk,

x(ξk) = bk(δk)x(ξ
−
k ), k = 1, 2, · · · ,

xt0 = ξ = {ξθ : −δ ≤ θ ≤ 0},

and studied using Krasnoselskii’s fixed point theorem. It is known that impulsive
stochastic differential equations play a vital role in modelling practical processes. Not
only from Guassian white noise there are certain other factors that results in the rise of
random effects. For articles related to random impulsive stochastic differential system
we may refer to the articles [22–24] and the references therein. Gao and Li [25] used
a new criteria to prove the mean-square exponential stability of mild solution for the
proposed existence of mild solutions for the impulsive stochastic differential equa-
tion with noncompact semigroup. Wu and Zhou [26] investigated the existence and
uniqueness of stochastic differential equations with random impulses and Markovian
switching under non-Lipschitz conditions. The properties of mild solution to integer-
order differential equations with random impulses are investigated by many authors
[27–29]. Still, the qualitative behaviour of random impulsive stochastic dynamical
systems in Hilbert space remains, which serves as a motivation of this present work.
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Remarks: Motivated by the previously mentioned literatures [5, 30–32], we add the
random impulses into the system and prove the existence of mild solutions to Sys-
tem 1.1 in this paper, which have not been considered before. Moreover, we obtain
various types of stability results, whereas only exponential stability was discussed
for impulsive stochastic partial differential equations with noncompact semigroups
before.

The novelties of this paper are the following aspects:

• Random impulses have been added into the stochastic integro-differential
equations with noncompact semigroups. We discover how stochastic integro-
differential equations driven by Brownian motions interact with random impulses
in the proof of existence of mild solutions by using the Hausdorff measure of
noncompactness and Mönch fixed point theorem via resolvent operator.

• Under the influence of both white noise and random impulses, we investigate
stability with continuous dependence of initial conditions, Hyers–Ulam stability
and mean-square exponential stability of mild solution for the RISIDEs.

• Inspired by theworksmentioned earlier [33], to the best of the author’s knowledge,
there is no research regarding the theoretical approach to qualitative behaviour of
RISIDEs with resolvent operator combining the Mönch fixed point theorem and
the Hausdorff measure of noncompactness.

Now, we study the following RISIDEs with noncompact semigroups and varying-
time delays:

dϑ(t) =
[
Aϑ(t)+

∫ t

0
B(t − s)ϑ(s)ds + f(t, ϑ(t − μ(t)))

]
dt

+g(t, ϑ(t − ρ(t)))dω(t), t ≥ t0, t �= ξk,

ϑ(ξk) = bk(δk)ϑ(ξ
−
k ), k = 1, 2, · · · ,

ϑt0 = ϕ, (1.1)

where A is the infinitesimal generator of a strongly continuous semigroup (S(t))t≥0
of bounded linear operators in a real separable Hilbert spaceX,Y be another separable
Hilbert space andω(t) be the standardWeiner process onX. Here (B(t))t≥0 is a closed
linear operator on X with domainD(B) ⊃ D(A). μ, ρ : [t0,+∞] → [0, δ] are delay
functions being continuous; f : [t0,+∞]×X → X and g : [t0,+∞]×X → L0

2(Y,X)

are all suitable Borel measurable functions, which will be specified in Sect. 2. Let δk
be random variable from� toDk :=de f (0, dk)with 0 < dk < +∞ for k = 1, 2, · · · .
δi and δ j be independent as i �= j for i, j = 1, 2, · · · . The function bk is defined by
Dk → X and ξ0 = t0 and ξk = ξk−1 + δk for k = 1, 2, · · · , where t0 ∈ [δ,+∞]. It is
obvious that

t0 = ξ0 < ξ1 < · · · < lim
k→∞ ξk = +∞,

ξk is a process with independent increments. We may denote ϑ(ξ−
k ) = lim

t→ξ−
k

ϑ(t),

the norm ‖ϑ‖t := supt−δ≤s≤t ‖ϑ(s)‖X, and the jump �ϑ(ξk) := [bk(δk)− 1]ϑ(ξ−
k )
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represents the random impulsive effect in the state ϑ at time ξk . The initial data
ϕ : [−δ, 0] → X is a function with respect to ϑ when t = t0. We may assume that
{N (t), t ≥ 0} is a simple counting process generated by {ξk}, 
(1)t be the σ−algebra

generated by {N (t), t ≥ 0} and 
(2)t indicates the σ−algebra generated by {ω(t) :
t ≥ 0} where 
(1)∞ ,
(2)∞ and ξ being mutually independent.

The rest of the article is organized as follows: Sect. 2 is devoted to a collection of
definitions and known results to be used in the later part of the article. In Sect. 3, for the
proposed system (1.1) the existence of mild solutions are proved byMönch fixed point
theorem. Section 4 is devoted to prove the stability results that includes continuous
dependence of solutions on initial conditions, Hyers–Ulam stability in Sects. 4.1 and
4.2 respectively. In Sect. 4.3, in order to provemean square exponential stability results
an integral inequality criteria has been established. Finally an example is provided to
validate the obtained results.

2 Preliminaries and Notations

Let X and Y be real separable Hilbert space with norm ‖.‖ and ‖.‖Y and L(Y,X)
denotes the space of bounded linear operators from Y to X, (�,F,P) be a complete
filtered probability space provided the filtration 
(1)t ∨ 
(2)t (t ≥ 0) satisfies the usual
notation. Let {βn(t), t ≥ 0} be real-valued one dimensional standard Brownianmotion
mutually independent over probability space (�,F,P). L2(�) denote the space of
square-integrable randomvariables for the probabilitymeasureP . LetQ ∈ L(Y,X) be
a positive trace class operator onL2(X) and (λn, en)n symbolizes its spectral elements.
The Weiner process ω(t) is expressed as follows:

ω(t) =
+∞∑
n=1

√
λnβn(t)en with trQ =

+∞∑
n=1

λn < +∞.

Then, the Y−valued stochastic process ω(t) is called a Q−Weiner process.

Definition 2.1 Let � ∈ L(Y,X), we define

‖�‖2L0
2

:= tr(�Q�∗) =
{+∞∑
n=1

‖√λn�en‖2
}
.

If ‖�‖2L0
2
< +∞, then � is called a Q−Hilbert-Schmidt operator and we define

L0
2(Y,X) is the space of all Q−Schmidt operators � : Y → X.

Partial Integro-differential Equations

Let X and Y be two Banach spaces such that

|y|Y := |Ay| + |y| for y ∈ Y.
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A and B(t) are closed linear operator on X.
The notations C ([0,+∞); Y), and L(Y,X) denotes the space of continuous func-

tions from [0,+∞) into Y, the set of all bounded linear operator from Y into X,
respectively.

