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Quantitiative Modeling Of Oxygen Precipitation In Silicon

Abstract
The vast majority of modern microelectronic devices are fabricated on single-crystal silicon wafers, which are
produced predominantly by the Czochralski (CZ) melt-growth process. Important metrics that ultimately
influence the quality of the silicon wafers include the concentration of impurities and the distribution of
lattice defects (collectively known as microdefects). This thesis provides a multiscale quantitative modeling
framework for describing physics of microdefects formation in silicon crystals, with particular emphasis on
oxide precipitates.

Among the most prevalent microdefects found in silicon crystals are nanoscale voids and oxide precipitates.
Oxide precipitates, in particular, are critically important because they provide gettering sites for highly
detrimental metallic atoms introduced during wafer processing and also enhance the mechanical strength of
large-diameter wafers during high-temperature annealing. On the other hand, like any other crystalline defect
species, they are undesirable in the surface region of the wafer where microelectronic devices are fabricated.
Although much progress has been made with regards to oxide precipitate prediction and optimization, it has
been surprisingly difficult to generate a robust, quantitative model that can accurately predict the distribution
and density of precipitates over a wide range of crystal growth and wafer annealing conditions.

In the first part of this thesis, a process scale model for oxide precipitation is presented. The model combines
continuum mass transport balances, continuum thermodynamic and mechanical principles, and information
from detailed atomic-scale simulations to describe the complex physics of coupled vacancy aggregation and
oxide precipitation in silicon crystals. Results for various processing situations are shown and comparisons are
made to experimental data demonstrating the predictive capability of the model.

In the second part of this thesis, atomistic simulations are performed to study the stress field and strain energy
of oblate spheroidal precipitates in silicon crystals as a function of precipitate shape and size. Although the
stress field of a precipitate in silicon crystals may be studied within a continuum mechanics framework, atomic
scale modeling does not require the idealized mechanical properties (and precipitate shapes) assumed in
continuum models and therefore provides additional valuable insight. The atomistic simulations are based on
a Tersoff empirical potential framework for silicon, germanium and oxygen. Stress distributions and stress
energies are computed for coherent germanium precipitates and for incoherent, amorphous silicon dioxide
precipitates in a crystalline silicon matrix. The impacts of precipitate size and shape are considered in detail,
and for the case of oxide precipitates, special emphasis is placed on the role of interfacial relaxation. Whenever
possible, the atomistic simulation results are compared with analytical solutions.
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ABSTRACT 
 

QUANTITATIVE MODELING OF OXYGEN PRECIPITATION IN SILICON  

Yi Yang 

Talid R. Sinno 

The vast majority of modern microelectronic devices are fabricated on single-crystal 

silicon wafers, which are produced predominantly by the Czochralski (CZ) melt-growth process. 

Important metrics that ultimately influence the quality of the silicon wafers include the 

concentration of impurities and the distribution of lattice defects (collectively known as 

microdefects). This thesis provides a multiscale quantitative modeling framework for describing 

physics of microdefects formation in silicon crystals, with particular emphasis on oxide 

precipitates. 

Among the most prevalent microdefects found in silicon crystals are nanoscale voids and 

oxide precipitates. Oxide precipitates, in particular, are critically important because they provide 

gettering sites for highly detrimental metallic atoms introduced during wafer processing and also 

enhance the mechanical strength of large-diameter wafers during high-temperature annealing. On 

the other hand, like any other crystalline defect species, they are undesirable in the surface region 

of the wafer where microelectronic devices are fabricated. Although much progress has been made 

with regards to oxide precipitate prediction and optimization, it has been surprisingly difficult to 

generate a robust, quantitative model that can accurately predict the distribution and density of 

precipitates over a wide range of crystal growth and wafer annealing conditions.  

In the first part of this thesis, a process scale model for oxide precipitation is presented. 

The model combines continuum mass transport balances, continuum thermodynamic and 

mechanical principles, and information from detailed atomic-scale simulations to describe the 

complex physics of coupled vacancy aggregation and oxide precipitation in silicon crystals. Results 
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for various processing situations are shown and comparisons are made to experimental data 

demonstrating the predictive capability of the model.  

In the second part of this thesis, atomistic simulations are performed to study the stress 

field and strain energy of oblate spheroidal precipitates in silicon crystals as a function of precipitate 

shape and size. Although the stress field of a precipitate in silicon crystals may be studied within a 

continuum mechanics framework, atomic scale modeling does not require the idealized mechanical 

properties (and precipitate shapes) assumed in continuum models and therefore provides additional 

valuable insight. The atomistic simulations are based on a Tersoff empirical potential framework 

for silicon, germanium and oxygen. Stress distributions and stress energies are computed for 

coherent germanium precipitates and for incoherent, amorphous silicon dioxide precipitates in a 

crystalline silicon matrix. The impacts of precipitate size and shape are considered in detail, and 

for the case of oxide precipitates, special emphasis is placed on the role of interfacial relaxation. 

Whenever possible, the atomistic simulation results are compared with analytical solutions. 
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1. Introduction

Microelectronic devices such as laptops, smartphones, televisions and tablet PCs are 

essential components in modern society. Most of the microelectronic devices are fabricated on 

single-crystal silicon wafers. In 2014 the global production of microelectronics is a $1.45 trillion 

industry1 supplied by the silicon wafer market that worth over $7.9 billion2. The crystalline quality 

of wafers is crucial to microelectronic device yield and performance. Thus, one of the most 

important goals in crystal growth and wafer manufacturing is to continue to engineer optimal 

microstructure (namely the distribution of defects) in wafers to achieve desired qualities. Precise 

control of defects requires a comprehensive understanding of the formation and transport physics 

of defects in silicon. Although defect formation and evolution during wafer manufacturing have 

been studied extensively for decades, there remains a need for predictive modeling to replace costly 

trial-and-error experimentation. The goal of this thesis is to develop a computational framework to 

quantitatively study the physics of defects in silicon and connect them to the operating conditions 

of manufacturing processes. In particular, the thesis focuses on the complex oxide precipitation 

process, which plays a multifaceted role in establishing wafer quality. 

1.1. Manufacturing Stages of CZ Silicon Wafers 

The starting point of the manufacturing stages is the Czochralski (CZ) melt-growth 

process3 During the CZ process, polycrystalline silicon in the quartz crucible is first heated up 

(Figure 1.1(a)) to above its melting point (about 1415 ˚C). Then a seed crystal is introduced into 

the melt and slowly pulled out while it is rotating (Figure 1.1(b, c and d)). The slow pulling process 

ensures the melted material solidify into a single crystalline ingot (Figure 1.1(e)). In industry the 

CZ process is performed in state-of-the-art facilities and it requires the highest standard of precision 

and absolute cleanness3. Usually the industrial CZ process lasts for days. The ingot is then cut into 
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thin wafers and the wafers are subsequently received a series of mechanical, thermal and chemical 

treatments (some are plotted in Figure 1.2) to achieve the desired quality.  

 

                     

 

Figure 1.1: Various stages of Czochralski crystal growth: (a) meltdown; (b) seed dip; (c) top; (d) 

shoulder; and (e) body.3 (Copyright © 2012, IEEE) 

 

 

 

Figure 1.2: Principal Manufacturing Stages of CZ Silicon wafers.3 (Copyright © 2012, IEEE) 



3 
 

1.2. Microdefects in CZ Silicon Wafers 

Important metrics that ultimately influence the quality of the silicon wafers includes the 

distribution of lattice defects and impurities (collectively known as microdefects), which are shown 

schematically in Figure.1.3. The basic lattice defect is the intrinsic point defect and can be classified 

into two types: a vacancy (a lattice site with a missing atom) and a self-interstitial (a lattice atom 

located in an off-lattice position). Thermodynamics predicts a finite equilibrium concentration of 

the point defects at finite temperature. Under certain conditions point defect populations may 

become supersaturated where they tend to aggregate and form clusters such as voids and interstitial 

precipitates (Figure 1.3(a)).Impurities can also be categorized into two types: unavoidable defects 

such as carbon atoms that are unintentionally introduced to the crystal during the manufacturing 

processes and intentional dopants such as boron and hydrogen atoms that are intentionally 

incorporated into the crystal to modify the material properties (electrical and mechanical properties 

etc.) of the wafer ((Figure 1.3(b))).  

 

 
  (a)                                                     (b) 

 

Figure 1.3: Schematic of microdefects (a) intrinsic defects and their clusters (b) impurities and 

impurity precipitates.4-6 Reprinted with permission. 
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Among the most prevalent microdefects found in silicon crystals are nanoscale voids7-10 and 

oxide precipitates11-15. Oxide precipitates, in particular, are critically important because they can 

provide gettering sites11,15 for highly detrimental metallic atoms introduced during wafer 

processing and enhance mechanical strength of large-diameter wafers9. On the other hand, like 

other crystalline defects, they are undesirable in the surface region of the wafer where the 

microelectronic devices are fabricated13. An example ideal oxide precipitate distribution is shown 

in Figure 1.4 (reproduced from Ref. 15 with permission). Here, the precipitate density away from 

the surface is high enough to ensure reliable internal gettering, while near the surface of the wafer 

a defect-free layer or a denuded zone (DZ) is present for device fabrication.  

 

                          

 

Figure 1.4: An example of a silicon wafer with an ideal distribution of oxygen precipitates for 

internal gettering purpose.15 Reprinted with permission. 
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DZs are usually created by one of the following two methods. The first one is the so-called 

“High-Low-High” conventional anneal14. In this treatment, oxygen is first out-diffused during an 

anneal at high temperature ( 1000 CT > ° ) by two mechanisms: (1) evaporation of oxygen atoms 

from the wafer surface16 and (2) the formation of a thin oxide layer on the wafer surface which 

serves as a sink for oxygen atoms17. As shown schematically in Figure 1.5(a), oxygen out-diffusion 

creates an oxygen depth profile within the wafer. Next, the high temperature anneal is followed by 

a low temperature anneal ( 600 750 C− ° ), during which the supersturated oxygen atoms nucleate 

small oxide precipitates. Finally, another high temperature anneal (1000 1100 C− ° ) is performed 

to grow these oxide precipitate nuclei into stable gettering sites. In the ‘conventional anneal’, a DZ 

structure is formed to due to lower oxygen concentration near the wafer surface18 (Figure 1.5(b)). 

 

                              
 
(a)             (b)  
 

Figure 1.5: (a) Schematic of the oxygen distribution after conventional anneal. (b) A wafer cross-

section created by conventional anneal showing a sharp denuded zone near the wafer surface.18 

Reprinted with permission. 

 

The second approach for creating DZ configurations in silicon wafers is via the application 

of rapid thermal annealing (RTA)15,19. It is now well established that oxide precipitation depends 

strongly on the presence of single vacancies, which lower the thermodynamic cost of forming 
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compressively stressed precipitates20,21. And it has been demonstrated that manipulation of vacancy 

populations by RTA of wafers can be used to precisely tailor the distribution of oxide precipitates 

in order to create a DZ near the wafer surface while producing a high precipitate density elsewhere. 

Typically in this treatment, the wafer is heated rapidly from room temperature to a holding 

temperature, TRTA, (1150 1250 C− ° ) for several seconds. During the hold at TRTA, Frenkel pair 

formation (Lattice→ Silicon Interstitial + Vacancy) forms equal amounts of silicon interstitial (I) 

and vacancy (V). Several seconds later, both defect species independently achieve equilibrium by 

recombination and diffusion to and from the wafer surface. The wafer is then allowed to cool at a 

controlled rate during which the equilibrium concentrations drop exponentially. The resulting I and 

V supersaturations can be released either by I-V recombination, or by outdiffusion to the wafer 

surface. The highly mobile I species outdiffuse far more rapidly than the vacancies leading to a 

vacancy-depth profile such as the one shown in Figure 1.6(a). During the cooling process, the 

driving force for oxygen precipitation is insignificant until the supersaturation of interstitial oxygen, 

, also becomes large enough and then proceeds rapidly if a sufficient number of 

vacancies are available to reduce the resulting stress. In subsequent nucleation-growth thermal 

treatments, e.g. a standard “low-high” nucleation-growth anneal such as a 4-hour anneal at 800 °C 

followed by a 16-hour anneal at 1000 °C, regions of the wafer that have a residual vacancies exhibit 

rapid formation of oxide precipitate nuclei. In this way, a DZ is formed as the one shown in Figure 

1.6(b)15.  

 

 

eq
OiOi C/C
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(a)             (b)  
 

Figure 1.6: (a) Schematic of the vacancy distribution after RTA. (b) A wafer cross-section created 

by RTA showing a sharp denuded zone near the wafer surface.15 Reprinted with permission. 

 

Given the importance of oxygen precipitation, the modeling and quantitative prediction of 

oxygen precipitation in silicon has had a long history, and numerous models14,15,20-32 have been 

proposed to simulate the CZ crystal growth and the subsequent wafer high-temperature processing. 

However robust and comprehensive predictive capability is still elusive. The primary reason for 

this relative lack of predictive success is simply that oxide precipitation in silicon is surprisingly 

complex. The first complexity comes from the fact that, as shown in Figure 1.7, oxide precipitates 

observed experimentally come in various morphologies18 (e.g., needles, plates, and polyhedral)  

that appear to depend strongly on processing conditions such as anneal temperatures.  
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Figure 1.7: Oxide precipitate morphology as a function of temperature. Progression is from low-

dimensional, high surface area, structures at low temperature, to more compact structures at high 

annealing temperature.18 Reprinted with permission. 

 

The second complexity associated with the description of oxygen precipitation arises 

because the precipitation process generates high internal (compressive) stresses that must somehow 

be released; the stress is generated because the volume per silicon atom in the oxide phase (at any 

composition) is larger than that in the silicon matrix phase. Well documented stress relief 

mechanisms associated with oxygen precipitation include interaction with intrinsic point defects 

present in the surrounding crystal matrix, i.e., vacancy absorption15 from and/or self-interstitial 

emission23 to the matrix, and morphological evolution in which the equilibrium precipitate shape 

evolves to reduce stress energy, usually at the cost of increasing the precipitate-matrix interface 

area31. A much less well-studied stress relaxation mechanism more recently described by 

Vanhellemont et al.,25,32 has also been proposed, whereby the precipitate absorbs silicon atoms from 

the surrounding matrix in order to generate additional free volume in the matrix. In much of the 

literature14,15,20-32, oxide precipitates are usually assumed to be comprised of amorphous SiO2. 

550 700 900 1100550 700 900 1100 T (°C)

Ribbons
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However the latter mechanism leads to a change in the composition of the precipitate as silicon 

atoms are incorporated (the oxide now represented by the sub-oxide, SiOx, may have composition 

anywhere between SiO2 and SiO) and suggests that the assumption that oxide precipitates are 

comprised of SiO2 may not hold for all operating conditions.  
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1.3. Modeling Approach 

The overall strategy for building a simulator for predicting defect phenomena is illustrated 

in Figure 1.8 to demonstrate the general features of our modeling approach.  

 

 

 

Figure 1.8: Overall strategy for building a comprehensive simulator for studying and predicting 

defect phenomena. 

