517 research outputs found

    Minority carrier lifetime in silicon photovoltaics : the effect of oxygen precipitation

    Get PDF
    Single-crystal Czochralski silicon used for photovoltaics is typically supersaturated with interstitial oxygen at temperatures just below the melting point. Oxide precipitates therefore can form during ingot cooling and cell processing, and nucleation sites are typically vacancy-rich regions. Oxygen precipitation gives rise to recombination centres, which can reduce cell efficiencies by as much as 4% (absolute). We have studied the recombination behaviour in p-type and n-type monocrystalline silicon with a range of doping levels intentionally processed to contain oxide precipitates with a range of densities, sizes and morphologies. We analyse injection-dependent minority carrier lifetime measurements to give a full parameterisation of the recombination activity in terms of Shockley–Read–Hall statistics. We intentionally contaminate specimens with iron, and show recombination activity arises from iron segregated to oxide precipitates and surrounding defects. We find that phosphorus diffusion gettering reduces the recombination activity of the precipitates to some extent. We also find that bulk iron is preferentially gettered to the phosphorus diffused layer rather than to oxide precipitates

    Quantitiative Modeling Of Oxygen Precipitation In Silicon

    Get PDF
    The vast majority of modern microelectronic devices are fabricated on single-crystal silicon wafers, which are produced predominantly by the Czochralski (CZ) melt-growth process. Important metrics that ultimately influence the quality of the silicon wafers include the concentration of impurities and the distribution of lattice defects (collectively known as microdefects). This thesis provides a multiscale quantitative modeling framework for describing physics of microdefects formation in silicon crystals, with particular emphasis on oxide precipitates. Among the most prevalent microdefects found in silicon crystals are nanoscale voids and oxide precipitates. Oxide precipitates, in particular, are critically important because they provide gettering sites for highly detrimental metallic atoms introduced during wafer processing and also enhance the mechanical strength of large-diameter wafers during high-temperature annealing. On the other hand, like any other crystalline defect species, they are undesirable in the surface region of the wafer where microelectronic devices are fabricated. Although much progress has been made with regards to oxide precipitate prediction and optimization, it has been surprisingly difficult to generate a robust, quantitative model that can accurately predict the distribution and density of precipitates over a wide range of crystal growth and wafer annealing conditions. In the first part of this thesis, a process scale model for oxide precipitation is presented. The model combines continuum mass transport balances, continuum thermodynamic and mechanical principles, and information from detailed atomic-scale simulations to describe the complex physics of coupled vacancy aggregation and oxide precipitation in silicon crystals. Results for various processing situations are shown and comparisons are made to experimental data demonstrating the predictive capability of the model. In the second part of this thesis, atomistic simulations are performed to study the stress field and strain energy of oblate spheroidal precipitates in silicon crystals as a function of precipitate shape and size. Although the stress field of a precipitate in silicon crystals may be studied within a continuum mechanics framework, atomic scale modeling does not require the idealized mechanical properties (and precipitate shapes) assumed in continuum models and therefore provides additional valuable insight. The atomistic simulations are based on a Tersoff empirical potential framework for silicon, germanium and oxygen. Stress distributions and stress energies are computed for coherent germanium precipitates and for incoherent, amorphous silicon dioxide precipitates in a crystalline silicon matrix. The impacts of precipitate size and shape are considered in detail, and for the case of oxide precipitates, special emphasis is placed on the role of interfacial relaxation. Whenever possible, the atomistic simulation results are compared with analytical solutions

    Effect of transition metals on oxygen precipitation in silicon

    Get PDF
    Effects of iron and copper impurities on the amount of precipitated oxygen and the oxide precipitate and stacking fault densities in Czochralski-grown silicon have been studied under varying thermal anneals. Silicon wafers were intentionally contaminated with iron or copper and subsequently subjected to different two-step heat treatments to induce oxygen precipitation. The iron contamination level was 2 × 10exp13cm-3 and copper contamination level 6 × 10exp13cm-3. Experiments did not show that iron contamination would have any effect on the amount of precipitated oxygen or the defect densities. Copper contamination tests showed some indication of enhanced oxygen precipitation.Peer reviewe

    Analysis of oxygen precipitation in silicon by infrared absorption

    Get PDF
    Infrared absorption measurements have been used to study the precipitation rate of oxygen in silicon and the conversion of interstitial oxygen to silicon dioxide

    Studies of oxygen-related and carbon-related defects in high-efficiency solar cells

    Get PDF
    Oxygen and carbon related defects in silicon, particularly as related to high-efficiency silicon solar cells were studied. A summary of oxygen processes in silicon versus process temperature was shown along with experimental results. The anamolous diffusion of oxygen was explained by the dissociation of the center allowing O sub i to move through the lattices

    Intrinsic point defect clustering during Czochralski growth of (silicon and) germanium

    Get PDF

    Doping of Si nanoparticles: the effect of oxidation

    Full text link
    The preferred location of boron and phosphorus in oxidized free-standing Si nanoparticles was investigated using a first-principles density functional approach. The calculated formation energies indicate that P should segregate to the silicon core, whereas B is equally stable in the Si and SiO_2 regions. Our models thus suggest that, in contrast with nanocrystals with H-terminated surfaces, the efficiency of phosphorus incorporation in oxidized Si nanoparticles can be improved by thermal annealing

    Experimental and theoretical study of oxygen precipitation and the resulting limitation of silicon solar cell wafers

    Get PDF
    Commercial silicon is prone to form silicon oxide precipitates during high-temperature treatments typical for solar cell production. Oxide precipitates can cause severe efficiency degradation in solar cells. We have developed a model describing the nucleation and growth of oxide precipitates that considers silicon self-interstitial defects and surface effects influencing the precipitate growth in ∌150 ÎŒm thick wafers during the solar cell processing. This kinetic model is calibrated with experiments that cause a well-defined and strong precipitate growth to give a prediction of the carrier lifetime limitation because of the oxide precipitates. We test the oxide precipitate model with scanning Fourier-transform infrared spectroscopy, selective etching, and lifetime measurements on typical Cz solar cell wafers before and after solar cell processes. Despite the relatively rough saw damaged etched surfaces and the thin wafers, we observe recurring ring patterns in the measurements of interstitial oxygen reductions, oxide precipitate etch pit density, and recombination activity by photoluminescence imaging. The concentration of precipitated oxygen correlates with the recombination activity and with the initial interstitial oxygen concentration. However, we found lifetime measurements to be a more sensitive technique to study oxide precipitates and using these we find smaller precipitates not detected by selective etching are very recombination active too. The measured concentrations of precipitated oxygen and lifetime agree fairly well with the predictions of the model

    Impact of germanium on vacancy clustering in germanium-doped silicon

    Get PDF
    Recent density functional theory calculations by Chen et al. [J. Appl. Phys. 103, 123519 (2008)] revealed that vacancies (V) tend to accumulate around germanium (Ge) atoms in Ge-doped silicon (Si) to form GeVn clusters. In the present study, we employ similar electronic structure calculations to predict the binding energies of GeVn and Vn clusters containing up to four V. It is verified that V are strongly attracted to pre-existing GeVn clusters. Nevertheless, by comparing with the stability of Vn clusters, we predict that the Ge contribution to the binding energy of the GeVn clusters is limited. We use mass action analysis to quantify the relative concentrations of GeVn and Vn clusters over a wide temperature range: Vn clusters dominate in Ge-doped Si under realistic conditions
    • 

    corecore