Let us consider the problem,

dν(t) =
(
Aν(t)+

∫ t

0
B(t − s)ν(s)ds

)
dt, t ≥ 0, (2.1)

ν(0) = ν0 ∈ X.

Definition 2.2 [34]A resolvent for Eq. 2.1 is a bounded linear operator valued function
R(t) ∈ L(X) for t ≥ 0, having the following properties:
(i) R(0) = I and ‖R(t)‖ ≤ H eλt for some constants H and λ.
(ii) For each x in X, the function t 
→ R(t)x is strongly continuous for each t ≥ 0
and for x in Y, R(.)x ∈ C 1([0,+∞); X) ∩ C ([0,+∞); Y) and satisfies

dR(t)x =
(
AR(t)x +

∫ t

0
B(t − s)R(s)xds

)
dt,

=
(
R(t)Ax +

∫ t

0
R(t − s)B(s)xds

)
dt .

For additional details on resolvent operators, we refer the reader to [34]. To deal with
the existence of a resolvent operator, we introduce the following assumptions:

(H1) The operatorA is an infinitesimal generator of a strongly continuous semigroup
(S(t))t≥0 on X.

(H2) For all t ≥ 0, B(t) denotes a closed continuous linear operator from D(A) to
X and B(t) ∈ L(Y,X). For any y ∈ Y, the map t 
→ B(t)y is bounded, dif-
ferentiable and its derivative dB(t)y/dt is bounded and uniformly continuous
on [0,∞).

Now consider the conditions that ensure the existence of solutions to the deterministic
Integro-differential equation.

dν(t) =
(
Aν(t)+

∫ t

0
B(t − s)ν(s)ds + m(t)

)
dt, t ≥ 0, (2.2)

with ν(0) = ν0 ∈ H and m : [0,+∞) → H is a continuous function.

Lemma 2.1 [34] Suppose the assumptions (H1) and (H2) hold, and if ν is a strict
solution of (2.2), then

ν(t) = R(t)ν0 +
∫ t

0
R(t − s)m(s)ds, t ≥ 0, (2.3)
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Lemma 2.2 [34] Assuming (H1), (H2) hold, the resolvent operatorR(t) is continuous
for t ≥ 0 on the operator norm, namely for t0 ≥ 0,

lim
τ→0

‖R(t0 + τ)− R(t0)‖ = 0.

Lemma 2.3 [34] Let (H1)-(H2) be satisfied. Then there is a G such that

‖R(t + ε)− R(ε)R(t)‖ ≤ G ε.

Lemma 2.4 [33] If �(s) is L0
2(Y,X)−valued stochastically integrable process in

[0,T], then, for every p ≥ 2, there exist c′
p = (p(p − 1)/2)p/2 such that, for every

t ≥ 0,

sup
s∈[0,t]

E

∥∥∥∥
∫ s

0
�(m)dω(m)

∥∥∥∥
p

≤
(
p(p − 1)

2

) p
2
(∫ t

0

(
E‖�(s)‖pL0

2

) 2
p

ds

) p
2

.

Let us recall some facts of the Hausdorff measure of noncompactness α(.) defined on
a bounded subset E of a Banach space X by

α(E ) = inf{ε > 0 : E has a finite ε − net in X}.
Lemma 2.5 [33] Let X be a real Banach space and M ,N ⊂ X be bounded. Then
we have the following properties:

(1) M is precompact if and only if α(M ) = 0;
(2) α(M ) = α(M ) = α(convM ), where M and convM are the closure and the

convex hull of M , respectively;
(3) α(M ) ≤ α(N ) when M ⊂ N ;
(4) α(M +N ) ≤ α(M )+ α(N ), whereM +N = {ϑ +� : ϑ ∈ M ,� ∈ N };
(5) α(M ∪ N ) ≤ max{α(M ), α(N )};
(6) α(λM ) ≤ |λ|α(N ) for any λ ∈ R;
(7) IfK ⊂ C ([0,T]) is bounded, then

α(K (t)) ≤ α(K ) ∀ t ∈ [0,T],

where K (t) = {m(t) : m ∈ K ⊂ X}. Further, if K is equicontinuous on [0,T],
then t → K (t) is continuous on [0,T], and α(K ) = sup{K (t) : t ∈ [0,T]};

(8) If K ⊂ C ([0,T],X) is bounded and equicontinuous, then t → α(K (t)) is

continuous on [0,T] and α
(∫ t

0 K (s)ds
)

≤ ∫ t
0 α(K (s))ds ∀ t ∈ [0,T] where∫ t

0 K (s)ds = {∫ t
0 m(s)ds : m ∈ K };

(9) Let {mn}∞n=1 be a sequence of Bochner integrable functions from [0,T] to X with
‖mn(t)‖ ≤ û(t) for almost all t ∈ [0,T] and n ≥ 1, where û ∈ L1([0,T],R+),
then �(t) = α({mn(t)}∞n=1) ∈ L1([0,T],R+) and satisfies

α

({∫ t

0
mn(s)ds : n ≥ 1

})
≤ 2

∫ t

0
�(s)ds.
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Lemma 2.6 [33] IfK ⊂ C ([0,T],L0
2(Y,X)) and ω being a Weiner process, then

α

(∫ t

0
K (s)dω(s)

)
≤ √

Tα(K (t)),

where,

∫ t

0
K (s)dω(s) =

{∫ t

0
m(s)dω(s) : ∀ m ∈ K , t ∈ [0,T]

}
.

Lemma 2.7 [33]LetD be a closed convex subset ofXwith 0 ∈ D. Suppose� : D → D

is a continuous map of Mönch type which satisfies:

M ⊂ D countable and M ⊂ co({0} ∪�(M))

implies that M is relatively compact,

then, � has a fixed point in D.