 

Experimental measurements are obtained during crystal growth and subsequent wafer annealing  

(yellow box). In order to analyze the experimental data, a process scale model (green box) is needed 

for describing the physics of defects (such as diffusion, convection and reaction of defects) 

happening in the experiments. The process model includes reaction network and physical model 

that contain parameters not measurable by experiments for all defect species. The resulting system 
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of equations is then solved numerically with different model parameters (such as point defect 

diffusivities, cluster binding energies, kinetic constants, etc). The average deviation between results 

generated by process model and the experimental data is measured by an objective function. A 

global regression (purple box) is performed in order to find the best parameter set that corresponds 

to the minimum objective function. Our continuum modeling effort for simulating coupled vacancy 

aggregation and oxide precipitation in silicon crystals is based on an extension of an existing code 

(Comprehensive Aggregation Simulator for Silicon Processing, or CASSP) used to model vacancy 

aggregation in silicon crystals. As shown in Figure 1.9, in addition to general balance equations 

and reaction network for all monomer and cluster species, two model components must be 

developed specifically for oxide precipitates. The first one is a set of explicit expressions for the 

growth and dissolution rates of oblate spheroidal oxide clusters, respectively (upper left purple 

box). The second component consists of specific free energy expressions for oxide precipitates as 

a function of temperature and size (lower purple box). These free energy expressions are used as 

inputs for specifying growth and dissolution rate. A detailed analysis of these expressions will be 

presented in Chapter 3.  
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Figure 1.9: Components in CASSP: (1) Generic balance equations for all monomer and cluster 

species, and reaction network (2) Expressions for cluster dissolution and growth, (3) Free energy 

models for clusters. Numerical methods are then applied to solve the resulting system of non-linear 

partial differential equations. 
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1.4. Thesis Objectives 

The primary objective of this thesis is to develop and apply a process scale modeling 

framework for predicting the distribution of oxide precipitates in silicon crystals as a function of 

processing conditions during crystal growth and wafer thermal processing. The model combines 

continuum thermodynamic and mechanical principles with information from detailed atomic-scale 

simulations. Chapter 2 provides a literature review of theoretical and experimental studies aimed 

at the characterization of the Si/SiO2 interface, which is the primary regression parameter in our 

oxide precipitation modeling. Chapter 3 is devoted to the description of continuum model for oxide 

precipitation and includes details of the various physical elements in the model. Chapter 4 presents 

the regression analysis of the model to experimental data, along with a detailed mechanistic 

analysis. In Chapter 5, atomistic simulations are described to investigate the stress field and strain 

energy of oblate spheroidal clusters in a crystalline silicon matrix as a function of cluster shape and 

size. A Tersoff-based empirical potential33-38 is used for describing the properties of pure Si35,36, 

Ge33 and Si-Ge system33 and O34,37,38. Comparisons are made between the atomistic simulation 

predictions and analytical solutions from elasticity theory for coherent germanium precipitates and 

incoherent, amorphous silicon dioxide precipitates in a crystalline silicon matrix. Finally, 

conclusions are presented in Chapter 6. 
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2.   Literature Analysis of c-Si/a-SiO2 
Surface Energy 

 

As discussed in Chapter 1, the crystalline Si/amorphous SiO2 (c-Si/a-SiO2 or Si/SiO2 for 

compactness) surface energy function is the key regression parameter in our oxide precipitation 

model. Si/SiO2 surface values obtained from various literature sources are summarized in this 

Chapter in order to establish meaningful interpretations of the surface energy obtained by 

regression. The data sources can be divided into three groups: (1) direct experimental 

measurements of the interface energy, (2) atomistic calculation, and (3) model fitting to oxide 

precipitate data. These are described separately in the following sections. 

Equation Chapter 2 Section 1 

2.1. Direct Experimental Measurements 

Wafer bonding experiments represent the primary source for measurement of the Si/SiO2 

interface energy39-44. In general, wafer bonding experiments can be divided into 2 types: (1) 

classical wafer bonding process (without plasma treatment), and (2) plasma-activated wafer 

bonding (PAWB) process. As will be discussed briefly later in this section, the plasma treatment 

increases the number of hydroxyl groups, and enhances water diffusivity and content on the wafer 

surface by creating porous oxide. It therefore assists the following reaction and enhances wafer 

bonding: 

 

 2Si OH HO Si Si O Si H O− + − → − − +   (2.1) 

 

For both types of experiments, (100) wafers are used and the surface energies are measured directly 

by using the crack opening method45 or pulling test42; see Figure 2.1.  
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(a)                                                                (b)   

Figure 2.1: Schematic diagram of the (a) crack opening method (b) pulling test.45,42 Reprinted with 

permission. 

 

As reported by Suni et al.43,  Dragoi et al.39, Schjolberg et al.42, Plach et al.40,41 and Goesele 

et al.44, there is a general trend that the interface energies increase from ~0.1 to ~2.8 J/m2
 as the 

temperature or anneal/storage time increases. For example, Suni et al.43 find that the Si/SiO2 

interface energy (Figure 2.2) increases as annealing temperature increases, while Dragoi et al.39 

present evidence (Figure 2.3) that the energy increases as annealing time increases. The values 

range from ~0.1 J/m2 to ~2.6 J/m2
.  

 

 

 

 

 

 

     
 
 
 

 

Figure 2.2: Measured Si/SiO2 surface energies as a function of annealing temperature.43 Reprinted 

with permission. 
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    (a)                                                                         (b) 
 

Figure 2.3: Surface energy versus time for various annealing temperatures.39 Reprinted with 

permission. 

 

Schjolberg-Henrisken et al. 42 measure the Si/SiO2 interface energy by using both the crack 

opening method and the pulling test. Without thermal annealing, the interface energy of two bonded 

wafers is measured as 0.11 J/m2 by using the crack opening test method. After the wafers are 

annealed for 2h at 400ºC in vacuum, the interface energy is measured as 1.5 J/m2 if the crack 

opening method is used or 0.98J/m2 if the pulling test is used. Plach et al.40,41 obtain the surface 

energy as a function of annealing temperature, storage time at room temperature, and annealing 

time at 50 ºC or 300 ºC (Figure 2.4, 2.5 and 2.6).  

 

             
 
 
 
 
 

 
           (a)                                                                    (b)  
 

Figure 2.4: Interface energy as a function of (a) storage time at room temperature (b) annealing 

time at 50 ºC.40,41 Reprinted with permission. 
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            (a)                                                                   (b) 
 

Figure 2.5: Interface energy as a function of (a) storage time at room temperature (b) annealing 

time at 300 ºC.41 Reprinted with permission. 

 

 

 

Figure 2.6: Interface energy as a function of process temperature during PAWB (light blue deltas 

and dark blue gradients and during plasma-free process (black squares).40,41 Reprinted with 

permission. 

 

As shown in Figure 2.7, Plach et al.41 summarize the model for both the classical process44 

and PAWB process to try to explain the 4 mechanisms (stages 1-4 on Figure 2.7) behind the trends 

in the experimental data shown above. 
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Figure 2.7: Schematic drawings of the four different stages that occur during wafer bonding.41 

Reprinted with permission. 

 

Stage 1: the wafers are held together via van der Waals type hydrogen bonds after water is 

introduced at the interface, explaining the relatively low energy (~0.1 J/m2). 

Stage 2: the interface energy suddenly increases due to the formation of Si-O-Si bonds when the 

reaction in eq. (2.1) occurs. The reaction product, water, either is being removed by thermal 

annealing above 100 ºC in the classical process, or is diffusing out or being stored in the subsurface 

regions in the PAWB process.  

Stage 3: after the water is removed from the interface, the surface energy is limited by the Si-O-Si 

bond strength and the surface gap or roughness (shown by the dashed line in Figure 2.7/Stage 3) 

and reaches a stable value ~1.5J/m2
. 

Stage 4: the surface gap is closed by either the viscous flow of the oxide in the classical process or 

the growth of the oxide in the PAWB process, and correspondingly the surface energy increases to 

~2.5 J/m2. A summary is given in Table 2.1. 
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Source Si/SiO2 Surface Energy (J/m2 ) 

Stengl et al. (1999) 0.1-2.5 

Suni et al. (2001) 0.1-2.8 

Dragoi et al. (2005) 0.1-2.6 

Schjolberg et al.(2008) 0.11, 0.98 or 1.5 

Plach et al. (2008) and (2013) 0.1-2.5  

 

Table 2.1: Experimental measurements of the Si/SiO2 interface energy. 
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2.2. Atomistic Simulations 

Atomistic calculations of the Si/SiO2 interface energy include (1) Monte Carlo (MC) bond-

switch algorithms using Keating potentials, (2) density functional theory (DFT), and (3) molecular 

dynamics (MD) using empirical potentials.  

 

2.2.1. Monte Carlo Simulations 

MC simulations are used to study the properties of planar interfaces. These calculations 

demonstrate that the surface energy is a function of the orientation of the c-Si and all use Keating-

like valence force models46 of the form 

 

 ( ) ( )22
0 0

1 1 cos cos
2 2

b
i i i j j

i bonds j angles
E k b b Uθ θ

∈ ∈

= − + − +∑ ∑   (2.2) 

 

where 0ib is the equilibrium bond length, 0jθ  is the equilibrium bond angle, b
ik  and jkθ are the 

“spring constants” and U is the chemical energy cost for the formation of suboxides. The Wooten, 

Waire, and Winer (WWW) algorithm47 is used to build the amorphous SiO2 structure. This 

procedure ensures the random structure of the amorphous SiO2 while maintaining the 4-fold 

coordination throughout.  

 Tersoff et al.46  studied (001)-oriented Si/a-SiO2 interface using 10 layers of Si and SiO2 

periodically repeated in the interface-normal direction. The WWW algorithm was used to create 

the a-SiO2 structure. The interface energy was calculated as 0.1089 J/m2. Hadjisavvas et al.48  

calculated the surface energy for the planar interface with 6 different Si orientations using MC 

simulations with a Keating-like valence force model supplemented by the WWW construction  

method. The surface energies as function of the Si orientations are summarized in Table 2.2. In 

addition to the study of planar surfaces, they also calculated the interface energy of the “curved, 
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more or less spherical” interface created by the nanocrystalline (nc) Si embedded in a-SiO2. The 

values are summarized in Table 2.3. 

 

Si Orientation Si/SiO2 Surface Energy (J/m2 ) 

100 0.7370 

121 0.8171 

110 0.8972 

111 0.8972 

210 1.7143 

221 1.5381 

 

Table 2.2: Interface energy vs. Si orientations.48 

 

Si structure Si/SiO2 Surface Energy (J/m2 ) 

Faceted Si Cluster (diameter ~3nm) 1.2177 

Faceted Si Cluster (diameter ~5nm) 0.8331 

Spherical Si Cluster (diameter ~3nm) 1.1696 

Spherical Si Cluster (diameter ~5nm) 1.0574 

 

Table 2.3: Surface energy vs. nanocrystalline Si/a-SiO2 structures.48  

 

Kong et al.49  used MC simulations with the WWW algorithm with 20 layers of Si and SiO2 

periodically repeated in a 7×7 cell. 3 possible Si ionization states (Si+1, Si+2 and Si+3) and 4 different 

Si orientations (001, 110, 111 and 112) were considered. The results are summarized in Table 2.4. 
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Si Orientation and Component Si/SiO2 Interface Energy (J/m2 ) 

 001 (Si+1 :Si+2: Si+3 = 0:1:0) 0.9933 

 001 (Si+1 :Si+2: Si+3 = 1:1:1) 1.2497 

110 (Si+1 :Si+2: Si+3 = 1:0:0) 1.2016 

110 (Si+1 :Si+2: Si+3 = 0:0:1) 1.6663 

111 (Si+1 :Si+2: Si+3 = 1:0:0) 0.8812 

111 (Si+1 :Si+2: Si+3 = 0:0:1) 1.0574 

111 (Si+1 :Si+2: Si+3 = 1:1:1) 1.8745 

112 (Si+1 :Si+2: Si+3 =0:1:2) 0.9933 

 

Table 2.4: Surface energy vs. Si orientations and components.49  

 

2.2.2. Density Functional Theory 

To calculate the interface energy, Kroll et al.50 construct quasi-spherical Si clusters 

consisting of 17, 29, 47, 71 or 99 atoms embedded in a-SiO2 with diameters from 0.8 to 1.6 nm by 

using a combination of network construction followed by DFT. The WWW algorithm is used to 

construct the random topology of the SiO2 network. DFT in the local density approximation (LDA) 

is used to perform further ionic relaxations and for the assessment of electronic properties. All 

calculations have also been repeated within the more accurate generalized gradient method (GGA). 

The result is 1.5 J/m2. 
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2.2.3. Molecular Dynamics Simulations 

Djurabekova and Nordlund51  perform MD simulations of Si/SiO2 at 3 different 

temperatures (1100K, 1400K and 1600K). They construct quasi-spherical Si clusters in an a-SiO2 

matrix and consider 6 different Si/SiO2 interface structures (labeled 1 to 6 in Table 2.5) with 

different amounts of under and over-coordinated atoms, as well different numbers of suboxide 

atoms at the interface. The WWW algorithm with Keating-like potential is used in order to construct 

a defect-free amorphous SiO2 structure. The potentials developed by Watanabe et al.52  and Ohta et 

al.53  were used to calculate energies. These potentials are derived based on the classical Stillinger-

Weber potential.  

Finally, Chuang et al.34 (our group) construct quasi-spherical Si clusters embedded in 

amorphous SiO2, using a similar approach to that described by Djurabekova and Nordlund51 to 

calculate the Si/SiO2 surface energy. Tersoff-based potentials developed by Munetoh et al.54 (MT) 

and Lee et al.55 (LT) are used and the amorphous SiO2 is constructed by quenching the melted β- 

cristobalite SiO2 from 5000K to 0K instead of using the WWW algorithm. The results are 1.1 J/m2 

for LT and 1.5 J/m2 for MT. 

 

Temperatures (K) Si/SiO2 Surface Energy (J/m2 ) 

1100 (structure 1) 1.3939 

1100 (structure 2)   1.5060 

1400 (structure 3) 1.2177 

1400 (structure 4) 1.3298 

1600 (structure 5) 1.1536 

1600 (structure 6) 1.2337 

 
 

Table 2.5: Si/SiO2 surface energy as a function of annealing temperatures and structures.51 
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2.3. Model Fitting to  Experimental Data 

Approaches in which model fitting to oxide precipitate data is used for Si/SiO2 interface 

energy calculation can be divided into 2 groups: (1) models that employ homogeneous nucleation 

theory and (2) models that employ rate equations. 

 

2.3.1. Models Employing Steady State Nucleation Theory 

Inoue et al.22 and Voronkov et al.29 both fit their calculated nucleation rate of oxide 

precipitate to nucleation rate data assuming that a closed system equilibrium oxide precipitate size 

distribution is already established and that the supersaturation of monomers is constant. Inoue et 

al.22 first provide an expression of the Gibbs free energy [eq. (2.3)] of a oxide precipitate as a 

function of the latent heat of fusion and interfacial energy (the strain energy is ignored in their 

expression) then calculate the critical size ( Cr  ) by setting / 0dG dr = . 

 

 lat_heat intG G G= + + .  (2.3) 

 

Next, the equilibrium concentration of clusters of critical radius Cr  is calculated as 

 

 ( ) ( )exp( / )eq
C c BC r G r k Tρ= −   (2.4) 

 

and the nucleation rate is calculated as 

 

 ( )eq
CJ ZgC r= ,  (2.5) 
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where g is the frequency of oxygen attachment for oxide precipitate of critical size and Z is the 

Zeldovich factor. Here eq. (2.5) is used to match experimental data of nucleation rates (Figure 2.8). 

The interface energy is calculated as 0.38 J/m2 and Z is calculated as 0.2 in order to obtain a good 

fit. 

                                           
                                                    (a)                                   (b) 
 

Figure 2.8: The measured (circles) and calculated (solid curves) nucleation rate as function of (a) 

the oxygen concentration and (b) temperature.22 Reprinted with permission. 

 

Voronkov et al.29 calculate the steady state nucleation rate of oxide precipitate as a function 

of the free energy at 800 ºC by using a similar approach described by Inoue et al22. In their model, 

however, the free energy expression includes the supersaturation of vacancies and oxygen, the 

strain energy, and the interfacial energy. The experimental data of nucleation rate (shown in Figure 

2.9) for fitting the surface energy is produced in a RTA-treated wafer by a two-step annealing (800 

ºC for 2 to 16h plus 1000 ºC for 16h) at three given oxygen concentrations: 8×1017cm-3 (High C), 

7×1017cm-3 (Medium C) and 6×1017cm-3 (Low C). The surface energy is calculated as 0.89 J/m2. 
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Figure 2.9: Comparison between the experimental data (circles) and the calculation results (solid 

curves).56 Reprinted from Ref.56 with the permission of AIP Publishing. 