3 Existence of Mild Solutions

Definition 3.1 For T ∈ (t0,+∞), an X−valued stochastic process {ϑ(t), t ∈ [t0 −
δ,T]} is said to satisfy the variation of constants formula of (1.1) if

(1) ϑ(t) is an 
t−adapted process for t ≥ t0;
(2) ϑ(t) ∈ X has a cadlag path on t ∈ [t0,T] almost surely;
(3) ϑ(t) = ϕ if t ∈ [−δ, 0] and for each t ∈ [t0,T], we have

ϑ(t) =
+∞∑
k=0

[
k∏

i=1

bi (δi )R(t − t0)ϕ(0)

+
k∑

i=1

k∏
j=i

b j (δ j )

∫ ξk

ξk−1

R(t − s)f(s, ϑ(s − μ(s)))ds

+
∫ t

ξk

R(t − s)f(s, ϑ(s − μ(s)))ds

+
k∑

i=1

k∏
j=i

b j (δ j )

∫ ξk

ξk−1

R(t − s)g(s, ϑ(s − ρ(s)))dω(s)

+
∫ t

ξk

R(t − s)g(s, ϑ(s − ρ(s)))dω(s)

]
I[ξk ,ξk+1)(t),
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where
∏k

j=i (.) = 1 as i > k,
∏k

j=i b j (δ j ) = bk(δk)bk−1(δk−1) · · · bi (δi ), and IA
represents the indicator function,

IA(t) =
{
1, i f t ∈ A,

0, i f t /∈ A.

The following assumptions are taken into consideration to prove our main results:

(A1) There exists a positive constant H , such that for all t ≥ 0, ‖R(t)‖ ≤ H ,
(A2) The function f : [t0,T] × X → X satisfies

(a) (i) f(., ϑ) : [t0,T] → X is measurable for each ϑ ∈ X and f(t, .) : X → X is
continuous for each t ∈ [t0,T].

(b) (ii) There occurs a continuous function νf : [t0,T] → R+ and a continuous
non-decreasing function �f : R+ → R+ and ‖ϑ‖2 ≤ r such that

‖f(t, ϑ)‖2 ≤ νf(t)�f(‖ϑ‖2) ≤ νf(t)�f(r).

(c) (iii) There exists a positive function Cf(t) ∈ L1([t0,T]),R+ such that for any
bounded subsets β1 ⊂ X, we have

α(f(t, β1(t))) ≤ Cf(t) sup
θ∈(−δ,0]

α(β1(θ)).

(A3) The function g : [t0,T] × X → L0
2(Y,X) satisfies

(a) (i) g(., ϑ) : [t0, ,T] → L0
2(Y,X) is measurable for each ϑ ∈ X and

g(t, .) : X → L0
2(Y,X) is continuous for each t ∈ [t0,T].

(b) (ii) There exist a continuous function νg : [t0,T] → R+ and a continuous
non-decreasing function �g : R+ → R+ and ‖ϑ‖2 ≤ r such that

‖g(t, ϑ)‖2 ≤ νg(t)�g(‖ϑ‖2) ≤ νg(t)�g(r).

(c) (iii) There exists a positive function Cg ∈ L1([t0,T]),R+ such that for any
bounded subsets β2 ⊂ X, we have

α(g(t, β2)) ≤ Cg sup
θ∈(−δ,0]

α(β2(θ)).

(A4) max
i,k

⎧⎨
⎩

k∏
j=i

‖b j (δ j )‖
⎫⎬
⎭ < +∞ and there exist a constant B > 0 such that

E

⎛
⎝max

i,k

⎧⎨
⎩

k∏
j=i

‖b j (δ j )‖
⎫⎬
⎭
⎞
⎠ ≤ B for all δ j ∈ D j , j ∈ N.
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(A5) 3max{1,B2}(T− t0)H 2
[

lim
r→+∞

�f(r)

r

∫ t

t0

νf(s)ds + lim
r→+∞

�g(r)

r

∫ t

t0

νg(s)

ds] ≤ 1.

Theorem 3.1 Assume the conditions (H1),(H2) and (A1)-(A5) hold, then there exists
at least one mild solution for (1.1) provided:

max{1,B2}H 2(T − t0)‖Cf‖L1([t0,T],R+)

+max{1,B2}H 2(T − t0)
1
2 ‖Cg‖L2([t0,T],R+) < 1. (3.1)

Proof Let us introduce the set
{
ϒT : PC ([t0 − δ,T],L2(�,X)

)}
equipped with the

norm

‖ϑ‖2ϒT
= sup

t∈[t0,T]
E‖ϑ‖2t = sup

t∈[t0,T]
E

(
sup

t−δ≤s≤t
‖ϑ(s)‖2

)
.

It is obvious that ϒT is a Banach space and we may define

ϒT = {ϑ ∈ ϒT : ϑ(s) = ϕ(s), f or s ∈ [−δ, 0]}

with the norm ‖.‖2ϒT
. Thus, (1.1) can be transformed into a fixed point problem. We

can define an operator � : ϒT → ϒT by

(�ϑ)(t) =
+∞∑
k=0

[
k∏

i=1

bi (δi )R(t − t0)ϕ(0)

+
k∑

i=1

k∏
j=i

b j (δ j )

∫ ξk

ξk−1

R(t − s)f(s, ϑ(s − μ(s)))ds

+
∫ t

ξk

R(t − s)f(s, ϑ(s − μ(s)))ds

+
k∑

i=1

k∏
j=i

b j (δ j )

∫ ξk

ξk−1

R(t − s)g(s, ϑ(s − ρ(s)))dω(s)

+
∫ t

ξk

R(t − s)g(s, ϑ(s − ρ(s)))dω(s)

]
I[ξk ,ξk+1)(t), t ∈ [t0,T],

and

(�ϑ) = ϕ(θ), t ∈ [−δ, 0].

Let us divide our proof into several steps:

Step 1: Initially, we have to verify that � satisfies the property �(Br) ⊂ Br, Br =
{ϑ ∈ ϒT : ‖ϑ‖2ϒT

≤ r}. If the result contradicts, for ϑ ∈ Br, �(Br) � Br. Thus, we
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mayfind t ∈ [t0,T] satisfyingE‖(�ϑ)(t)‖2 > r. By the aforementioned assumptions,

E‖(�ϑ)(t)‖2 = E

∥∥∥∥∥
+∞∑
k=0

[
k∏

i=1

bi (δi )R(t − t0)ϕ(0)

+
k∑

i=1

k∏
j=i

b j (δ j )

∫ ξk

ξk−1

R(t − s)f(s, ϑ(s − μ(s)))ds

+
∫ t

ξk

R(t − s)f(s, ϑ(s − μ(s)))ds

+
k∑

i=1

k∏
j=i

b j (δ j )

∫ ξk

ξk−1

R(t − s)g(s, ϑ(s − ρ(s)))dω(s)

+
∫ t

ξk

R(t − s)g(s, ϑ(s − ρ(s)))dω(s)

]
I[ξk ,ξk+1)(t)

∥∥∥∥∥
2

.

≤ 3E

⎛
⎝
(
max
k

{
k∏

i=1

‖bi (δi )‖}
)2⎞

⎠ ‖R(t − t0)‖2E‖ϕ(0)‖2

+3E

⎛
⎝max

i,k
{

k∏
j=i

‖b j (δ j )‖, 1}
⎞
⎠

2

×E

(
‖R(t − s)f(s, ϑ(s − μ(s)))ds‖2

)

+3E

⎛
⎜⎝
⎛
⎝max

i,k
{

k∏
j=i

‖b j (δ j )‖, 1}
⎞
⎠

2
⎞
⎟⎠

×E

(
‖R(t − s)g(s, ϑ(s − ρ(s)))dω(s)‖2

)

≤ 3B2H 2
E‖ϕ(0)‖2

+3max{1,B2}H 2(T − t0)

∫ t

t0

νf(s)�f(r)ds + 3max{1,B2}H 2

×(T − t0)

∫ t

t0

νg(s)�g(r)ds.

Dividing the above inequality by r, and letting r → +∞, we have

3max{1,B2}H 2(T − t0)(
lim

r→+∞
�f(r)

r

∫ t

t0

νf(s)ds + lim
r→+∞

�g(r)

r

∫ t

t0

νg(s)ds

)
> 1,

which contradicts our assumption (A4). Thus ∃ some ϑ ∈ Br such that �(Br) ⊂ Br.
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Step 2: In order to verify the continuity of the operator � in Br, let ϑ, ϑn ∈ Br and
ϑn → ϑ as n → +∞. By condition (ii) of (A1),(A2), we have

f(t, ϑn) → f(t, ϑ), n → +∞, ‖f(t, ϑn)− f(t, ϑ)‖2 ≤ 2νf(t)�f(τ ),

g(t, ϑn) → g(t, ϑ), n → +∞, ‖g(t, ϑn)− g(t, ϑ)‖2 ≤ 2νg(t)�g(τ ).

Using Dominated Convergence theorem and (A3), we may deduce that

E ‖(�ϑn)(t)− (�ϑ)(t)‖2

≤ 3E

∥∥∥∥∥
+∞∑
k=0

k∏
i=1

bi (δi )R(t − t0)(ϑn(0)− ϑ(0))

∥∥∥∥∥
2

+3E

∥∥∥∥∥∥
+∞∑
k=0

⎛
⎝ k∑

i=1

k∏
j=i

b j (δ j )

∫ ξk

ξk−1

R(t − s)[f(s, ϑn(s − μ(s)))− f(s, ϑ(s − μ(s)))]ds

+
∫ t

ξk

R(t − s)[f(s, ϑn(s − μ(s)))− f(s, ϑ(s − μ(s)))]ds
)
I[ξk ,ξk+1)

∥∥∥∥∥
2

+3E

∥∥∥∥∥∥
+∞∑
k=0

⎛
⎝ k∑

i=1

k∏
j=i

b j (δ j )

∫ ξk

ξk−1

R(t − s)[g(s, ϑn(s − ρ(s)))− g(s, ϑ(s − ρ(s)))]dω(s)

+
∫ t

ξk

R(t − s)[g(s, ϑn(s − ρ(s)))− g(s, ϑ(s − ρ(s)))]dω(s)
)
I[ξk ,ξk+1)

∥∥∥∥∥
2

≤ 3B2H 2
E ‖ϑn(0)− ϑ(0)‖2

+3max{1,B2}H 2(t − t0)

∫ t

t0

E ‖f(s, ϑn(s − μ(s)))− f(s, ϑ(s − μ(s)))‖2 ds

+3max{1,B2}H 2(t − t0)

∫ t

t0

E ‖g(s, ϑn(s − ρ(s)))− g(s, ϑ(s − ρ(s)))‖2L0
2
ds

→ 0 as n → +∞.

Therefore, � is continuous on Br.

Step 3: To prove � is equicontinuous on [t0,T], for t0 < t1 < t2 < T and ϑ ∈ Br,
we have

(�ϑ)(t2)− (�ϑ)(t1)

=
+∞∑
k=0

⎡
⎣ k∏
i=1

bi (δi )R(t2 − t0)ϕ(0)+
k∑

i=1

k∏
j=i

b j (δ j )

∫ ξk

ξk−1

R(t2 − s)f(s, ϑ(s − μ(s)))ds

+
∫ t2

ξk

R(t2 − s)f(s, ϑ(s − μ(s)))ds
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+
k∑

i=1

k∏
j=i

b j (δ j )

∫ ξk

ξk−1

R(t2 − s)g(s, ϑ(s − ρ(s)))dω(s)

+
∫ t2

ξk

R(t2 − s)g(s, ϑ(s − ρ(s)))dω(s)

]
I[ξk ,ξk+1)(t2)

−
+∞∑
k=0

[ k∏
i=1

bi (δi )R(t1 − t0)ϕ(0)+
k∑

i=1

k∏
j=i

b j (δ j )

∫ ξk

ξk−1

R(t1 − s)f(s, ϑ(s − μ(s)))ds

+
∫ t1

ξk

R(t1 − s)f(s, ϑ(s − μ(s)))ds +
k∑

i=1

k∏
j=i

b j (δ j )

∫ ξk

ξk−1

R(t1 − s)g(s, ϑ(s − ρ(s)))dω(s)

+
∫ t1

ξk

R(t1 − s)g(s, ϑ(s − ρ(s)))dω(s)

]
I[ξk ,ξk+1)(t1)

=
+∞∑
k=0

[ k∏
i=1

bi (δi )R(t2 − t0)ϕ(0)

+
k∑

i=1

k∏
j=i

b j (δ j )

∫ ξk

ξk−1

R(t2 − s)f(s, ϑ(s − μ(s)))ds

+
∫ t2

ξk

R(t2 − s)f(s, ϑ(s − μ(s)))ds +
k∑

i=1

k∏
j=i

b j (δ j )

∫ ξk

ξk−1

R(t2 − s)g(s, ϑ(s − ρ(s)))dω(s)

+
∫ t2

ξk

R(t2 − s)g(s, ϑ(s − ρ(s)))dω(s)

] (I[ξk ,ξk+1)(t2)− I[ξk ,ξk+1)(t1)
)

+
+∞∑
k=0

[ k∏
i=1

bi (δi )(R(t2 − t0)− R(t2 − t1))ϕ(0)

+
k∑

i=1

k∏
j=i

b j (δ j )

∫ ξk

ξk−1

(R(t2 − s)− R(t1 − s))

×f(s, ϑ(s − μ(s)))ds +
∫ t2

ξk

(R(t2 − s)− R(t1 − s))f(s, ϑ(s − μ(s)))ds

+
k∑

i=1

k∏
j=i

b j (δ j )×
∫ ξk

ξk−1

(R(t2 − s)− R(t1 − s))g(s, ϑ(s − ρ(s)))dω(s)
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+
∫ t2