 

Senkader et al.27 obtain the interface energy by fitting a calculated oxide precipitate aspect 

ratio to experimental measurements of the oxide precipitate aspect ratio. The free energy of the 

oxide precipitate as a function of the supersaturation of monomers, the strain energy, and the 

interfacial energy (the latter two are functions of aspect ratioβ  of the oxide precipitate) is given 

by: 

 

 ( ) ( )sup inter strainG G G Gβ β= + + .  (2.6) 

 

Assuming the vacancy and interstitial concentrations are at equilibrium ( sup 0erG = ), then the 

aspect ratio (the only unknown) can be obtained by the minimization of the free energy with respect 

to the aspect ratio. Finally, along with eq. (2.6), five measured aspect ratios of oxide precipitates 

(shown in Table 2.6) at 700 ºC and 800 ºC and different oxygen concentrations in the wafers, are 

used to perform the model regression. The surface energy is calculated as 0.67 J/m2 if oxide 

precipitates are assumed to be comprised of SiO and 1.68 J/m2 if oxide precipitates are assumed to 

be SiO2. 
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Temp (ºC) 700 700 700 800 800 

CO (1017 cm-3 ) 8.36 5.26 3.01 8.06 6.01 

β (10-3) 23.3 24.6 22.2 8.57 7.89 

calc
SiOβ (10-3)  23.5 19.3 16.5 11.2 8.9 

2

calc
SiOβ (10-3) 29.0 20.6 16.6 11.6 8.46 

 

Table 2.6: Calculated aspect ratio vs. experimental data of the aspect ratio of oxide precipitates.27 

 

Vanhellemont et al.20,21 derived a similar free energy expression [eq.(2.7)] for oxide 

precipitates to the Senkader one27 by using a homogeneous nucleation model and then calculating 

the critical radius (rc) by setting / 0dG dr = . They link the interface energy and critical radius by 

 

 2
2 OI

SiO S
OI

C OI S

V T
xr kT T T

σ =
−

,  (2.7) 

 

where 
2SiOV is the molecular volume of SiO2, OI

ST  is the temperature at which the total amount of 

interstitial O would be soluble, k is the Boltzmann constant and kTOI (=1.52 eV) is the solubility 

energy. The interface energy and the experimental data used to calculate it are summarized in 

Tables 2.7 and 2.8. Note that the interface energy obtained by using the data in Table 2.7 is larger 

than 3.4J/m2 and the strain is assumed to be completely released. 
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Table 2.7: The experimental data used as input in eq. (2.7) for computing the surface energy.21 

Reprinted from Ref.21 with the permission of AIP Publishing. 

 

                        

 

Table 2.8: The experimental data used as input in eq. (2.7) for computing the surface energy.20 

Reprinted from Ref.20 with the permission of AIP Publishing. 
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2.3.2. Models Employing Rate Equations 

A much more rigorous approach that employs rate equations for oxide precipitate evolution 

is presented in this section. To obtain the interface energy, Schrems et al.23  assume oxide 

precipitates are spheres and can release stress by interstitial emission. They use the following 

experimental data for the fitting: (1) Interstitial O concentration vs. depth after 2 different “HI-LO-

HI” anneals for an initial O concentration of 9.5×1017 cm-3 and (2) denuded zone depth vs. initial O 

concentration for 3 different denudation times (Figure 2.10). A temperature-dependent surface 

energy is obtained: 0.235 J/m2 (750 ºC), 0.169 J/m2 (1000 ºC) and 0.150 J/m2 (1050 ºC); see Figure 

2.11. 

 

       
        (a)                                        (b)                                                    (c) 
 

Figure 2.10: Interstitial oxygen vs. depth after (a) anneal 1 (b) anneal 2. (c) Denuded zone depth 

from wafer surface vs. initial oxygen concentration for 3 different denudation times.23 Reprinted 

with permission. 
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Figure 2.11: Temperature dependent surface energy from reference23. 

 

Esfandyari et al.26 used the same model framework as Schrems et al.23 to fit their model to 

experimental data. Similarly, the following experimental data is used for the fitting:  (1) Interstitial 

O concentration vs. depth from the wafer surface after 2 different HI-LO-HI anneals (anneals “1” 

and “2”) for an initial oxygen concentration of 9.5×1017 cm-3 [Figure 2.12 (a, b)]; (2) The interstitial 

and precipitated O concentration as a function of initial O concentration after anneal 1 [Figure 2.12 

(c)], and (3) denuded zone depth vs. initial O concentration for 3 different denudation time [Figure 

2.13]. By fitting to the above data, a size-dependent surface energy is obtained (eq. (2.8)). The 

function is plotted Figure 2.14: 

 

 
1/3 2/30.85 0.650.427 1

n n
σ

    = + +    
     

.  (2.8) 
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         (a)                                      (b)                                             (c)           
 

Figure 2.12: Interstitial oxygen concentration vs. depth for (a) anneal 1 (b) anneal 2; interstitial 

and precipitated oxygen concentration as a function of initial oxygen concentration after anneal.26 

Reprinted with permission. 

 

                                           

 

Figure 2.13: Denuded zone depth from wafer surface vs. initial oxygen concentration for 3 

different denudation time.26 Reprinted with permission. 
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Figure 2.14: Cluster size dependent surface energy (plotted against the log cluster size.26  

 

Ko and Kwack28 used three sets of surface energies in order to capture the experimental 

data for the one-step, two-step and three-step wafer anneals and crystal growth. First, they obtained 

a constant interface energy, 0.373 J/m2, to capture the experimental data at 1100 ºC for crystal 

growth (data not shown in the paper). Secondly, they obtained a temperature-dependent interface 

energy by using experimental data from one-step and two-step wafer treatments. For one-step 

anneals, an empirical expression fitted by using the experimental data oxide precipitate densities57 

at different temperatures is used in their model regression: 

 

 ( )36 10 exp 3eV / BN k T−= × .  (2.9) 

  

For two-step anneals, the experimental data of oxygen loss (Figure 2.15) as a function of initial 

oxygen concentration after annealing for 800 ºC 2h +1050 ºC 16 h. The interface energy is tabulated 

in Table 2.9. 
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Figure 2.15: Oxygen loss as a function of initial oxygen concentration.28 Reprinted from Ref.28 

with the permission of AIP Publishing. 

 

Temp (ºC) 650 700 800 850 900 950 1000 1050 1100 

σ (J/m2) 0.25 0.278 0.280 0.310 0.325 0.347 0.372 0.400 0.400 

 

Table 2.9: Temperature dependent surface energy for one-step and two-step anneal.28 

 

For the three-step anneals, the interstitial O concentration as a function of the depth from 

the wafer surface are obtained after two different types of anneals, 1100 ºC (3h) +650 ºC (6h) +1000 

ºC (4h) [Figure 2.16(a)] and 1100 ºC (16h) +650 ºC (16h) +1000 ºC (16h) [Figure 2.16(b)]  are 

used for the model regression. However, the surface energy at 650 ºC, 1000 ºC, and 1100 ºC have 

to be modified from 0.25 J/m2 to 0.343 J/m2, from 0.400 J/m2 to 0.398 J/m2 and from 0.400 J/m2 to 

0.395 J/m2, respectively to capture this set of data. 
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                             (a)                                                    (b) 
 

Figure 2.16: O concentration as a function of depth for two different anneals: (a) 1100 ºC (3h) 

+650 ºC (6h) +1000 ºC (4h) and (b) 1100 ºC (16h) +650 ºC (16h) +1000 ºC (16h).28 Reprinted from 

Ref.28 with the permission of AIP Publishing. 

 

Falster et al.14,58 use rate equations to perform regression of interface energy assuming 

oxide precipitates are spherical and that the strain energy is completely released. A large set of 

wafer anneals are considered (Figure 2.17).  

 

           
                (a)                                         (b)                                             (c)  
 

 

 

 

 

        (a)                                             (b)                                             (c) 

 Figure 2.17: Measured and calculated oxide precipitate densities for 3 initial O concentrations: (a) 

8×1017 cm-3 (b) 7×1017 cm-3  (c) 6.1×1017 cm-3.14 Reprinted from Ref.14 with the permission of AIP 

Publishing. 
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 The obtained temperature dependent interface energy is shown in Figure 2.28:  

 

                                       

Figure 2.18: The temperature dependent surface energy.58 Reprinted from Ref.58 with the 

permission of AIP Publishing. 

 

Wang30 obtained a temperature dependent interface energy by fitting their model to crystal 

growth data30 and the experimental data of both Kelton et al.14,58 [Figure 2.19 (a-c) and Figure 2.20] 

and from RTA experiments [Figure 2.21 (a-b)]. The fitted surface energy is given by: 

 

 40.51 3 10 ( 873 )T Kσ −= + × −   (2.10) 

 

In addition to surface energy, the ramp rate is also part of the fitting parameters. 
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   (a)                                               (b)                                               (c)  
 

Figure 2.19: Measured (squares) and calculated oxide precipitate densities (gradient, delta and 

diamonds ) as a function of anneal conditions, using 3 different initial O concentrations: (a) 8×1017 

cm-3 (b) 7×1017 cm-3  (c) 6×1017 cm-3
 for conventional anneals.30 Reprinted with permission. 

 

 

 

Figure 2.20: Logarithmic oxide precipitate density as a function of nucleation time at 650 °C for 

CO =7×1017 cm-3.30 Reprinted with permission. 
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Figure 2.21: Oxide precipitate density as a function of nucleation time for RTA experiments.30 

Reprinted with permission. 

 

Note that for RTA experiments, the Wang model does not consider the dependence of the oxide 

precipitates on initial RTA temperatures or the dependence of the oxide precipitates on nucleation 

temperatures. 

Dunham et al.59 use a set of simplified rate equations to obtain a temperature dependent 

interface energy. They fit their model to measurements of O consumption in three anneals 

performed by two different groups60. 

 

                
                  (a)                                                                   (b) 
 

Figure 2.22: O consumption as function of initial O concentration (a) Swaroop et al.60 and (b) 

Chiou and Shive.61 Reprinted from Ref.59 with the permission of AIP Publishing. 
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The resulting temperature-dependent interface energy is shown in Figure 2.23: 

 

                                               

 

Figure 2.23: Temperature-dependent interface energy from reference59. 

 

Senkader et al62. used the same model framework as Schrems et al.23 to fit their model to 

experimental data. In their model the primary fitting parameter is the additional free energy barrier 

for the oxide precipitate clustering event. The Si/SiO2 interface energy is assumed to be 0.31 J/m2. 

The following experimental data is used for the fitting:  (1) The precipitated O concentration as a 

function of initial O concentration after (i) a two-step anneal [Figure 2.24 (a)], (ii) a HI-LO-HI 

anneal [Figure 2.24 (b)], (iii) a two-step anneal without RTA [Figure 2.24 (c)],  (iv) a RTA anneal 

followed by (iii) [Figure 2.24 (c)], (v) a complementary metal oxide semiconductor (CMOS) type 

anneal [Figure 2.25]; (2) The precipitated O concentration as a function of thermal annealing time 

during a CMOS type anneal [Figure 2.26]. 
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(a)                                               (b)                                                (c) 

 

Figure 2.24: Interstitial and precipitated oxygen concentration as a function of initial oxygen 

concentration after:  (a) anneal (i) (b) anneal (ii) (c) anneal (iii): (950 ºC (1h)+1200 ºC (13h), no 

RTA)  and anneal (iv): (1200 ºC (2s)+950 ºC (1h)+1200 ºC (13h)).62 Reprinted from Ref.62 with 

the permission of AIP Publishing. 

 

                                                 

 

Figure 2.25: Interstitial and precipitated oxygen concentration as a function of initial oxygen 

concentration after a CMOS anneal that consists of 925 ºC (5h), 800 ºC (45min), 1150 ºC (20h) and 

925 ºC (14h).62  Reprinted from Ref.62 with the permission of AIP Publishing. 
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Figure 2.26: Major thermal steps of the CMOS type anneal and the precipitated O concentration 

as a function of annealing time for an initial oxygen concentration of 9.5×1017 cm-3
.
62

 Reprinted 

from Ref.62 with the permission of AIP Publishing. 

 

 A summary of interface energies is shown in Table 2.10 on the following page. Overall, 

the direct measurements show the widest range but seem to suggest that fully ‘healed’ interfaces 

are high in energy (~2.5 J/m2), although it is not necessarily clear that these interfaces correspond 

to oxide precipitate-matrix interfaces formed by bulk oxygen precipitation. Interestingly, it is the 

plasma-treated cases that generally provide values near the upper end of the range – most of the 

cases without this treatment tend to lead to values in the range 1-1.5 J/m2. It may therefore be the 

case that the plasma treatment somehow alters the interface in a way that does not correspond to 

spontaneous oxide precipitation in the Si bulk. 

Atomistic simulations suggest values in the range 0.8-1.5 J/m2. Much of the scatter in this 

data is likely to be the result of a combination of two factors: (1) error in the potential models used 

to compute the energy, and (2) insufficient annealing of the interface. It is interesting to note that 

the atomistic simulation results are quite consistent with the direct experimental measurements for 

the non-plasma treated cases. 
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Finally, the oxide precipitate model fitting literature appears to provide interface energies 

that are generally lower: 0.2-0.7 J/m2, although several studies provide outlier values. Note that the 

oxide precipitate model fitting estimates generally implicitly include any entropic effects and 

therefore should be interpreted as effective free energies. Whether this is also the case for the direct 

experimental measurements is more difficult to assess because it depends on whether the 

pulling/cracking process was performed under reversible conditions (not likely). Overall, there is a 

suggestion that the oxide precipitate models prefer interface energy values that are significantly 

lower than those obtained by either atomistic simulations or direct measurement. 
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Source Si/a-SiO2 Surface Energy 

 (J/m2 ) 

Stengl et al. (1999) 0.1-2.5 

Suni et al. (2001) 0.1-2.8 

Dragoi et al. (2005) 0.1-2.6 

Schjolberg et al. (2008) 0.11, 0.98, 1.5 

Plach et al. (2008) and (2013) 0.1-2.5  

Kroll  et al. (DFT) (2007) 1.5 

Tersoff  et al. (MC) (2001) 0.11 

Hadjisavvas et al. (MC) (2006) 0.74-1.71 

Kong et al.(MC) (2008) 0.8-1.87 

Djurabekova and Nordlund (MD) (2008) 1.15-1.51 

Chuang et al. (MD) (2013) 1.1, 1.5 

Inoue et al. (1981) 0.38 

Vanhellemont et al. (1987) 0.31-0.62 

Schrems et al. (1993) 0.15-0.23 

Senkader et al. (1993) 0.31 

Vanhellemont et al. (1996)  3.4-6  

Senkader et al. (1996) 1.68 

Esfandyari et al. (1996) 0.427 

Ko and Kwack et al. (1998) 0.25-0.40 

Voronkov et al. (2002) 0.89 

Kelton et al. (2000) 0.37-0.43  

Wang (2002) 0.46-0.66 

Dunham et al. (2013) 0.24-0.32 

  

Table 2.10: Summary of Si/SiO2 interface energy. Blue – direct experimental measurements; 

green – atomistic simulation; orange – model fitting. 
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3.  Continuum Modeling of Oxide 
Precipitation in CZ Silicon  

  

In this chapter we present a continuum model for simulating coupled oxide precipitation 

and vacancy aggregation in both wafer thermal annealing and crystal growth environments. First, 

in Section 3.1, the model is introduced in the context of previously developed modeling approaches. 

Next, the important components of the model are presented: (1) the kinetic model (rate equation 

system) and the morphology model (oblate spheroid model) are outlined in detail in Section 3.2; 

(2) the principles of detailed balance and quasi-equilibrium, which underpin the governing 

equations are discussed in Section 3.3; (3) the thermodynamic model (free energy model) is 

outlined in detail in Section 3.4. In addition, in Section 3.5, the brief descriptions of the models for 

voids and single point defects are given. Finally key numerical methods for solving the resulting 

equation systems are presented in Section 3.6. 

Equation Chapter (Next) Section 1 

3.1.  Overview: Key Physical Elements in the Model and 

Experimental Data for Model Regression 

Common modeling approaches (that are using the Si/SiO2 interface energy as the primary 

fitting parameter) for oxide precipitation can be categorized into 2 groups: (I) models that employ 

homogeneous nucleation theory 20-22,27,29 and (II) models that employ rate equations14,23,26,28,30,31,58,59. 