ξk

(R(t2 − s)− R(t1 − s))

×g(s, ϑ(s − ρ(s)))dω(s)

]
I[ξk ,ξk+1)(t1)

= J1 + J2,

where

E
∥∥J1

∥∥2 = E

∥∥∥∥
+∞∑
k=0

[ k∏
i=1

bi (δi )R(t2 − t0)ϕ(0)+
k∑

i=1

k∏
j=i

b j (δ j )

∫ ξk

ξk−1

R(t2 − s)f(s, ϑ(s − μ(s)))ds

+
∫ t2

ξk

R(t2 − s)f(s, ϑ(s − μ(s)))ds

+
k∑

i=1

k∏
j=i

b j (δ j )

∫ ξk

ξk−1

R(t2 − s)g(s, ϑ(s − ρ(s)))dω(s)

+
∫ t2

ξk

R(t2 − s)g(s, ϑ(s − ρ(s)))dω(s)

] (I[ξk ,ξk+1)(t2)− I[ξk ,ξk+1)(t1)
) ∥∥∥∥

2
,

E
∥∥J2

∥∥2 = E

∥∥∥∥
+∞∑
k=0

[ k∏
i=1

bi (δi )(R(t2 − t0)− R(t2 − t1))ϕ(0)

+
k∑

i=1

k∏
j=i

b j (δ j )

∫ ξk

ξk−1

(R(t2 − s)− R(t1 − s))

×f(s, ϑ(s − μ(s)))ds +
∫ t2

ξk

(R(t2 − s)− R(t1 − s))f(s, ϑ(s − μ(s)))ds

+
k∑

i=1

k∏
j=i

b j (δ j )

∫ ξk

ξk−1

(R(t2 − s)− R(t1 − s))g(s, ϑ(s − ρ(s)))dω(s)

+
∫ t2

ξk

(R(t2 − s)− R(t1 − s))

×g(s, ϑ(s − ρ(s)))dω(s)

]
I[ξk ,ξk+1)(t1)

∥∥∥∥
2
.

By treating each term separately,

E‖J1‖2 ≤ 3E

(
max
k

{
k∏

i=1

‖bi (δi )‖2
})

‖R(t2 − t0)‖2

E‖ϕ(0)‖2 (I[ξk ,ξk+1)(t2)− I[ξk ,ξk+1)(t1)
)2
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+3E

⎛
⎝max

i,k

⎧⎨
⎩

k∏
j=i

‖bi (δi )‖, 1
⎫⎬
⎭
⎞
⎠

2

E

(+∞∑
k=0

∫ t2

t0

‖R(t2 − s)‖2 ‖f(s, ϑ(s − μ(s)))‖2 ds
)

× (I[ξk ,ξk+1)(t2)− I[ξk ,ξk+1)(t1)
)2 + 3E

⎛
⎝max

i,k

⎧⎨
⎩

k∏
j=i

‖bi (δi )‖, 1
⎫⎬
⎭
⎞
⎠

2

×E

(+∞∑
k=0

∫ t2

t0

‖R(t2 − s)‖2 ‖g(s, ϑ(s − ρ(s)))‖2 dω(s)
)

(I[ξk ,ξk+1)(t2)− I[ξk ,ξk+1)(t1)
)2

→ 0 as t2 → t1.

Similarly,

E‖J2‖2 ≤ 5B2 ‖R(t2 − t0)− R(t1 − t0)‖2 E‖ϕ(0)‖2 + 5max{1,B2}(t1 − t0)

×
∫ t1

t0

‖R(t2 − s)− R(t1 − s)‖2 E ‖f(s, ϑ(s − μ(s)))‖2 ds

+5(t2 − t1)

∫ t2

t1

‖R(t2 − s)‖2

×E ‖f(s, ϑ(s − μ(s)))‖2 ds + 5max{1,B2}(t1 − t0)∫ t1

t0

‖R(t2 − s)− R(t1 − s)‖2

×E ‖g(s, ϑ(s − ρ(s)))‖2 ds + 5(t2 − t1)∫ t2

t1

‖R(t2 − s)‖2E ‖g(s, ϑ(s − ρ(s)))‖2 ds
→ 0 as t2 → t1.

Thus we have

E ‖(�ϑ)(t2)− (�ϑ)(t1)‖2 → 0 as t2 → t1,

which implies � is equicontinuous on [t0,T].
Step 4:Now to verifyMönch condition, let γ ⊂ ϒT be a nonempty set andϑ1, ϑ2 ∈ γ ,
by probability 1, we have

d(�ϑ1(t),�ϑ2(t)) = d(�ϑ1(t),�ϑ2(t)),

where the term d represents the distance and



Qualitative Behaviour of Stochastic Integro-differential… Page 15 of 25    61 

(�ϑ)(t) = max{1,B}
+∞∑
k=0

[ ∫ ξk

ξk−1

R(t − s)f(s, ϑ(s − μ(s)))ds

+
∫ t

ξk

R(t − s)f(s, ϑ(s − μ(s)))ds

]
I[ξk ,ξk+1)(t)

+max{1,B}
+∞∑
k=0

[ ∫ ξk

ξk−1

R(t − s)g(s, ϑ(s − μ(s)))ds

+
∫ t

ξk

R(t − s)g(s, ϑ(s − μ(s)))ds

]
I[ξk ,ξk+1)(t)

= �1 +�2.

By the similar procedure used in Lemma 2.3,

α((�ϑ)(t)) = α((�)(t)).

Let � ⊂ Br be countable and � ⊂ co({0} ∪ �(�)). By proving α(�) = 0 the
verification ofMönch condition follows. Set� = {ϑn}∞n=1 where� ⊂ co({0}∪�(�))
is well defined and equicontinuous on [t0,T] by the process in step 3.
By Lemmas 2.2 and 2.3,

α({�1ϑ
n(t)}∞n=1) ≤ max{1,B}H (T − t0)

∫ t

t0

Cf(t) sup
θ∈(−δ,0]

α({ϑn(θ − μ(θ))}∞n=1)ds

≤ max{1,B}H (T − t0)
∥∥Cf

∥∥L1([t0,T],R+) sup
t∈[t0,T]

α({ϑn(t)}∞n=1),

α({�2ϑ
n(t)}∞n=1) ≤ max{1,B}H (T − t0)

1
2
∥∥Cg

∥∥L2([t0,T],R+) sup
t∈[t0,T]

α({ϑn(t)}∞n=1).

By using Lemma 2.3,

α({�1ϑ
n(t)}∞n=1) = α({�1ϑ

n(t)}∞n=1)

≤ α({�1ϑ
n(t)}∞n=1)+ α({�2ϑ

n(t)}∞n=1)

≤
[
max{1,B}H (T − t0)

∥∥Cf

∥∥L1([t0,T],R+) + max{1,B}H (T − t0)
1
2

× ∥∥Cg
∥∥L2([t0,T],R+)

]
α({ϑn(t)}∞n=1).

It follows that

α(�) ≤ α(co({0} ∪�(�))) = α(�(�)) ≤ α(�),

implying α(�) = 0 and then � is a relatively compact set. Thus � has a fixed point
in � which is the mild solution of (1.1). This completes the proof. ��
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4 Stability Results

4.1 Continuous Dependence of Solutions on Initial Conditions

To prove the stability results, let us assume the following assumptions:

(A5) There exists a constants C1,C2 such that

‖f(t, ϑ)− f(t,�)‖ ≤ C1 ‖ϑ −�‖ , ‖g(t, ϑ)− g(t,�)‖L0
2

≤ C2 ‖ϑ −�‖L0
2
.

Theorem 4.1 Let ϑ(t) and ϑ(t) be mild solutions for (1.1)with initial values ϕ(0) and
ϕ(0) respectively. Assuming (A3), (A5) hold, then the mild solution of (1.1) is stable
in the mean square.

Proof E
∥∥ϑ − ϑ

∥∥2
t

≤ 3E

∥∥∥∥∥
+∞∑
k=0

k∏
i=1

bi (δi )

∥∥∥∥∥
2

‖R(t − t0)‖2 E ‖ϕ(0)− ϕ(0)‖2

+3E

∥∥∥∥∥∥
+∞∑
k=0

⎡
⎣ k∑

i=1

k∏
j=i

b j (δ j )

∫ ξk

ξk−1

R(t − s)

(
f(s, ϑ(s − μ(s)))

−f(s, ϑ(s − μ(s)))

)
ds +

∫ t

ξk

R(t − s) (f(s, ϑ(s − μ(s)))

−f(s, ϑ(s − μ(s)))
)
ds

]
I[ξk ,ξk+1)(t)

∥∥∥∥∥
2

+3E

∥∥∥∥
+∞∑
k=0

[ k∑
i=1

k∏
j=i

b j (δ j )

∫ ξk

ξk−1

R(t − s) (g(s, ϑ(s − ρ(s)))

−g(s, ϑ(s − ρ(s)))
)
ds

+
∫ t

ξk

R(t − s)
(
g(s, ϑ(s − ρ(s)))− g(s, ϑ(s − ρ(s)))

)
ds

]
I[ξk ,ξk+1)(t)

∥∥∥∥
2

≤ 3B2H 2
E ‖ϕ(0)− ϕ(0)‖2 + 3max{1,B2}(T − t0)[ ∫ t

t0

E
∥∥f(s, ϑ(s − μ(s)))− f(s, ϑ(s − μ(s)))

∥∥2 ds
+
∫ t

t0

E
∥∥g(s, ϑ(s − ρ(s)))− g(s, ϑ(s − ρ(s)))

∥∥2 ds
]

which implies

sup
t∈[t0,T]

E
∥∥ϑ − ϑ

∥∥2
t

≤ 3B2H 2
E ‖ϕ(0)− ϕ(0)‖2
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+3max{1,B2}H 2(T − t0)(C1 + C2)

∫ t

t0

sup
s∈[t0,t]

E
∥∥ϑ − ϑ

∥∥2
s ds.

By Gronwall’s inequality,

sup
t∈[t0,T]

E
∥∥ϑ − ϑ

∥∥2
t

≤ 3B2H 2
E ‖ϕ(0)− ϕ(0)‖2

exp
{
3H 2 max{1,B2}(T − t0)(C1 + C2)

}
.

For ε > 0, there exists a positive number

τ = ε

3B2H 2 exp{3H 2 max{1,B2}(T − t0)(C1 + C2)} > 0

such that E ‖ϕ(0)− ϕ(0)‖2 < τ , then

sup
t∈[t0,T]

E
∥∥ϑ − ϑ

∥∥2
t

≤ ε.

This completes the proof. ��

4.2 Hyers–Ulam Stability

Definition 4.1 Suppose that�(t) is a Y−valued stochastic process and there exists a
real number C > 0 such that for arbitrary ε > 0 holds

E

∥∥∥∥�(t)−
+∞∑
k=0

[ k∏
i=1

bi (δi )R(t − t0)ϕ(0)+
k∑

i=1

k∏
j=i

b j (δ j )

∫ ξk

ξk−1

R(t − s)f(s,�(s − μ(s)))ds

+
∫ t

ξk

R(t − s)f(s,�(s − μ(s)))ds +
k∑

i=1

k∏
j=i

b j (δ j )

∫ ξk

ξk−1

R(t − s)g(s,�(s − ρ(s)))dω(s)

+
∫ t

ξk

R(t − s)g(s,�(s − ρ(s)))dω(s)

]
I[ξk ,ξk+1)(t)

∥∥∥∥
2

≤ ε, ∀ t ∈ [t0,T].
(4.1)

For each solution �(t) with the initial value �t0 = ϑt0 = ϕ, if ∃ a solution ϑ(t)
of (1.1) with E ‖�(t)− ϑ(t)‖2 ≤ C ε, for t ∈ [t0,T], then (1.1) has Hyers–Ulam
Stability.

Theorem 4.2 Assume conditions (H1), (H2), (A3) and (A5) are satisfied, then (1.1)
has the Hyers–Ulam Stability.