Typically in a category (I) model, a steady-state nucleation rate of oxide precipitates, i.e. the 

number of new precipitates being formed per unit time5, is calculated and fitted to the experimental 

data. This involves with the calculation of the Gibbs formation free energy ( G ) of an oxide 

precipitate as a function of its size (n) and locating the size ( Cn ) at which the free energy was a 

maximum by setting / 0dG dn = . Once these are obtained, the nucleation rate (usually an 
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exponential function of the Gibbs free energy at size Cn ) can be calculated. Category (I) models 

can only calculate the transient nucleation rate at a constant temperature and supersaturation of 

monomer so it cannot simulate any processes. Category (II) models, however, are able to simulate 

the evolution of oxide precipitates by solving a set of rate equations that describe the cluster 

aggregation and dissolution. Our model falls into this category. In order to fully define these rate 

equations, several key physical elements need to be specified. As shown in Table 3.1, these 

elements are summarized in column 2 to 5 for each model and shaded based on their levels of 

sophistication (darker color means more sophisticated):  (1) the growth of a oxide precipitate (for 

all models) is assumed to be diffusion-limited i.e. the growth is controlled only by the rate at which 

the reactants (precipitates/monomers) diffuse together; (2) the morphology a oxide precipitate can 

be: (a) just a sphere5,12,15,17,46,47, (b) either a sphere or a plate19 and (c) an oblate spheroid20; (3) the 

mechanism for stress relaxation can be: (a) none5,46 (the stress is always assumed to be fully 

relaxed), (b) just interstitial emission12,15,17,47 and (c) interstitial emission and shape change19,20; (4) 

the Si/SiO2 interface energy can be: (a)  a constant12,20, (b) a temperature dependent 

function5,17,19,46,47 and (c) a size dependent function15. Additionally the experimental data for 

parametrizing and validating the model are summarized in column 6, some models5,12,15,46,47 

consider conventional anneal only, some models20 consider both conventional anneal and RTA and 

some17,19 consider conventional anneal, RTA and crystal growth. As shown in the last row of Table 

3.1, our model contains diffusion-limited transport, oblate spheroid morphology, stress relaxation 

through both point defect interaction and shape change and a size dependent Si/SiO2 interface 

energy. Note that temperature-dependent interface energy is not included in our model because 

there is no clear evidence for this. Finally the experimental data considered in our model includes 

conventional anneal, RTA and crystal growth. 
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Table 3.1: Key physical elements and experimental data considered in our model and in previous 

modeling approaches that employed rate equations.14,23,26,28,30,31,58,59 
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3.2. Kinetic Model for Oxide Precipitation 

3.2.1. Cluster Aggregation and Dissolution 

All clusters (size≥2) are assumed to be immobile and can grow/dissolve only by monomer 

association/dissociation. Defining ( )g n  as the growth rate and ( )d n  as the dissolution rate of a 

cluster of size n, the aggregation/dissolution process can be represented as: 

 

 
( )

( )

( )

( )
( )

1

1
1 1

g n g n

d n d n
n n n

−

+
↔ − ↔ ↔ + ↔     (3.1) 

 

The well-known master equations are used to describe the above process: 

 

 max( ) ( ) ( 1) ( 2,3,... 1)v C n J n J n n n
t z
∂ ∂ + = − + = − ∂ ∂ 

,  (3.2) 

 

where v denotes the crystal pull rate ( 0v =   during wafer annealing), ( )C n  denotes the 

concentration of a cluster that contains n atoms and ( )J n  denotes the net flux between clusters of 

size n and n+1, i.e., 

 

 ( ) ( ) ( ) ( 1) ( 1)J n g n C n d n C n= − + + .  (3.3) 

 

However n ranges from 2 to about 1010 hence billions of coupled rate equations have to be solved, 

which is practically impossible. Nevertheless when n is large enough ( 30n ≥ ) discrete master 

equations can be transformed into continuous Fokker-Planck type equations63: 
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 ( ) ( )I nV f n
t z n
∂ ∂ ∂ + = − ∂ ∂ ∂ 

,  (3.4) 

where 

 

 ( ) ( ) ( ) ( ) ( )f n
I n B n A n f n

n
∂

= − +
∂

,  (3.5) 

 ( ) ( ) ( ) ( )B n
A n g n d n

n
∂

= − −
∂

,  (3.6) 

 ( ) ( ) ( )
2

g n d n
B n

+
= ,  (3.7) 

 

and ( )f n  denotes the continuous form of the cluster concentration. In this way the number of 

equations is greatly reduced (from billions to several hundred).  
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3.2.2. Oblate Spheroid Model for an Oxide Precipitate 

As shown in Figure 3.1, our model generalizes oxide precipitate morphologies observed in 

experiments18 to that of oblate spheroids, which considers a gradual transition between spherical 

and plate-like precipitates24,31.  

 

                  

 

Figure 3.1: Oblate Spheroid geometry for modeling oxide precipitate shapes. 

 

Assuming that oxide precipitates are grown under diffusion-limited conditions, local 

oxygen monomer concentration profiles can be obtained by solving a steady state diffusion problem 

around an oblate spheroidal cluster. The governing equation is given by 

 

 2 0D C∇ = ,  (3.8) 

 

where C and D are the concentration and diffusivity of the monomer, respectively. In the oblate 

spheroidal coordinates ( , , )ξ η φ   eq. (3.8) becomes: 

 

 
( ) ( ) ( ) ( )( )

2 2
2 2

22 2 2 2
1 1 0

1 1
D C C Cξ ηξ η

ξ ξ η η φξ η ξ η

 ∂ ∂ ∂ ∂ + ∂
 + + − + =
∂ ∂ ∂ ∂ ∂+ + −  

.  (3.9) 
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The boundary conditions are: 

 

 ( ) 1C C= ∞ =r ,  (3.10) 

 ( ) 0C = =ir r ,  (3.11) 

 

where r  is the position vector measured from the center of the cluster, ir defines the cluster/matrix 

interface and 1C  is the monomer concentration in the bulk.  

The concentration profile is obtained by solving eqs.(3.9)-(3.11):  

 

 1 1
arccot
arccot iC C Cξ

ξ
= + .  (3.12) 

 

The growth rate is calculated by integrating the arrival flux of monomers over the capture 

surface area of the cluster (assumed to be the surface area of the spheroid)24: 

 

 

( )

( )
2

1/3
11

( )

1        =4
cosP

Cg n dA

R DC

ξ

β
π β

β
−

−

∂
= =

∂

−

∫ ir r

.  (3.13) 

 

The dissolution rate is given by: 

   

 
( )

2
1/3

1

1( ) 4 ( )
cos

GT
Pd n R DC nβ

π β
β

−
−

−
= .  (3.14) 

Here GTC  is the Gibbs-Thomson concentration around a cluster of size n: 
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 ( ) 1
( ) /exp

f
GT eq

B

G n nC n C
k T

 ∂ ∂
=  

 
,  (3.15) 

 

where 1
eqC   is the solubility limit of the monomer and fG  is the formation free energy of a cluster 

of size n. A thorough derivation of eq.(3.14)-(3.15) will be provided in the next section.  
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3.3. Principles of Detailed Balance and Quasi-

equilibrium 

The equilibrium condition for a distribution of clusters and monomers is defined by the 

condition that the net flux at each point between adjacent cluster sizes is zero64. This condition is 

an expression of detailed balance in a materially closed system: the only way to achieve  

( ) / 0dC n dt =  for all n in a closed system is by requiring64 ( ) 0J n = . Therefore, at equilibrium, 

the following relationship holds: 

 

 
( ) ( 1)

( 1) ( )

eq

eq

g n C n
d n C n

+
=

+
,  (3.16) 

 

where ( )eqC n  is the equilibrium concentration of clusters of size n in a materially closed system. 

Next the nature of this general equilibrium in closed systems is discussed briefly. The total free 

energy of a closed lattice containing a fixed number of monomers (or any other types of particles), 

totN , is given by65: 

 

 
max max

0 ( ) ln ln( ) ln ln
N N

f s s s s
i i i i i i

i i

N N N NG G X G i kT X i X X X X
i i i i

    = + − + − − − −        
∑ ∑ ,   (3.17) 

 

subject to the constraint that the total number of monomers is conserved so that 

  

 
maxN

i tot
i

iX N=∑ ,  (3.18) 
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where 0G  is a reference free energy, defined here as the free energy of a perfect lattice with the 

same total number of lattice sites, SN  . iX  is the number of clusters containing i monomers and 

maxN is the maximum possible cluster size considered in the system. The second term on the right-

hand side of eq.(3.17) represents the total internal free energy of formation for all clusters in the 

system, which includes enthalpy, and cluster vibrational and internal configurational entropy, i.e. 

                                              

 ( ) ( ) ( ) ( )f f f
vib confG i E i T S i TS i= − − ,  (3.19) 

 

where the angular brackets reflect the fact that each cluster can assume an ensemble of micro-

configurations66. The last summation in eq.(3.17) represents the translational (or mixing) entropy 

of the system, and reflects the number of ways that an ensemble of clusters of different sizes can 

be arranged within the lattice. It is important to distinguish this translational entropy from the 

internal configurational entropy of each cluster; the latter is defined here as the number of 

configurations that a cluster can attain per lattice site66. In other words, the translational entropy is 

the mixing entropy contribution that arises from assuming each cluster size to be a distinguishable, 

non-degenerate entity. The sum of this translational entropy plus all the cluster internal 

configurational entropies is the total system configurational entropy. 

 At equilibrium, the total free energy of a materially closed system is minimized subject to 

the constraint that the total number of monomers is fixed. An optimization problem can be 

formulated by defining an augmented free energy function as 67: 
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max max

max

0
ˆ ( )

      ln ln ln ln

     

N N
f

i i tot
i i

N
s s s s

i i i i i
i

G G X G i iX N

N N N NkT X i X X X X
i i i i

λ
 

= + + − 
 

    − + − − − −        

∑ ∑

∑ ,  (3.20) 

 

where the last term represents the vacancy number constraint and λ  is a Lagrange multiplier. At 

equilibrium, the derivatives of the augmented free energy with respect to the number of each cluster 

size are equal to zero and are given by 

 

 ( )max

ˆ
( ) ln 0 1,2, ,f s i

B
i i

N iXG G i k T i i N
X X

λ−∂
= − + = =

∂
 .  (3.21) 

 

The set of equations represented by eq.(3.21) provide relationships between system size, cluster 

size distribution, and cluster formation free energies. In other words, under the most general 

conditions, the formation free energy (and equilibrium concentration) of a given cluster size is a 

function of the monomer concentration as well as the concentrations of all other cluster sizes. 

Unfortunately, using eq.(3.21) to compute the formation free energies as a system of clusters 

evolves in time is too computationally intensive because the Master/Fokker-Planck equations 

governing the cluster size distribution must be solved simultaneously with eq.(3.21) at each time 

step. On the other hand, in most cases of interest for defect dynamics in silicon, the system is dilute 

and the entropic interaction between clusters can be neglected without significant error. This dilute 

system approximation is formally invoked by assuming that i siX N<<  in the second term of eq. 

(3.21) and therefore  

 ( ) lnf s
B

i

NG i k T i
X

λ= − .  (3.22) 
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Applying eq. (3.22) to the case of monomers i.e. 1i = , 

 

 1 (1)(1) ln (1) lnf f

s

X CG kT G kT
N

λ
ρ

= − − = − − ,  (3.23) 

 

and combining this result with the general form of eq. (3.22) gives 

 

 
(1)( ) ln ( (1) ln )

( )
f f

B eq

CG n k T n G kT
C n
ρ

ρ
= + + ,  (3.24) 

 

where ρ  is the concentration of lattice sites. After rearranging,  

 

 
( )( ) expeq nC n

kT
ψρ  = × − 

 
,  (3.25) 

 

where 

 

 ( ) log( (1) / (1)) ( )eq fn nkT C C G nψ = − + ,  (3.26) 

 

and ( )1C  and ( )1eqC  represent the actual bulk monomer concentration and solubility of the 

monomer, respectively. The first term in eq. (3.26) arises from the change in mixing entropy 

associated with the formation of a cluster of size n from n monomers, in a closed system that is 

infinitely dilute in all other clusters. The second term, ( )fG n , represents the internal free energy 

of formation of a cluster as defined already in eq. (3.19).  
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Rearranging eq.(3.26) by using eq.(3.25),  the concentration of cluster of size n in 

equilibrium with a solution of monomers is given by 

 

 
(1) ( )( ) exp
(1)

n f
eq

eq

C G nC n
C kT

ρ
  

= −  
   

.  (3.27) 

 

Therefore, the detailed balance condition in eq. (3.16) can be rewritten as 

 

 
( ) ( 1) (1) ( 1) ( )exp

( 1) ( ) (1)

eq f f

eq eq

g n C n C G n G n
d n C n C kT

  + + −
= = −  +    

.  (3.28) 

 

Note that the entire discussion above was based on the assumption that equilibrium conditions 

prevail and that 0nJ =  for all n. Clearly, this does not necessarily hold for systems that are far 

away from equilibrium. In order to apply the formalism presented here to any system (whether at 

steady-state or not) it is necessary to make a quasi-equilibrium assumption, whereby clusters are 

assumed to respond instantaneously to their surroundings.  

One way to think about quasi-equilibrium is to consider the monomer concentration as an 

external system driving force – i.e. the system (which consists of a distribution of clusters of various 

sizes) acts to equilibrate with respect to a given imposed monomer concentration. Thus, in a steady-

state setting in which the monomer concentration is spatially variable, the cluster size distribution 

everywhere is equilibrated with respect to the local “imposed” monomer concentration. Under 

transient conditions, the cluster size distribution evolves in time in response to local changes in the 

imposed monomer concentration changes. A transient system is said to be in quasi-equilibrium if 

it responds rapidly to changes in the monomer concentration and is able to achieve equilibrium 

with respect to the instantaneous monomer concentration for all time. Quasi-equilibrium is 
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analogous to the commonly applied quasi-steady state assumption. In the following, quasi-

equilibrium is assumed to always be valid and eq.(3.28) is used to ensure that the forward and 

backward rates satisfy detailed balance.  
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3.4. Free Energy Model for Oxygen Precipitates 

Throughout Chapter 3, oxide precipitates are always assumed to be comprised of 

amorphous SiO2. Accordingly, the oxide precipitation process is schematically represented here by  

 

 12 2n V nP Si O V P stressγ ++ + + ↔ + ,  (3.29) 

 

in which a precipitate, P, containing n oxygen atoms grows by “oxidizing” one matrix silicon atom 

with two oxygen atoms to create a unit of SiO2 and then partially relaxing the resulting stress by 

absorbing at the matrix-precipitate interface Vγ  vacancies per oxygen atom (2 Vγ  in total). Note 

that the process of vacancy absorption is thermodynamically equivalent to emitting a silicon 

interstitial at the precipitate-matrix interface. The equivalency arises because of the process of 

interstitial-vacancy (IV) recombination in the bulk matrix, I V Si+ → . Although we do not 

consider the kinetics of point defect recombination in the present work, self-interstitial emission 

and vacancy absorption are equivalent in practice only if recombination is fast relative to the oxide 

precipitation process. In the remainder of this thesis, we consider vacancy absorption as the only 

point-defect mediated stress relief mechanism.  

The overall function for describing the free energy of an oxide precipitate is given by: 

 

 c s iG G G G= + + .  (3.30) 

 

The following definitions apply: the chemical energy ( cG ) is given by 

 

 ln lnc O V
B V Beq eq

O V

C CG nk T n k T
C C

γ= − − ,  (3.31) 
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where the first two terms represent the difference between the chemical potential of oxygen atoms 

and vacancies in the matrix and oxide phases, respectively. These two terms also indicate that 

removal of oxygen atoms/vacancies (or addition of self-interstitials) from the matrix to the oxide 

precipitate results in a change of mixing entropy. In other words, if OC (or VC ) is above 

equilibrium, the system tends to reduce the OC (or VC ) to reduce the system free energy and it 

would be energetically favorable to bring oxygen atoms/vacancies into precipitate from the matrix.  

The strain energy ( sG ) can be calculated by68: 

 

 
( )
( )

21
2 p

K
V V

K
ϕ β
ϕ β

∗

∗∆
+

,  (3.32) 

 
( )

2
2

2
SiO Si V Si

Si V Si

V V V
V

V V
γ

γ
− +

∆ =
+

,  (3.33) 

 ( ) ( )( )

( ) ( )
1111 1122 3333 1133 3311

1111 1122 3333 3333 1133 3311 1133 3311

1 1 2
21 2 1 / 3 2
3

K S S S S S

S S S S S S S S
ϕ β

+ − − +  =
 + − − + − − − − 
 

,      (3.34) 

  

where pV  is the volume of the precipitate, SiV and 
2SiOV  is the volume of a Si and SiO2  on a per Si 

atom basis respectively,  *K  is the bulk modulus of the oxide precipitate, β  is the aspect ratio of 

the oblate spheroidal oxide precipitate, K  is the bulk modulus of the silicon matrix and ijlmS  is the 

Eshelby tensor69-71 for a spheroidal precipitate in a cubic symmetric silicon matrix. A more 

thorough derivation of eqs.(3.32)-(3.34) will be provided in Chapter 5. 