Proof Let ϑ(t) be a mild solution of (1.1) and �(t) a Y−valued stochastic process
satisfy (4.1). Obviously, E ‖�(t)− ϑ(t)‖2 = 0 for t ∈ [−δ, 0]. Moreover, for t ∈
[t0,T], we have
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E ‖� − ϑ‖2t

≤ 2E

∥∥∥∥�(t)−
+∞∑
k=0

[ k∏
i=1

bi (δi )R(t − t0)ϕ(0)+
k∑

i=1

k∏
j=i

b j (δ j )

∫ ξk

ξk−1

R(t − s)f(s,�(s − μ(s)))ds

+
∫ t

ξk

R(t − s)f(s,�(s − μ(s)))ds

+
k∑

i=1

k∏
j=i

b j (δ j )

∫ ξk

ξk−1

R(t − s)g(s,�(s − ρ(s)))dω(s)

+
∫ t

ξk

R(t − s)g(s,�(s − ρ(s)))dω(s)

]
I[ξk ,ξk+1)(t)

∥∥∥∥
2

+2E

∥∥∥∥
+∞∑
k=0

[ k∑
i=1

k∏
j=i

b j (δ j )

∫ ξk

ξk−1

R(t − s)

× (f(s,�(s − μ(s)))− f(s, ϑ(s − μ(s)))) ds

+
∫ t

ξk

R(t − s) (f(s,�(s − μ(s)))− f(s, ϑ(s − μ(s)))) ds

+
k∑

i=1

k∏
j=i

b j (δ j )

∫ ξk

ξk−1

R(t − s) (g(s,�(s − ρ(s)))− g(s, ϑ(s − ρ(s)))) ds

+
∫ t

ξk

R(t − s) (g(s,�(s − ρ(s)))− g(s, ϑ(s − ρ(s)))) ds

]
I[ξk ,ξk+1)(t)

∥∥∥∥
2

≤ 2ε + 2E‖J ‖2.

Now, we consider

E‖J ‖2

= 2E

∥∥∥∥
+∞∑
k=0

[ k∑
i=1

k∏
j=i

b j (δ j )

∫ ξk

ξk−1

R(t − s) (f(s,�(s − μ(s)))

−f(s, ϑ(s − μ(s)))) ds

+
∫ t

ξk

R(t − s) (f(s,�(s − μ(s)))− f(s, ϑ(s − μ(s)))) ds

+
k∑

i=1

k∏
j=i

b j (δ j )

∫ ξk

ξk−1

R(t − s)× (g(s,�(s − ρ(s)))

−g(s, ϑ(s − ρ(s)))) ds +
∫ t

ξk

R(t − s)

(
g(s,�(s − ρ(s)))
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−g(s, ϑ(s − ρ(s)))

)
ds

]
I[ξk ,ξk+1)(t)

∥∥∥∥
2

≤ 2max{1,B2}H 2(T − t0)

∫ t

t0

E ‖f(s,�(s − μ(s)))− f(s, ϑ(s − μ(s)))‖2 ds

+2max{1,B2}H 2
∫ t

t0

E ‖g(s,�(s − ρ(s)))− g(s, ϑ(s − ρ(s)))‖2 ds.

Taking supremum on both sides and using (A5),

sup
t∈[t0,T]

E ‖� − ϑ‖2t ≤ 2ε + 4max{1,B2}H 2(T − t0)C1

∫ t

t0

sup
t∈[t0,T]

E ‖� − ϑ‖2s ds

+4max{1,B2}H 2C2

∫ t

t0

sup
t∈[t0,T]

E ‖� − ϑ‖2s ds.

By following Gronwall’s inequality, there occurs a constant

C := 2 exp{max{1,B2}H 2[(T − t0)C1 + C2]} > 0.

This implies that

sup
t∈[t0,T]

E ‖� − ϑ‖2t ≤ C ε,

From which follows, the Hyers–Ulam stability of (1.1). Thus the proof is complete. ��

4.3 Mean-Square Exponential Stability

Nowwe will analyze the exponential stability in the mean square moment for the mild
solution to system 1.1. We need to impose some additional assumption and lemma:

(A6) The resolvent operator R(t)t≥0 satisfies the further condition: There exists a
constant H > 0 and a real number ς > 0 such that ‖R(t)‖ ≤ H eςt, t ≥ 0.

In order to prove the theorem we can take into consideration the following lemma:

Lemma 4.1 [33] For ς > 0, ∃ some positive constants υ, υ ′ > 0 such that if υ ′ < ς ,
and

�(t) =

⎧⎪⎨
⎪⎩
υe−ς(t−t0), t ∈ [−δ, 0]
υe−ς(t−t0) + υ ′

∫ t

t0

e−ς(t−s) sup
θ∈(−δ,0]

�(s + θ)ds, t ≥ t0

hold. Then we have�(t) ≤ F e−τ(t−t0), where τ > 0 satisfying

υ ′

ς − τ
eτ(δ+t0) = 1
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and

F = max{ υ
υ ′ (ς − τ)e−τδ, ς}.

Theorem 4.3 Assume (H1), (H2),(A3), (A5), (A6) are satisfied, then the mild solution
of (1.1) is mean-square exponentially stable.

Proof Using with the assumed hypotheses and Hölder’s inequality, we get

E‖ϑ(t)‖2 ≤ 3E

(
max
k

{
k∏

i=1

‖bi (δi )‖2
})2

‖R(t − t0)‖2 E‖ϕ(0)‖2

+3E

⎛
⎝max

i,k

⎧⎨
⎩

k∏
j=i

b j (δ j )

⎫⎬
⎭ , 1

⎞
⎠

2

×E

(∫ t

t0

‖R(t − s)‖ ‖f(s, ϑ(s − μ(s)))‖ ds
)2

+3E

⎛
⎝max

i,k

⎧⎨
⎩

k∏
j=i

b j (δ j )

⎫⎬
⎭ , 1

⎞
⎠

2

×E

(∫ t

t0

‖R(t − s)‖ ‖g(s, ϑ(s − ρ(s)))‖ dω(s)
)2

≤ 3B2H 2e−ς(t−t0)E ‖ϕ(0)‖2 + 3max{1,B2}H 2∫ t0

t
e−ς(t−t0)E ‖f(s, ϑ(s − μ(s)))‖2 ds

×
∫ t

t0

e−ς(t−t0)ds + 3max{1,B2}H 2
∫ t

t0

e−ς(t−t0)ds

∫ t0

t
e−ς(t−t0)E ‖g(s, ϑ(s − ρ(s)))‖2 ds

≤ 3B2H 2e−ς(t−t0)E ‖ϕ(0)‖2 + 3max{1,B2}H
2(C1 + C2)

ς∫ t

t0

sup
θ∈[−δ,0]

E ‖ϑ(s + θ)‖2 ds

≤ F e−ς(t−t0), ∀ t ∈ [−δ, 0],

where F = max{3B2H 2
E‖ϕ(0)‖2, sup

θ∈[−δ,0]
E‖ϕ‖2}.

Thus by Lemma 4.1, ∀ t ∈ [t0 − δ,+∞],

E‖ϑ(t)‖2 ≤ F e−τt.
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This completes the proof. ��
Remark 1 The technique used here can be extended to investigate a class of nonlocal
RISIDEs driven by Poisson jump of the form:

dϑ(t) =
[
Aϑ(t)+

∫ t

0
B(t − s)ϑ(s)ds + f(t, ϑ(t − μ(t)))

]
dt

+g(t, ϑ(t − ρ(t)))dω(t)

+
∫
Z
h(t, ϑ(t − σ(t)), z)Ñ (dt, dz), t ≥ t0, t �= ξk,

ϑ(ξk) = bk(δk)ϑ(ξ
−
k ), k = 1, 2, · · · ,

ϑt0 + q(t) = ϕ, (4.2)

Here, the functions f, g and bk are defined as in Eq. (1.1) and also define h : [t0,+∞]×
X × Z → X, q : [t0,+∞] → X are suitable functions. Hence, all the hypotheses of
Theorems 3.1, 4.1, 4.2 and 4.3 are satisfied.

Remark 2 Every semigroup is a resolvent operator but resolvent operator is not a
semigroup. However, the resolvent operator does not satisfy semigroup properties
(see, for instance [35]) and our objective in the present paper is to apply the theory
developed by Grimmer [34] because it is valid for generators of strongly continuous
semigroup, not necessarily analytic. The main contribution of this manuscript is that
it proposes a framework for studying the mild solution of RISIDEs.

Remark 3 Blood cell production model: Leukemia is a type of cancer that develops
in the bone marrow’s blood-forming cells. It is nothing more than the comparatively
mature bone marrow’s production of an increase in aberrant white blood cells. As a
result, more aberrant white blood cells are produced than would be expected at the
normal rate. Treatments for leukaemia patients may include chemotherapy, mono-
clonal antibodies, supportive care, leukapheresis, surgery, and radiotherapy, and they
may be curative (with fixed or random time periods). The efficacy of the treatments
is demonstrated by the subsequent random impulsive model. For example, the blood
cell production model can be represented by nonlinear first order random impulsive
control system of the form

˙x(t) = −ax(t)+ bx(t − r)

1 + xc(t − r)
, ζ

′
m < t < ζ

′
m+1, t ≥ t0,

x(ζ
′+
m ) = wmx(ζ

′−
m ), t = ζ

′
m, m ∈ Z+,

x(θ) = φ(θ), θ ∈ [−r , 0],

where x(t) represnts the density of mature cells at time t , x(t − r) represents the
density of abnormal white blood cells and r is the time-delay between the production
of abnormal white blood cells in the bone marrow and their release of the mature cells
in to the blood streams. For additional details on the above model, we refer the reader
to [36, 37].
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5 Illustration

To illustrate the abstract theory, let us consider the system on a bounded domain
� ⊂ Rn with the boundary ∂�:

dz(t, ϑ)

∂t
= ∂2

∂ϑ2 z(t, ϑ)+
∫ t

−r
α(t − s)

∂2

∂ϑ2 z(s, ϑ)ds +
∫ t

−r
κ1(θ)z(t + θ, ϑ(t − μ(t)))dθ

+ [κ2(θ)z(t + θ, ϑ(t − ρ(t)))dθ ] dω(t), t ≥ δ, t �= ξk ,

z(ξk , ϑ) = h(k)δkz(ξ
−
k , ϑ), ϑ ∈ �

z(t0, ϑ) = ϕ(θ, ϑ), ϑ ∈ �, θ ∈ [−δ, 0]
z(t, ϑ) = 0, ϑ ∈ ∂�. (5.1)

Let X = L2(�), α : R+ → R+. κ1, κ2 be positive functions from [−δ, 0] to R.
Assuming δk to be a random variable defined on Dk = (0, dk) with 0 < dk < +∞
for k = 1, 2, · · · . Without loss of generality, we may assume that {δk} follows Erlang
distribution. δi , δ j are mutually independent with i �= j for i, j = 1, 2, · · · . h be
a function of k, ξk = ξk−1 + δk where {ξk} forms a strictly increasing process with
independent increments and t0 ∈ [0,T] be an arbitrary real number.
Let A be an operator on X by Az = ∂2z

∂ϑ
with the following domain

D(A) = {z ∈ X : z and zϑ are absolutely continuous, zϑϑ ∈ X , z = 0 on ∂�}.

Also, let the map B : D(A) ⊂ X → X be the operator defined by

B(t)(z) = α(t)Az for t ≥ 0 and z ∈ D(A).

The operator A can be expressed as

Az =
∞∑
n=1

n2〈z, zn〉zn, z ∈ D(A),

where zn(�) = ( 2
π

) 1
2 is the corresponding eigenvectors ofA. Obviously, zn(�) form

an orthonormal system in X. Moreover, A is the infinitesimal generator of an analytic
semigroup (T(t))t≥0 in X, satisfying

‖T(t)‖ ≤ exp{−π2(t − t0)}, t ≥ t0.

Also, we have the following additional conditions:

(i)
∫ 0

−δ
κ1(θ)

2dθ < ∞,
∫ 0

−δ
κ2(θ)

2dθ < ∞,

(ii) E

⎛
⎝max

i,k
{

k∏
j=i

∥∥h( j)(δ j )∥∥}2
⎞
⎠ < ∞.
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Using the aforementioned conditions, (5.1) can be modelled as the abstract RISIDEs
of the form (1.1),

f(t, zt) =
∫ t

−r
κ1(θ)z(t + θ, ϑ(t − μ(t)))dθ,

g(t, zt) =
∫ t

−r
κ2(θ)z(t + θ, ϑ(t − ρ(t)))dθ,

bk(δk) = h(k)δk .

Condition (i) implies (A5) holds with

Ci =
∫ 0

r
κ2i (θ)dθ, f or i = 1, 2,

along with Condition (ii) implying (A3). This depicts that (5.1) has a mild solution.
Moreover achieving stability results [continuous dependence of solution on initial
conditions and Hyers Ulam Stability] as in Sect. 4. Finally, if λ′ ≤ τ , (i.e)

3max{1,B2}(C1 + C2)/(π
2) ≤ π2,

then (5.1) is mean square exponentially stable under the assumptions (A3) and (A5).

6 Conclusion

In this paper, we have obtained the existence and various types of stability results for
RISIDEs by means of functional analysis and stochastic analysis method. Many evo-
lution processes from fields as diverse as physics, population dynamics, aeronautics,
economics, telecommunications and engineering are characterized by the fact that
they undergo abrupt change of state at certain moments of time between intervals of
continuous evolution. The duration of these changes are often negligible compared to
the total duration of process act instantaneously in the form of impulses. The impulses
may be deterministic or random.In addition, it is of great interest for future research to
study RISIDEs including more complicated stochastic factors,such as stochastic pro-
cesses driven by fractional Brownianmotions, orG-Brownianmotions, andRosenblatt
process, which describe some stochastic phenomena more precisely, see [9, 38] for
more details.
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