The interface energy ( iG ) is given by: 
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222 22 3

2 2

1 1 12 ln
11 1 1P

i C
O

C

eG R
Xe

ββπ β σ
β β

−    + − +  = +     +− − −    
.  (3.35) 

 

Here Ce  is the constrained strain and X  is given by: 

 

 
41
3

X
K
µ

= + ,  (3.36) 

 

where µ  is the shear modulus of Si . Oσ (the primary fitting parameter in this model) is the Si/SiO2 

interface energy per area.  

Finally, the complete expression of the free energy (eV) is given as 

 

 

( ) ( )
( )

2

222 22 3
2 2

1, , ln ln
2

1 1 12 ln
11 1 1P

Z
O V

V B V B Peq eq Z
O V

C
O

C

K CC CG n nk T n k T V V
C C K C

eR
Xe

β
γ β γ

β

ββπ β σ
β β

∗

∗

−

= − − + ∆
+

    + − +  + +     +− − −    

.  (3.37) 

 

A Generalized Equilibrium Model (GEM) is used in our model assuming oxide precipitates 

always maintain thermodynamic equilibrium with their environments (monomer concentrations 

and temperatures). In this way the optimal vacancy fraction, Vγ , and aspect ratio, β , of oxide 

precipitate of each size are determined via 2D minimization of the free energy. 
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The minimization is achieved by solving: 

 

 

( , , ) 0

( , , ) 0

V

V

V

G n

G n

γ β
γ
γ β
β

∂
=

∂
∂

=
∂

.  (3.38) 

 

The constraints for the minimization is: 

 

 
0 0.625
0 1

Vγ
β

≤ ≤
≤ <

.  (3.39) 
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3.5. Brief Description of the Models for Voids and Single 

Point Defects 

The void model is based on the existing model framework taken from the PhD thesis of 

Frewen72. The rate equations in the void model are the same as eqs.(3.2)-(3.7) discussed in Section 

3.2.1. However in Frewen’s model72 a reaction-limited kinetic model (RLA) is used for to perform 

the parametric studies for void physics. The RLA assumes that there exists an additional free energy 

barrier for the clustering event as shown below. 

 

          

    (a)                                                                            (b) 

 

Figure 3.2: RLA Model: free energy profiles for void growth. (a) Increase in free energy, (b) 

decrease in free energy. mE∆  represents the energy barrier for diffusion. 

 

The free energy (eV) of a void as a function of T is given by72:  

 

 ( ) 7 2 4 2/3, ( 2.01 10 2.23 10 2.78 2.224 _ )  G n T T T shift fac n− −= − × − × + + × ,  (3.40) 

 

where _shift fac (a fitting parameter) is a shift in the surface energy of a void72. 

 

n,1

n+1

(n+1)*
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In our model a diffusion-limited aggregation framework is used, which does not assume 

the existence of the free energy barrier. Consequently parameters in Frewen model such as the 

_shift fac  for the void, equilibrium concentrations and diffusivities of vacancies and interstitials  

cannot be used directly and a parameter fitting similar to the one discussed in Frewen thesis72 was 

performed to find the optimal parameters. The fitting is done by our colleague Andreas Sattler at 

Siltronic.  

All monomer species, interstitial oxygen (O), vacancy (V) and interstitial silicon (I), are 

assumed to be diffusively mobile. Currently the reactions considered in the model include cluster 

aggregation/dissolution as described by eq. (3.1) for all monomers species and Frenkel pair 

formation/recombination for vacancies and interstitials: 

 

 V I Si+ ↔ ,  (3.41) 

 

Consequently the governing equations for O, V and I are given by: 

 

 ( ) ( )
max2 30

2 2 31

OnO
O O O O

Cv C D v nC n dn nf n dn
t z z t z

∂∂ ∂ ∂ ∂     + = + + +     ∂ ∂ ∂ ∂ ∂      ∫ ∫ ,  (3.42) 

 ( ) ( )

( ) ( ) ( ) ( )

max

max

2

2

30

2 31

30

2 31

( )

                       

                       

O

O

eq eqV
V V IV I V I V

n

V V

n

V O V O

Cv C D k C C C C
t z z

v nC n dn nf n dn
t z

v n n C n dn n n f n dn
t z

γ γ

∂∂ ∂ + = − − ∂ ∂ ∂ 
∂ ∂   + + +   ∂ ∂   
∂ ∂   + + +   ∂ ∂   

∫ ∫

∫ ∫

 , (3.43) 

 
2

2 ( )eq eqI
I I IV I V I V

Cv C D k C C C C
t z z

∂∂ ∂ + = − − ∂ ∂ ∂ 
.  (3.44) 
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Here v denotes the crystal pull rate ( 0v =  during wafer anneal), XC  and eq
XC  denote the 

concentration and solubility of the species of X(X=O, I or V) respectively, XD  denotes the 

diffusivity of the species of X (X=O, I or V) . ( )XC n  and ( )Xf n  X(X=O,V) denote the discrete 

form and the continuous form of concentration of a cluster species that contains n oxygen or 

vacancy atoms, respectively. max
Xn X (X=O,V) denotes the maximum cluster size included in the 

model. IVk  is the rate coefficient for recombination of interstitials and vacancies given by 

( )IV IV V Ik D D= Λ + . Note that the last two terms in eq.(3.42) represent the sink/source terms due 

to the aggregation/dissolution of oxide precipitates. The last four terms eq.(3.43) represent the 

sink/source term due to aggregation/dissolution of voids and vacancy absorption/emission caused 

by oxide precipitation. The model can be expanded by considering complexes formation which will 

not be discussed in this thesis.  

The boundary conditions for single point defects are specified as the following. For crystal 

growth, at the crystal melt/solid interface interstitial oxygen concentration is set to be a constant. 

On the crystal top, no-flux condition is applied. For wafer anneal in an inert ambient, on the wafer 

surface, concentrations of vacancies and interstitials are assumed to be at their equilibrium and 

interstitial oxygen concentration is assumed to be a constant. At the center of the wafer, no-flux 

condition is applied due to axial symmetry. 
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3.6. Key Numerical Methods 

  Sections 3.2 to 3.5 provide the full equation system and they can be solve numerically in 

our model. Details of key numerical methods are provided in this section. A schematic 

representation of the numerical integration scheme is shown in Figure 3.3. The monomer and 

cluster equations are integrated separately and sequentially, rather than using a fully implicit 

approach (rightmost panel in Figure 3.3). The sequential solution scheme is an operator-splitting 

approach73 because equations are grouped according to whether they represent diffusing 

(monomers) or non-diffusing (cluster) species.  

The primary reason for not using the fully implicit approach is that it requires the 

calculation of a large Jacobian matrix in which the derivative of every equation must be evaluated 

with respect to every species. The challenges related to this Jacobian matrix are two-fold: the matrix 

is large and ill-conditioned and is therefore computationally expensive to factor multiple times at 

each time step. More critically, the evaluation of the various derivatives, which must be carried out 

numerically due to the complexity of the equations, can severely limit the convergence behavior of 

the Newton method used to solve the equations. Once again, the difficulty in evaluating accurate 

derivatives stems from the large range of concentrations across all species. 

First the equation systems are discretized in time and space by using finite difference 

scheme. Based on eqs. (3.1) to (3.3), the balance equations for clusters are now represented by: 

 

 ( ) ( ) ( )1XV C n J n J n
t z
∂ ∂ + = − + ∂ ∂ 

,  (3.45) 

 

where X represents the species index, t is the time, z is the position, ( )XC n  is the cluster 

concentration of size  n, and ( )J n  is the net flux function between cluster sizes n-1 and n given 

by: 
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 ( ) ( 1) ( 1) ( ) ( )X X X XJ n g n C n d n C n= − − − .  (3.46) 

 

All of the coupling between the cluster and monomer equations is contained within the growth and 

dissolution rates, ( )( )1 ,Xg C n   and ( )( )1 ,Xd C n . In other words, the growth and dissolution 

rates are complex functions of the monomer concentrations. Note that, as is well-established in 

Section 3.2.1, the Master equations for larger cluster sizes are usually replaced by a single Fokker-

Planck equation (FPE) in which the size becomes a continuous independent variable. The Fokker-

Planck equations are discretized by using CC70 method74 (more details of the derivation can be 

found in Frewen’s thesis72)  However, the FPE does not generate any additional dependencies 

between equations, and all the numerical issues can be described on the basis of the Master 

equations, so the FPE is not considered explicitly here. The monomer equations are schematically 

represented by 

 

 ( )(1) (1) ( (1), ( ))X X X X XV C D C R C C n
t z
∂ ∂ + = ∇ ⋅ ∇ + ∂ ∂ 

,  (3.47) 

 

where R represents a set of reaction and aggregation processes between monomers and various 

cluster species,  ( )XC n . 

 The integration scheme is shown Figure 3.3. The schematic represents the operations 

required to advance the simulation from the (previous) time point, nt  to the (current)  time 1nt + . 

The primary difference between this integration scheme and previous schemes developed by Mori73  

is that the cluster and monomer equations are now both embedded within a single Newton loop. In 

the first iteration of this outer loop (which is denoted as ‘Step 4’ in Figure 3.3), the growth and 
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dissolution rates are computed using the monomer concentration at the previous time point, (1)nt
XC

. The cluster fluxes are then represented by  

 

 ( )( ) ( )( )( ) 1 , 1 ( 1) 1 , ( )n nt t
X X X X X XJ n g C n C n d C n C n= − ⋅ − − ⋅ ,  (3.48) 

  

and the Master equations by 

 

 ( ) ( )( ) ( )( )1 , 1 , 1n nt t
X X XV C n J C n J C n

t z
∂ ∂ + = − + ∂ ∂ 

  (3.49) 

 

The expressions above emphasize the fact that the cluster equations are explicit in the monomer 

concentrations. In this context, the monomer concentration at the previous time point should be 

regarded as an initial guess for the monomer concentration at the new time.  

All of the coupling next eq. (3.49) is integrated forward from time nt  to 1nt + , using the 

Implicit Euler method, i.e. the cluster concentrations on the right-hand side of the equation are 

evaluated at time 1nt + . Note that the cluster system of equations is linear in the cluster 

concentrations – no Newton iterations are required for this step. This step then provides cluster 

concentrations at the current time point, i.e. 1 ( )nt
XC n+   so that 

 

 ( )( ) ( )( )1 1 1 1 1 1( ) 1 , 1 ( 1) 1 , ( )n n n n n nt t t t t t
X X X X X XJ n g C n C n d C n C n+ + + + + += − ⋅ − − ⋅ ,  (3.50) 

 

and 
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 ( ) ( )( ) ( )( )1 1 1 11 , 1 , 1n n n nt t t t
X X XV C n J C n J C n

t z
+ + + +

∂ ∂ + = − + ∂ ∂ 
,  (3.51) 

 

where the fact that the growth/dissolution rates and cluster fluxes are now fully implicit with respect 

to both cluster and monomer concentrations is denoted by the notation  1 1,n nt t
X Xg d+ +  and 1ntJ + . 

 

 

 

Figure 3.3: Schematic illustration of semi-implicit operator splitting approach for time integration 

of monomer and cluster equations. 
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In Step 3 in Figure 3.3, the consumption/source term of monomers come from the cluster 

evolution is computed using the expression 

 

 
max

2

1 1 1
1

( ) ...

1 ( ) ( ) ( )
2

match

match

n

X

n

j j j X j j X j
j n

B n V C n
t z

n n n V f n n V f n
t z t z+ + +

= +

∂ ∂ = + + ∂ ∂ 
  ∂ ∂ ∂ ∂    − + + +     ∂ ∂ ∂ ∂     

∑

∑
,  (3.52) 

 

where ( )XC n  represents discrete clusters, nj is the continuous cluster size variable used in the 

Fokker-Planck equation, and ( )X jf n  represents the Fokker-Planck concentrations.  

The overall form of the monomer balance equations will now be given by 

 

 1 1 1 1(1) ( (1)) ( (1))n n n nt t t t
X X XV C A C B C

t z
+ + + +

∂ ∂ + = + ∂ ∂ 
,  (3.53) 

 

where A  represents non-cluster related processes and B is defined by eq.(3.52). Note that the 

apparent implicitness of B with respect to the monomer concentrations is only valid upon 

convergence of the entire procedure; up to that point, only approximations for the correct monomer 

concentration at the current time are available.  

As mentioned above, the preceding three steps are iterated within a Newton loop until 

convergence. The Newton loop only updates the monomer concentrations directly. The cluster 

problem can be considered to be a sub-function that must be evaluated in order to fully evaluate 

the terms in the monomer equation. To make this more apparent, we denote the Newton loop by 

 

 (1)J C Rδ⋅ = − , (3.54) 
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where R is the residual defined for eq.(3.53), J is the Jacobian matrix corresponding to derivatives 

of R with respect to the monomer concentrations, and (1)Cδ  is the update vector of all monomer 

of all species. The required evaluation of J is the chief drawback of the integration scheme. Because 

1ntB +  (see eq. (3.52)XXX) is a very complicated, nonlinear function of the monomer concentration, 

the Jacobian matrix elements are evaluated numerically. The accuracy of the numerical derivatives 

is an important constraint on the stability of the scheme. Upon convergence of the Newton loop, 

the method becomes essentially fully implicit with respect to both monomer and cluster 

concentrations.  

An adaptive time-stepping approach is employed to increase efficiency. During the 

simulations, the time step is adjusted on the error analysis using a method discussed in Wang30 

thesis. In this method, the time step is adjusted by performing two time integrations. The first is 

with the existing step, while the second is based on two half-steps. The solution norms are then 

compared and the new time step is given by the expression 

 

 
1/2

min ,
(2*0.5 ) ( )new old

X X
t t

C t C t
ε δ

  
 ∆ = ∆ ×    ∆ − ∆  

, (3.55) 

 

where ε  is a user specified tolerance and eq. (3.55) controls the error as generated by the Euler 

method but restricts the maximum time step increase to a factor of δ (user defined) for stability 

reasons. 
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4.  Regression and Mechanistic Analysis 
Using the Oxide Precipitation Model 

  

4.1. Experimental Data for Parametrizing and Validating 

Oxide Precipitation Model 

In this section a benchmark for establishing the prediction capability of our continuum 

oxide precipitation based on a subset of the available experimental data is carefully defined. This 

includes (1) 7 crystal growth performed by Erich Dornberger75 in which the void precipitate 

distribution is known while the as-grown oxide precipitate distribution is not precisely known but 

can be bounded by subsequent wafer treatments and (2) a total of 13 wafer anneal experiments 

performed by Gudrun Kissinger76, in which the final oxide precipitate density was measured for 

each case.  

  The 7 crystal growth experiments are denoted as 6A, 6C, 6E, 8A, 8B, 8D and 8E based on 

the nomenclature used in the Ph.D thesis of Dornberger75. No visible oxide precipitates (those that 

are larger than detect limit77,78 20~40nm) should be observed at the end of each simulation. The 

physics behind this is that voids and oxide precipitates compete with each other for absorbing 

vacancies in order to grow. Since the vacancy aggregation temperature (or nucleation temperature) 

is higher than the oxygen-vacancy binding temperature, as the temperature decreases during crystal 

growth, voids always win the competition and suppress oxide precipitates formation.  

A schematic representing the 13 wafer annealing experiments is shown in Figure 4.1. 

Specifically, wafers are subjected to an initial RTA temperature between 1100-1250 °C for 30s 

after which the temperature is rapidly decreased to 500 °C at a rate of 75 K/s. Subsequently, the 

temperature is ramped-up at a rate of 100 K /min, a nucleation anneal is applied at a temperature 

between 650-1000 °C for 4 to 16 hours, followed by a stabilization anneal at 780 °C for 0 or 3 

hours. Finally, the oxide precipitate density is measured after a 16 hour growth anneal at 1000 °C. 
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RTA temperatures, nucleation temperatures, and stabilization temperatures as well as the final 

oxide precipitate densities and initial oxygen concentrations from the 13 benchmark experimental 

data are summarized in Table 4.1. Note that experiments 7-13 are similar to the so-called 

“conventional anneals” performed by Kelton et al.14 because of the low RTA temperature. 

Throughout this section, it is assumed that no clusters of any kind are initially present and that the 

wafer thickness is 0.725 mm.  

 

 

Figure 4.1: Schematic representation of an example of RTA process for simulations.76     
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Experiment 
RTAT   (ºC) .nuclT  (ºC) .stablT   (ºC) Oxide Dens. 

(cm-3) 

Init. Oxygen Conc. 

 (cm-3) 

1 1200 800   (8h) NA 7.57e9 6.44e17 

2 1175 700   (8h) NA 4.34e8 6.41e17 

3 1200 1000 (8h) NA 8.18e7 6.44e17 

4 1250 800   (8h) NA 1.97e11 6.53e17 

5 1250 1000 (8h) NA 4.50e10 6.53e17 

6 1100 800   (8h) NA 1.00e7 6.4e17 

7 1100 700   (8h) NA 3.58e7 6.4e17 

8 1100   700   (16h) NA 1.18e9 6.65e17 

9 1100 700   (8h) 780 (3h) 5.57e8 6.40e17 

10 1100   700   (16h) 780 (3h) 4.00e10 6.44e17 

11 1100 650   (4h) 780 (3h) 5.17e8 6.40e17 

12 1100 650   (8h) 780 (3h) 1.37e10 6.41e17 

13 1100  650   (16h) 780 (3h) 5.87e10 6.44e17 

Table 4.1: Oxide precipitate densities and initial oxygen concentrations of the 13-experiment 

benchmark dataset selected from Kissinger’s database.76 
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4.2. Summary of Known Model Parameters 

In this section known model parameters is summarized. The equilibrium concentration 

(cm-3) of single interstitial O in silicon crystal as a function of temperature (T) is taken from the 

work of  Mikkelsen79: 

 

 22 1.527.28 10 expeq
O

eVC
kT

− = ×  
 

,  (4.1) 

 

Implicit in eq.(4.1) is a reference state for the oxygen because unlike the case for native point 

defects, oxygen atoms in silicon must come from an external source such as the dissolved silica 

crucible in the melt during CZ crystal growth75 or the oxide layer form on the wafer surface17 during 

wafer annealing. The diffusivity (cm2/s) of single interstitial O at 700 T C≥ °  is given by79 

 

 
2.530.13 expO

eVD
kT

− = ×  
 

,  (4.2) 

 

while the oxygen diffusivity at 700 T C< °  is given by80 

 

 7 1.527.33 10 expO
eVD

kT
− − = ×  

 
.  (4.3) 

 

The shift( _shift fac ) in the vacancy cluster energies, equilibrium concentrations and 

diffusivities of V and I as a function of temperature, were fitted to the crystal growth data of 

Dornberger75 by Andreas Sattler at Siltronic. 
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 2_ 0.06 /shift fac J m= ,  (4.4) 

 ( )22 3.864.97 10 exp 8.29 expeq
V

eVC
kT

− = ×  
 

,  (4.5) 

 ( )23 4.232.97 10 exp 8.47 expeq
I

eVC
kT

 = × − 
 

,  (4.6) 

 
0.300.00021 expV

eVD
kT

 = × − 
 

,  (4.7) 

 
0.720.223 expI

eVD
kT

 = × − 
 

.  (4.8) 

  

  The bulk modulus ( *K ) of the oxide precipitate is chosen to be 34.7 GPa81, the shear 

modulus (µ ) of silicon matrix is chosen to be 64.1 GPa30and the bulk modulus ( K ) of the silicon 

matrix is chosen to be 97.8 GPa82. 
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4.3. Data-Driven Approach for Si-SiO2 Interface Energy  

The primary fitting parameter in our model is Si/SiO2 interface energy ( Oσ ). If  a constant 

Oσ  is used, the best result (Figure 4.2) is obtained when Oσ =1.02 J/m2. However it fails to capture 

the dependence of oxide precipitate density on RTA temperature and nucleation anneal time. 

 

                                         
 

Figure 4.2: Constant interface energy (1.02 J/m2): final oxide density for 13 different benchmark 

experiments. Red squares – experiment (with error bars), open blue circles – simulation. 

 

The fact that the constant interface energy does not work indicates some physics associated 

with it might be missing. First of all when the size is small (n<20) a precipitate is not a continuum 

entity anymore. Thus the surface area of it cannot be described by a closed form expression and the 

continuum model for stress is not valid either. In this way a more complex model for interface 

energy that depends on the precipitate size is required to absorb corrections of this discreetness of 

small precipitates. Secondly, our interface energy function is also motivated by the atomistic 

simulation data of formation energies of small oxygen cluster from DFT calculation provided by 
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Kissinger and Dabrowksi (henceforth referred to as KD)83,84. Shown in Figure 4.3 (a) is a plot of 

the formation energies ( ( )f
KDE n ) for various oxygen-vacancy complexes as a function of the 

number of oxygen atoms and vacancies. These formation energies are referenced to a formation 

energy of 1.51 eV79 for the isolated interstitial oxygen atom in an otherwise perfect silicon lattice. 

If we interpret these formation energies (or free energies) in terms of the continuum quantities 

defined in eq.(3.37), then we can obtain an effective interface energy ( eff
Oσ ) for each oxygen-

vacancy cluster. The vacancy fraction, Vγ , is defined directly by the identity of the species e.g. 

0.5Vγ =  for O2V species. Assume all clusters to be spherical ( 1β = ) and both oxygen and 

vacancy concentrations are at equilibrium, the effective interface energy can be calculated by using 

the following expression: 

 

 
( )
( )

2
2 21 11( )

2 1 1

Z
f effc

KD P P OZ
c

K C eE n V V R
K C Xe

β
π σ

β

∗

∗

=  +
= ∆ +  + = + 

.  (4.9) 

 

The effective interface energies ( eff
Oσ ) for each of these species are then plotted in Figure 4.3 (b). 

Within our model framework, it seems that eff
Oσ not only depends on the size of an oxide precipitate 

but also depends on the vacancy content in the oxide precipitate. 
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        (a)                                                                            (b) 
 

Figure 4.3: Based on the formation energy data shown in (a), effective interface energy shown in 

(b) for small clusters (OnVm ) is computed by using the continuum expression of oxide precipitate 

free energy expression. 

  

Motivated by Figure 4.3, the interface energy model used to fit the above experimental data 

is defined according to the following function: 

 

 
( )5 7

1 4 6
2 3 8

5 25exp exp
0.5 (1 2 ) 0.5 2

V V
O

V

nv vnv v v
v v v

γ γσ
γ

− −  −   = + + + +      + −      
,  (4.10) 

 

where n is the cluster size, Vγ  is the number of vacancies incorporated into the oxide precipitate 

per oxygen atom, and 1v  is the limiting interface energy per unit area for large clusters. The third 

term, with fitting parameters, 2v , 3v , 4v , and 5v , represents another decaying function that is 

applied to larger clusters. The second term, which includes the fitting parameters, 6v , 7v , and 8v , 

represents a “lip” function that is applied for small clusters. These 8 parameters fully define the 

interface energy function. The optimal parameter set of Si/SiO2 interface energy was obtained from 
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the global regression (using the global optimization packages Dakota85, DE86 and PaGMO87) 

performed by Andreas Sattler at Siltronic.  

 

4.4. Optimization-Based Model Fitting 

The goal of the global regression is to find a combination of the 8 parameters ( 1 2 3 8, , ...v v v v

) that: (1) produce no visible oxide precipitates (precipitates that are smaller than detection limit77,78 

20~40 nm) after crystal growth and (2) minimize the difference between the predicted and 

experimental oxide precipitate densities for the 13 benchmark experiments. The deviation between 

model and experiment is quantified according to the objective functions:  

 

 
6

exp

exp

100 ,  X=(1,2,3...13)simX Xoxide
X

simX X

C C
C C

ε
−

= ⋅
+

  (4.11) 

and 

 
13

1
/13

X

oxide

X
ObjF ε

=

=∑ ,  (4.12) 

 

where exp XC  is the measured oxide precipitate density listed in Table 4.1 for benchmark experiment 

X (X=1,2,3,…,13), simXC  is the simulated oxide precipitate density for experiment X 

(X=1,2,3,…,13). 

Shown in Figure 4.4 is the evolution of the total objective function, ObjF, as a function of 

the number of iterations during the global optimization. The plot exhibits 3 approximately 

‘rectangular regions’, with almost flat minimum values, after about 100000 iterations. 
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Figure 4.4: Total objective function as a function of the number of iterations in global optimization.  

  

Based on the results shown in Figure 4.4, we proceeded to search for candidate good fit 

parameter set that corresponds to relatively low objective function value, while resulting in an 

oxygen-vacancy binding temperature that is lower than the vacancy aggregation one. In order to 

find such candidates, a systematic approach was used to explore the regression results. Shown in 

Figures 4.5 and 4.6 are 1D slices of the objective function with respect to each of the eight fitting 

parameters (as defined above). The slices in Figure 4.5 include objective function values up to 100, 

while those in Figure 4.6 are focused on values below 25. The latter cut-off was selected based on 

the fact that this is the objective function value at which many parameter combinations are no 

longer sampled. In other words, above this value many of the 1D slices show that any parameter 

value may be accessed, while below the accessible ranges are much tighter. 

As seen in Figure 4.6, all slices appear to exhibit local minima with respect to different 

parameter that correspond to objective function values below about 10. In order to better define 

these local minima, the slices are shown again in Figure 4.7 on an expanded scale. At this scale it 

is now possible to find regions of good fit (i.e. below objective function values of 10) that might 
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be satisfactory. First of all there exists a single region for all 8 parameters for which the objective 

function is less than 5 – all points in this region correspond to a single local minimum. The lowest 

objective function in this region is about 3.27, corresponding to an average deviation of about a 

factor of 3.6 per objective function element (i.e., the oxide precipitate density for each of the 

benchmark experiments). The parameter set that corresponds to this objective function value is 

referred to as the “BP” parameter set. The lowest objective function value at which all parameter 

slices show a local minimum that is distinct from the BP point is about 7.4-7.5, corresponding to 

an average deviation of about a factor of 4.7 per objective function element. It is in this local 

minimum that we find a distinct parameter set that we refer here to as “P1”. Another distinct 

parameter set that corresponds to a local minimum value 8.7, an average deviation of about a factor 

of 5 per objective function element, is defined as “P2”.  
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Figure 4.5: Objective function slices (ObjF<100) plotted against the 8 fitting parameters.  
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Figure 4.6: Objective function (ObjF<25) slices plotted against the 8 fitting parameters.  
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Figure 4.7: Objective function (ObjF<10) slices plotted against the 8 fitting parameters.  
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The parameter set that corresponds to the lowest objective function value in “P1” parameter 

basin (ObjF = 7.54) is analyzed in Figure 4.8. Figure 4.8 (b) shows that the measured oxide 

precipitate densities from experiments (red squares) and the predicted oxide precipitate densities 

from the simulations using the best-fit interface energy parameters (blue circles) are in overall good 

agreement across the benchmark experiments. Note that the experimental data itself is subject to 

uncertainty (assumed here to be approximately a factor of two as shown by the error bars). This 

parameter set will be used in our mechanistic analysis in Section 4.5. 

 

           
     (a)                                                                             (b) 
 

Figure 4.8: P1 Parameter Set (a) 2D contour plot of the interface energy as a function of vacancy 

fraction and log scale cluster size. (b) Final oxide density for 13 different benchmark experiments. 

Red squares – experiment (with error bars), open blue circles – simulation. 

 

1v  2v  3v  4v  5v  6v  7v  8v  9v  

0.301 7217.286 41.17262 0.041837 0.771268 0.097191 0.771437 10.5972 7.541061 
 
  

Table 4.2: Details of the optimal interface energy parameter used in our model.  
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As shown in Figure 4.8(b), P1 parameter set is able to capture most of the important 

experimental features of the Kissinger data including the dependence of oxide precipitates on RTA 

temperatures ( RTAT ), nucleation temperatures ( .nuclT ) and durations of nucleation anneal ( .nuclt ). 

There are only 2 simulation data points (index 6 and 10) that are lower than the experimental data 

points – moreover, benchmark experiment 6 corresponds to a sub-threshold oxide precipitate 

density (the threshold is about 7 31 10 cm−×  ) for which the specific oxide precipitate density is not 

considered in the objective function.  

The P1 parameter is also consistent with crystal growth oxide-void competition. An 

example is shown in Figure 4.9, the predicted oxide precipitate density is now very low (less than 

1×103 cm-3) at the detect limit (20-40 nm) but quite substantial for small sizes. The simulated void 

density (2.07×103 cm-3), however, is within the experimental data range75: 1.01×106 to 2.09×106 

cm-3. 

 

 

  

Figure 4.9: Density of oxide precipitates (green) and voids (blue) as a function cluster diameter for 

Dornberger crystal 8A.75  
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Next other distinct local minima (BP and P2 set) were also probed. The lowest objective 

function value for P2 set is about 8.75. The corresponding benchmark results are shown in Figure 

4.10. The overall agreement is quite good, however, as shown in Figure 4.11, the P2 parameter set 

is not consistent with crystal growth in that it predicts an oxide precipitate nucleation and growth 

process that consumes vacancies in advance of the onset of vacancy aggregation, leading to high 

oxide precipitate and low void distributions. In other words, P2 parameter set corresponds to 

‘overly aggressive’ oxide precipitate growth physics.  

 

                                          

 

Figure 4.10: Final oxide precipitate density for 13 different benchmark experiments. Red squares 

– experimental data (with error bars), open blue circles – simulation results. 
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Figure 4.11: Density of oxide precipitates (green) and voids (blue) as a function cluster diameter 

for Dornberger crystal 8A.75 

 

Finally the benchmark results generated by a BP parameter (ObjF = 3.27) are shown in 

Figure 4.12.  

 

                               

 

Figure 4.12: Final precipitate density for the 13 benchmark experiments. Red squares – 

experimental data (with error bars – see text), open blue circles – simulation results. 
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While the overall agreement is good, this parameter set again is not consistent with crystal 

growth data, i.e., predicts an early onset of vacancy trapping by oxygen and inhibits void formation 

as shown in Figure 4.13. 

 

                           

 

Figure 4.13: Density of oxide precipitates (green) and voids (blue) as a function cluster diameter 

for Dornberger crystal 8A.75 
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4.5. Mechanistic Analysis of Oxide Precipitate Evolution  

As shown in Table 4.1, oxide precipitate density turns out to be very sensitive to wafer 

annealing conditions such as RTA temperatures. This sensitivity can be explained by studying the 

evolutions of the oxide precipitate size distribution during the simulations of 13 benchmark 

experiments. In particular we aim to provide mechanisms that explains how the size distribution is 

coupled to the wafer annealing conditions. Shown in Figure 4.14 is a snap shot of an oxide 

precipitate size distribution (blue curve with symbols) and critical size (green vertical line) during 

a simulation, which is the main tool for our analysis. The basic idea behind our analysis is that 

precipitates are smaller than critical size will dissolve, those that are larger than critical size will 

grow.  

 

                            
 
Figure 4.14: A snap shot of an oxide precipitate size distribution (blue curve with symbols) and 

critical size (green vertical line) during a wafer anneal simulation. 
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The critical size is determined by calculating the oxide precipitate free energy (eq.(3.37) 

which is a function of temperature, monomer concentration and monomer equilibrium 

concentration for all oxide precipitate sizes, at a given time and locating the size at which the free 

energy was a maximum; examples free energy curves at various times during the benchmark 1 case 

are shown in the Figure 4.15 below.  

 

                     

 

Figure 4.15: Free energy curves based on eq. (3.37) at various times during the annealing process 

(benchmark 1). Blue – t=220s, red – t=10220s, green – t=39140s. 

 

During the simulations the location of the peak of the free energy is largely dictated by 

vacancy and interstitial oxygen concentrations. Thus monomer evolutions are also plotted to assist 

our analysis. Once the critical size ( critn ) is found, the stable cluster (clusters that are at and larger 

than the critical size) density can be calculated by the integral of the size distribution from the 

critical size to the maximum size: 
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where maxn is the maximum cluster size (chosen as 101 10× ) considered in the integration.  

Both critical size and size distribution are evolving with time and small changes in 

positions of critical sizes with respect to the density size distributions might lead to very different 

stable cluster density. Therefore a proper prediction of position of critical size with respect to size 

distribution is necessary to reproduce the experimental data. In the following sections we will use 

this idea to analyze the impacts of RTA temperature, nucleation anneal duration and nucleation 

temperatures on oxide precipitate density. 
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4.5.1. Impact of RTA Temperature on Oxide Precipitate 

Density  (Benchmark 1 vs. Benchmark 4) 

In this section oxide precipitate evolutions for two different RTA experiments

1200 RTAT C= °  and  1250 RTAT C= °  (benchmark 1 and benchmark 4) are compared and 

analyzed in detail in order to determine where the large differences in oxide precipitate evolution 

become apparent, and in particular why the oxide precipitate density is so sensitive on RTAT . Shown 

in Figure 4.17 is a sequence of snap shots of the oxide precipitate size distributions (curves with 

symbols) and the current values of the critical sizes (vertical lines) from two simulations (red-

1200 RTAT C= °  and blue- 1250 RTAT C= ° ). These snap shots are taken at 10 different time points 

(marked by symbols a, b, c, d, e, f ,g, h, i and j on Figure 4.16). Note that the multiple panels in 

Figure 4.17 are split into small groups (separated by text and other figures) for convenience and 

clearer discussion.  

 

       

 

Figure 4.16: Schematic representation of processes: red lines- 1200 RTAT C= ° ; blue lines-

1250 RTAT C= ° . The time points at which the snap shots are taken are marked by a, b, c…to  j. 
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In addition stable oxide precipitate density (Figure 4.18) and monomer concentration (Figure 4.19 

and 4.20) evolutions are also plotted as a function of time for both cases to assist the analysis. 

The first two snapshots in Figure 4.17 show the system at time points a and b. 

 

        
(a)           (b) 
 

Figure 4.17: Oxide precipitate size distribution (curves with symbols) and critical size (vertical 

line) at (a) t=40s (bottom of ramp-down from RTAT ), (b) t=220s (top of ramp-up to nucleation 

anneal). Red lines- 1200 RTAT C= ° ; blue lines- 1250 RTAT C= ° . 

 

At this early stage oxide precipitate size distributions are limited to small clusters. By the 

time the ramp down from the initial RTA temperature is complete (Figure 4.17(a)), the critical sizes 

for both cases are n=2 (the lowest possible value), reflecting a large supersaturation of both 

vacancies and oxygen monomers that are confirmed in Figures 4.19 and 4.20. During the 

subsequent ramp-up, the critical sizes increase for both cases as the vacancy supersaturation 

decreases. By the time the first ramp up is complete (Figure 4.17(b)), a small difference in critical 

sizes (n=24 for 1200 RTAT C= °  case and n=20 for 1250 RTAT C= °  case) is created. The smaller 

critical size in the 1250 RTAT C= ° case is a result of higher vacancy supersaturation. This higher 
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supersaturation is created due to the fact that a factor of 3 higher initial (equilibrium) vacancy 

concentration is generated by the higher temperature at the very beginning of the anneal. The small 

difference in critical sizes between 2 cases, however, leads to about two order-of-magnitude 

difference in the stable density at time point b (as shown in Figure 4.18), which is a direct 

consequence of large relative concentration of clusters of different sizes (Figure 4.17(b)). Note that 

the relative concentration (or the shape of the size distribution) is determined mainly by the 

interface energy model. As shown in Figure 4.18, while a difference between the two cases is 

already apparent following the first ramp-up to the top to nucleation anneal at point b, the nucleation 

anneal leads to further divergence between the two cases. Consequently snapshots taken after time 

point b during the nucleation anneal at 800 °C are shown next in Figure 4.17 (c-f) to analyze the 

divergence. Up to t=2220s (point c), the critical size stays at n=24 for 1200 RTAT C= °  case and 

n=20 for 1250 RTAT C= °  case because the vacancy and oxygen monomer concentrations are 

almost constant. Shortly after this point, the vacancy concentration in the 1250 RTAT C= ° case 

suddenly drops rapidly due to the fact that the oxide precipitate population is now sufficiently large 

to consume a substantial amount of the vacancies. The result is a strong undersaturation of the 

vacancy population and thus the critical size in the 1250 RTAT C= ° case start increasing. By 

t=5220s (point d), the critical size has increased to 32. By t=10220s (point e), the critical size in the 

1250 RTAT C= ° has already increased to 60. In contrast, however, a weak supersaturation persists 

in the 1200 RTAT C= ° case and the critical size stays at n=24 until the later stage of the nucleation 

anneal when its oxide precipitates also become sufficient enough to consume more vacancies. By 

t = 29020s (point f), the critical size for both case has reached n=60. 

 Also can be observed in Figure 4.17(c-f) is that the difference in critical size evolution 

start changing the oxide precipitate distributions qualitatively. Note that although the critical size 
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increases more rapidly in the 1250 RTAT C= ° yet it is slow enough to maintain a high stable cluster 

density throughout the nucleation anneal and keep its advantage over the 1200 RTAT C= ° case. 

 

     
(c)                                 (d) 
 

   
(e)                   (f) 
 

Figure 4.17: Oxide precipitate size distribution and critical size (vertical line) at various points 

during the nucleation anneal (c) t=2220s, (d) t=5220s, (e) t=10220s, and (f) t=29020s. Red lines-

1200 RTAT C= ° ; blue lines- 1250 RTAT C= ° . 
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Figure 4.18: Concentration of stable oxide precipitate clusters (those at or above the critical size) 

as a function of time for (a) red lines- 1200 RTAT C= °  and (b) blue lines- 1250 RTAT C= ° . 

 

We now consider the evolution of the oxide precipitate population and critical sizes during 

the final growth anneal at 1000 °C; snapshots are shown in Figure 4.17(g-j). The divergence 

between 2 cases continues: the first snapshot at t=29140s (point g), which corresponds to the top 

of the ramp-up to the growth anneal, shows a clear difference between the two cases. For both case 

the overall oxide precipitate distribution have already separate into two distinct portions right at the 

critical size. From this point onwards, the supercritical portion of the distribution grows steadily 

towards larger sizes, while the subcritical portion achieves a steady-state profile at t=49140 (point 

h). The 1250 RTAT C= °  case, in which the critical cluster size is always larger, become 

qualitatively different after 59140s (point i). As the critical size continues to evolve towards larger 

values the subcritical distribution does not dissolve, leading to a “flatter” oxide precipitate 

distribution with only a weak peak at large size (as shown Figure 4.17 (j)).  
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(g)                      (h) 
 

    
 (i)         (j) 
 
 

Figure 4.17: Oxide precipitate size distribution and critical size (vertical line) at various points 

during the nucleation anneal (g) t=29140s, (h) t=49140s, (i) t=59140s, and (j) Final time point. Red 

lines- 1200 RTAT C= ° ; blue lines- 1250 RTAT C= ° . 
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Figure 4.19: Vacancy concentration (left: symbols) and supersaturation (right: dashed lines) as a 

function of time for (a) 1200 RTAT C= °  (red) and (b) 1250 RTAT C= °  (blue). Dashdot black line 

shows the equilibrium vacancy concentration. 

 

                                        

 

Figure 4.20: Interstitial oxygen concentration (left: symbols) and supersaturation (right: dashed 

lines) as a function of time for (a) 1200 RTAT C= °  (red) and (b) 1250 RTAT C= °  (blue). Dashed 

black line shows the oxygen solubility limit. 
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4.5.2. Impact of Duration of Nucleation Anneal on Oxide 

Precipitate Density (Benchmark 11 vs. Benchmark 13) 

In this section the issue of strongly increasing oxide precipitate density with increasing 

duration of nucleation anneal (benchmark 11 and benchmark 13 case) will be studied. Our aim is 

to solve the puzzle of the two order-of-magnitude increase in oxide density when the duration of 

nucleation anneal is increased from 4h to 16h:  is it due to an increase in nucleation rate during 

nucleation anneal or is it due to a milder dissolution after nucleation anneal? Once again we 

compare the oxide precipitate size distribution and the critical size evolution for both situations in 

an attempt to determine what the important factors are. In this analysis, however, snap shots of 

oxide precipitate size distributions and critical sizes from two simulations (red- . 4nuclt h=  and blue-

. 16nuclt h= ) are not analyzed at the same time points but at the same “end points” with respect to 

its own process. They are marked by a1 and a2 (end point of the nucleation anneal), b1 and b2 (end 

point of the stabilization anneal) and c1 and c2 (end point of the growth anneal) in Figure 4.21. 

 

 

Figure 4.21: Schematic representation of processes: red lines- . 4nuclt h= ; blue lines- . 16nuclt h= . 

The time points at which the snap shots are taken are marked by a1, a2, b1, b2, c1 and c2. 
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Obviously the evolutions for the two cases are exactly the same up to the time point a1 

(t=14528s). After point a1, temperature in the . 4nuclt h=  case increases to the stabilization 

temperature while temperature in the . 16nuclt h=  stays at . 650 nuclT C= ° for another 12 hours until 

point a2 (t=57806s). In Figure 4.22(a), snapshots at a1 point (t=14528s) for . 4nuclt h= case and at 

a2 point t=57806s for . 16nuclt h=  case are compared. The effect of longer .nuclt during nucleation 

anneal is straightforward:  as can be seen in the plot of stable cluster density evolution (Figure 

4.23), 4 times longer .nuclt creates about a factor of 4 more oxide precipitates at time point a2 and 

leads to more vacancy consumption (or lower vacancy superasaturation). Accordingly the critical 

size increases and more larger oxide precipitates are formed. The end result is a “flatter” size 

distribution at point a2. 

Next as anneal proceeds to the end of the stabilization anneal, the vacancy supersaturation 

decreases more and the critical size “swap” through a relatively larger portion of the distribution 

making a substantial amount precipitates to dissolve at the end of the stabilization anneal (at point 

b1 in the . 4nuclt h=  and point b2 in the . 16nuclt h= case). This dissolution is confirmed in Figure 

4.23 as both cases exhibit a sudden and steep decline in the density of stable clusters. Interestingly, 

compared to the . 4nuclt h=  case (the critical size increases from 20 to 46), the . 16nuclt h=  case 

exhibits a larger increase in the critical size (from 40 to 277) but a much smaller stable cluster 

density drop from the end of the nucleation anneal (a2 point) to the end of the stabilization anneal 

(b2 point). Again the magnitude of the drop in stable density as the critical size increases is a direct 

consequence of the relative concentration of clusters of different sizes, which is governed by the 

Si/SiO2 interface energy. Returning to the question posed at the beginning of this section, it is clear 

that the two orders of magnitude difference is created due to the dissolution of the already formed 

precipitates in the . 16nuclt h=  case instead of the increase in nucleation rate.  
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  (a)       (b) 
 

Figure 4.22: Oxide precipitate size distribution and critical size (vertical line) at (a) red-a1 point 

t=14528s and blue-a2 point t=57806s; (b) red-b1 point t=25406s and blue-b2 point t=68606s. 

 

 

 

Figure 4.23: Density of clusters with size at or greater than the critical size as a function of time. 

Red- . 4nuclt h= , blue - . 16nuclt h=  . 
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 Finally as shown in Figure 4.24 at the end of each process (at point c1 or at 83138s for 

. 4nuclt h= case and at point c2 or at t=126338s for . 16nuclt h=  case),  the . 16nuclt h=  case now has 

a much larger critical size than the case. Recall that the increase in the critical size at later times 

(during the growth anneal) is due to the consumption of oxygen monomers.  

 

                          

 

Figure 4.24: Oxide precipitate size distribution and critical size (vertical line) at end of process: 

Red lines-at t=86138s for case . 4nuclt h=  ; blue lines- at t=126338s for case . 16nuclt h= . 

 

 

 

 

 

  

Log Size (nO)

Lo
g

D
en

si
ty

(c
m

-3
)

0 2 4 6 8 10
-30

-20

-10

0

10

20



103 
 

4.5.3. Impact of Nucleation Anneal Temperature on Oxide 

Precipitate Density (Benchmark 1 vs. Benchmark 3) 

In this section we study the issue of the reducing oxide precipitate density when the 

nucleation temperature ( .nuclT ) is increased from 800°C (benchmark 1) to 1000 °C (benchmark 3) 

for the 1200 RTAT C= ° case. The comparative analysis of the oxide precipitate size distribution 

and the critical size evolution is repeated here. Shown in Figure 4.26 are snap shots of oxide 

precipitate size distributions and critical sizes from two simulations (red- . 800 nuclT C= °  and blue- 

. 1000 nuclT C= ° ) at 5 different time points (marked by symbols a, b, c, d and e on Figure 4.25). 

To assist the analysis, evolution of the stable oxide precipitate density (Figure 4.27) and the 

monomer concentration (Figures 4.28 and 4.29) as a function of time for both cases are also plotted. 

 

         

Figure 4.25: Schematic representation of processes: red lines- . 800 nuclT C= ° ; blue lines-

. 1000 nuclT C= ° . The time points at which the snap shots are taken are marked by a, b, c, d and e. 
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Obviously the evolutions for the two cases are identical up to the time point a (t~220s) at 

which the temperatures for the 2 cases start deviating. The first two snapshots in Figure 4.26 show 

the distributions at the time points a and b. At t=220s (a), the critical size for both cases is at the 

same value (n=24) and the distributions are identical. After this time point, as the temperature 

continues to increase above 800 °C in the . 1000 nuclT C= ° case, the higher temperature is causing 

the supercritical part of the distribution to evolve more rapidly. Thus, as shown in Figure 4.28, a 

large amount of vacancies are consumed by oxide precipitates and the vacancy supersaturation 

decreases very quickly. The decrease in the supersaturation then leads to an increase in critical size. 

By t=340s (b), however, the critical size in the . 1000 nuclT C= ° case has already increased to n=60 

(still at n=24 for the . 800 nuclT C= °  case). In fact the early “burst” in the growth of precipitates in 

the  . 1000 nuclT C= °  case consumes almost all of the accessible vacancies (those that are above 

eq
VC  ) and prohibits the system from forming new precipitates in the later stage of the anneal. This 

is confirmed in Figure 4.27(a) as the stable precipitate density profile (blue line) becomes flat after 

time point b. In contrast, oxide precipitates in the . 800 nuclT C= ° case consumes vacancies more 

slowly and allows new precipitates to form continuously- the red line in Figure 4.27(a) is still 

increasing after time point b. 

The divergence between two cases continues at t=10220s (c) during nucleation anneal, 

where it is now observed that the . 1000 nuclT C= °  case has already exhibited a clear “separated” 

distribution between super- and sub-critical clusters. Simultaneously, the critical size in the 

. 1000 nuclT C= °  case has continued to increase to about n=258 while in the . 800 nuclT C= ° case 

stays at n=24. After this point, a substantial amount of oxide precipitates in the . 800 nuclT C= °

case become large enough and start consuming more vacancies. Consequently the vacancy 

supersaturation also decreases and leads to an increase in critical size. By t=29020s (d), the 
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nucleation hold has been reached and the critical size is now n=60 for . 800 nuclT C= ° case but still 

n=258 for . 1000 nuclT C= °  case. As shown in Figure 4.27(b), the trend in the stable cluster density 

evolution for both cases also continues and establishes a large difference between two cases at the 

end of the nucleation anneal. 

 

 
(a)                                                                     (b) 

 

 
  (c)                   (d) 
 

Figure 4.26: Oxide precipitate size distribution and critical size (vertical line) at (a) t=220s, (b) 

t=340, (c) t=10220s, and (d) t=29020s. Red lines- . 800 nuclT C= ° ; blue lines- . 1000 nuclT C= ° . 
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The final size distributions of the two cases are shown in Figure 4.26(e), which is a snapshot 

at the end of the anneal. The . 1000 nuclT C= °  case exhibits larger oxide precipitates but a much 

smaller density. Note that the critical sizes at the end of the process are reversed: the 

. 800 nuclT C= ° case now has a larger critical size than the . 1000 nuclT C= °  case. Again recall that 

this increase in the critical size at later times (during the growth anneal) for the . 800 nuclT C= °  

case is due to its strong consumption of oxygen monomers (Figure 4.29).  

 

                            

 

Figure 4.26(e): Oxide precipitate size distribution and critical size (vertical line) at the end of 

process (t=86738s). Red lines- . 800 nuclT C= ° ; blue lines- . 1000 nuclT C= ° . 

  

Log Size (nO)

Lo
g

D
en

si
ty

(c
m

-3
)

0 2 4 6 8 10
-30

-20

-10

0

10

20



107 
 

          
 (a)                                                                              (b)                                                             
 

Figure 4.27: Density of stable oxide precipitate clusters (those at or above the critical size) at (a) 

early stage and (b) later stage of the anneal as a function of time for the . 800 nuclT C= °  (red line) 

and . 1000 nuclT C= ° (blue line) case. 

 

                                        

 

Figure 4.28: Vacancy concentration (left: symbols), equilibrium concentration (left: dashed dot 

lines) and supersaturation (right: dashed lines) as a function of time for red- . 800 nuclT C= °  and 

blue- . 1000 nuclT C= ° case.  

 



108 
 

                                     

 

Figure 4.29: Interstitial oxygen concentration (left: symbols), equilibrium concentration (left: 

dashed dot lines) and supersaturation (right: dashed lines) as a function of time for red-

. 800 nuclT C= °  and blue- . 1000 nuclT C= ° case. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



109 

5. Detailed Study of the Stress and
Strain Energy of Oblate Spheroidal 

Precipitates in Silicon Crystals  

In general, precipitates in a given crystalline material can be categorized into two broad 

types88: (1) coherent precipitates for which there exists a definite relationship between the 

precipitate structure and the matrix structure so that the lattices match exactly at the interface and 

(2) incoherent precipitates for which there are no continuity conditions to be satisfied across the 

matrix/precipitate interface. To better illustrate this point, a coherent and incoherent cluster are 

plotted schematically in Figure 5.1. For example, germanium precipitates (Si1-x Gex precipitates) 

within a crystalline silicon (Si) bulk phase are usually coherent89-94, while large amorphous oxide 

precipitates (SiO2 precipitates) in Si crystals are usually incoherent due to their disordered 

structures13,95. In this chapter, the study is focused on coherent Ge precipitates while preliminary 

results for incoherent SiO2 precipitates are discussed at the end. 

Equation Chapter (Next) Section 1 

(a)                                                                                          (b) 

Figure 5.1: (a) a coherent cluster that has a definite relationship with the crystal structure of the 

matrix and (b) an incoherent cluster that has no relationship with the structure of the matrix. 
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5.1. Elasticity Solution for Anisotropic Inhomogeneties 

in Anisotropic Matrices 

By definition96 a finite sub-domain in a given material is called an inclusion if the sub-

domain and the material share the same elastic constants. In contrast, the sub-domain is referred to 

as an inhomogeneity if its elastic constants96 are different from that of the surrounding material. 

Following these definitions, Ge precipitates and SiO2 precipitates in Si crystals are both considered 

as anisotropic inhomogeneities embedded in anisotropic matrices. The elasticity solutions for the 

stress fields associated with these precipitates are discussed in the following subsections.  

5.1.1. Analytical Expression for the Stress Field Associated with 

an Oblate Spheroidal Inhomogeneity 

The analytical expression for the elastic stress inside an oblate spheroidal inhomogeneity 

in an anisotropic matrix can be obtained by using the theory of Lee and Johnson68,97, which is 

derived under the general framework of the equivalent inclusion method69-71,96. Within this 

framework69-71,96 a precipitate undergoes a uniform stress–free transformation strain, εT , in the 

absence of a surrounding matrix. The presence of the surrounding matrix then produces a 

constrained strain, εC , inside the precipitate. As a result, the precipitate and the matrix both deform 

and generate an elastic stress field. The elastic strain, εE , that produces this elastic stress field 

satisfies 

C T Eε = ε +ε , (5.1) 

where Tε is the transformation strain and Cε  is the constrained strain. 
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When a precipitate is an inclusion and both the inclusion and the matrix are isotropic, 

Eshelby53 has shown that the transformation strain Tε and constrained strain Cε  inside the 

precipitate satisfy 

 

 C T
ij ijkl mnSε ε= ,  (5.2) 

 

where ijklS  is referred to as the Eshelby tensor68. The above equation implies that if the 

transformation strain inside an inclusion is uniform then the constrained strain inside the inclusion 

is also uniform. Asaro and Barnett98 later proved that eq.(5.2) is also valid for an anisotropic 

spheroidal inclusion embedded in an anisotropic matrix. They showed that the Eshelby tensor ijmnS

for a oblate spheroidal inclusion in cubic symmetric matrix may be computed according to98: 

 

 ijmn ijkl klmnS w c= ,  (5.3) 

 
( )

( )

1 1
2

20 0
2 2 2 2 2 2 2 3

sin
8

sin cos sin cos

i l jk j l lk
ijkl

Z Z M Z Z Mabcw d d
a b c

π π ϕ
θ ϕ

ϕ θ θ ϕ

− −+
=

 + + 

∫ ∫ ,  (5.4) 

 [ ]sin cos ,sin sin ,cosϕ θ ϕ θ ϕ=Z ,  (5.5) 

 ik ijkl j lM c Z Z= . (5.6) 

 

Here eqs.(5.3)-(5.6) are solved in a Cartesian coordinate system in which the coordinate axis is 

represented by 1 2 3, ,x x x  and ϕ  is the angle between the unit vector Z and the axis 3x . The klmnc  

are the elastic constants of the matrix.  
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After the Eshelby tensor is evaluated, the next step is to extend the expression of stress for 

an inclusion to an inhomogeneity. To begin with, the elastic stress ijσ  inside an inclusion can be 

obtained by: 

( )C T
ij ijkl ijkl kl kl

E
klc cσ ε εε= −= ,  (5.7) 

where the transformation strain T
klε  and constrained strain C

klε  satisfy eq. (5.2)  and klmnc  are the 

elastic constants of the precipitate. 

In the case of an inhomogeneity (denoted by *), the interior elastic stress can be calculated 

by the following formula that is similar to eq.(5.7): 

( )* ** * * *
ij ijkl ijkl

C T
kl kl

E
klc cσ ε εε= −= ,  (5.8) 

where *
ij

σ  is the elastic stress , *
ijklc  denotes the elastic constants and *T

klε  represents the 

transformation strain. However, unlike the case of inclusions, the relationship between *C
klε and *T

klε

for an inhomogeneity is generally unknown, which makes eq.(5.8) unsolvable. To resolve this 

issue, the inhomogeneity is replaced by a so-called equivalent inclusion69-71,96 that has the same 

elastic constants as the matrix and suffers the same constrained strain as well as elastic stress as 

those of the inhomogeneity such that: 

*C C
kl klε ε= ,  (5.9) 

*
ijijσ σ= . (5.10) 

So 
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( ) ( )* *C T C T
ij ijkl kl kl ijkl kl klc cσ ε ε ε ε= − = − ,  (5.11) 

where C
klε  is the constrained strain,  ijσ  is the elastic stress , *

ijklc  and ijklc  are the elastic constants 

of the inhomogeneity and the equivalent inclusion respectively, *T
klε  is the transformation strain of 

the inhomogeneity, and T
klε  is the so-called equivalent transformation strain of the equivalent 

inclusion. Note that T
klε  and C

klε  satisfy eq.(5.2), which bypasses the difficulty of finding the 

relationship between *C
klε and *T

klε . 

After eq. (5.2) is applied, eq. (5.11) contains 6 equations and 18 unknowns (6 unknown 

components of ijσ , 6 unknown components of T
klε  and 6 unknown components of *T

klε ), which is 

still unsolvable. In the following cases, however, it can be shown that either the number of 

equations can be increased or the number of unknowns can be reduced by considering additional 

physics of the precipitate.  

Case 1: when a precipitate is incoherent, the shear stress on the interface between the 

matrix and the precipitate can always be quickly eliminated by interface sliding99 so the stress inside 

an incoherent precipitate is always hydrostatic68,96,97. Denote the unknown magnitude of this 

hydrostatic stress by P, then eq.(5.11) can be reduced to 3 equations with 4  unknowns (P, 11
Cε , 22

Cε

and 33
Cε ) as: 

( )C T
ij ij ijkl kl klP cσ δ ε ε= = − ,  (5.12) 

where ijδ  is the Kronecker delta function. To solve for ijσ , Mura96  further suggests that one more 

equation can be added by specifying: 
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T
kkε = Θ , (5.13) 

where Θ is the dilatation of the precipitate. Finally, eq.(5.11) can be solved and the stress ijσ is 

obtained: 

( )( ) ( )
( ) ( )

1111 1122 3333 1133 3311

1111 1122 3333 3311 3311

3 1 1 2
1 2 1ij ij

K S S S S S
P

S S S S S
σ δ

Θ + − − −
= =

+ − + − − −
, (5.14) 

where K is the bulk modulus of the matrix. Note that eq.(5.14) is consistent with the fact that the 

stress is constant inside the precipitate.  

Case 2: when a precipitate is coherent, the theory of Lee and Johnson68,97 suggests that the 

actual transformation strain *T
klε  instead of the dilatation T

kkε  in eq.(5.11) is specified by the lattice 

mismatch between the matrix and precipitate such that: 

*T

ij ijε δ= Θ ,  (5.15) 

where ijδ  is the Kronecker delta function and Θ  is the lattice mismatch between the matrix and 

the precipitate. At this point, eq.(5.11) contains 6 equations with 6 unknowns (6 unknown 

components of T
klε ) .  

( ) ( )*C T C
ijkl kl kl ijkl kl klc cε ε ε δ− = −Θ   (5.16) 
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Once T
klε  is solved, C

klε  can be calculated by solving eq. (5.2), and then the stress ijσ  can be 

obtained by evaluating eq. (5.11) . The complete expression for ijσ , however, contains several 

hundred terms; see Appendix A. 

The calculation of the stress field outside an anisotropic precipitate is a much more 

complicated task even for 2D problems100,101. The closed-form solution for 3D anisotropic 

inhomogeneities in anisotropic matrices has not been documented in the literature. Additional 

complexities and ambiguities are added to the problem if there exists an interphase zone102-106 just 

outside the matrix/precipitate interface. The elastic constants in the interphase zone are usually 

different from those of the matrix or the precipitate and may not vary smoothly in the region. The 

detailed mechanical description of the interphase zone depends strongly on the microstructure of 

the system, which is outside of the perspective of continuum mechanics. Atomistic simulations, 

however, can provide additional insights for specific types of inhomogeneity/matrix systems. 
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5.1.2. Analytical Expression for the Strain Energy 

The analytical expression of the elastic stain energy per unit volume of an anisotropic 

inhomogeneity in an anisotropic matrix is calculated as follows69-71,96: 

( )* * *1
2

C T T
kl kl ijkl ijcω ε ε ε= − − ,  (5.17) 

where *
ijklc  and *T

klε  denote the elastic constants of and transformation strain of the inhomogeneity 

respectively, and  C
klε  denotes the constrained strain of the equivalent inclusion. 

When the precipitate is incoherent, the closed form expression for incohω  is obtained by 

substituting eq.(5.11) and eq.(5.14) into eq.(5.17)68,97 

( )
2 2

2* *
* * *

1 1 1
2 2 2ij

incoh T T
ij iiT T T

ii ii ii

V V PP P Vδω ε ε
ε ε ε

   ∆ ∆
= − = − = − ∆   

   
, (5.18) 

where V∆ is the dilatation of a precipitate and *T
iiε is given by 

( ) ( )

( ) ( )
1111 1122 3333 3333 1111 1122 1133 3311 1133 3311

1111 1122 3333 3311 3311

*
3 1

1 2 1

2
2

3T
ii

K S S S S S S S S S S

S S S S S
ε

Θ + −

+ − + − − −

+ − − − − −
= .  (5.19) 

 Rearranging eq.(5.18) by using eq.(5.19), the strain energy per unit volume (as given by 

eqs.(3.32)-(3.34) in Chapter 3) is obtained: 
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( )
( )

21
2

incoh K
V

K
ϕ β

ω
ϕ β

∗

∗= ∆
+

,  (5.20) 

 

where ( )ϕ β  is a function of aspect ratio given by 

 

 ( )
( )( )

( ) ( )
1111 1122 3333 1133 3311

1111 1122 3333 3333 1133 3311 1133 3311

1 1 2
21 2 1 / 3 2
3

K S S S S S

S S S S S S S S
ϕ β

 + − − + =
 + − − + − − − − 
 

,         (5.21) 

 

and K is the bulk modulus of the matrix phase.  

The strain energy per unit volume for a coherent precipitate, cohω , is also a function of 

aspect ratio β  and can be obtained in a similar manner as shown above by substituting  and   into 

eq,(5.17). The lengthy expression for cohω is presented in Appendix B. Note that cohω decreases as  

β decreases and vanishes when β  approaches zero68,97. While cohω  also depends on the aspect 

ratio, the differences are: (1) when the precipitate is softer than the matrix,  decreases as aspect 

ratio  decreases; when the precipitate is harder than the matrix,  increases as aspect ratio decreases 

and (2) only a limited amount of reduction in  can be achieved as the aspect ratio varies 97,107.  

 

 

 

 

 

 

 



118 

5.2. Atomistic Measurement of the Elastic State of 

Oblate Spheroidal Precipitates in a Silicon Matrix 

In this section, the stress field and strain energy associated with oblate spheroidal 

precipitates are measured using atomistic simulations in LAMMPS108. The simulation results are 

compared with the analytical solutions described in the previous section. A Tersoff-based empirical 

potential33-38 is used for describing the properties of Si35,36, Ge33 and O34,37,38. 

5.2.1. Atomic-Level Study of Germanium (Ge) Precipitates 

 (1). Simulation Procedure 

A perfect Si lattice with 941,192 Si atoms is replicated in 9 identical 26.17 nm × 26.17 nm 

× 26.17 nm cubic simulation boxes. At the center of each box a spheroidal region that contains the 

same number of Si atoms (19,030 atoms) but with a distinct aspect ratio ( β ) is defined. On the 

surfaces of the simulation box, periodic boundary conditions are applied and no applied forces are 

imposed. Next, all of the Si atoms in the spheroidal region are replaced by Ge atoms and 

consequently a coherent Ge precipitate in the Si lattice is created. The lattice parameters of the 

undeformed Si and Ge are initially both equal to the values obtained at zero temperature. Due to 

the fact that the lattice constant of Ge is about 4.2% larger than that of Si, the precipitate is under a 

large compressive stress, which makes the system energetically unfavorable. To release the stress, 

molecular statics (conjugate gradient energy minimization) is performed within the LAMMPS 

simulation package108 with a convergence criterion that the energy change between two 

minimization steps be less than 1×10-12 eV. The final configurations are shown in Figure 5.2. 
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(a)                                        (b)                                           (c) 

          

 

 

 

 

         (d)                                          (e)                                           (f) 

 

 

 

 

 

         (g)                                          (h)                                           (i) 

 

 Figure 5.2: Final configurations of Ge precipitate (blue) in crystalline Si matrix (orange) for: (a)

0.2β = , (b) 0.3β = , (c) 0.4β = , (d) 0.5β = , (e) 0.6β = , (f) 0.7β = , (g) 0.8β = , (h)

0.9β =  and (i) 1.0β = . 
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(2) Stress Measurement    

According to Thompson et al.109 and Zimmerman et al.110, the elastic stress can be 

calculated by averaging the per-atom virial stress over a well-defined sub-volume of material. The 

calculation procedure is as follows. First, the system is divided into spheroidal shells (with 500 

atoms in each shell) extending outwards from the center of the precipitate. As shown schematically 

in Figure 5.3, the shells are labeled by index i  , where smaller i  means the shell is closer to the 

center of the precipitate. Next, in each shell i , the Voronoi volume, j
VoroV , for each atom j is 

computed by using the Voro++ package111 and summed. The virial stress for each atom, ,i jφ , 

obtained from LAMMPS, is also summed. The average elastic stress in shell i is then computed as: 

 

 ,1 ( )
( )

i i j
kk kk

j j
Voro

j
V

σ φ= ∑
∑

.  (5.22) 

 

The hydrostatic pressure within each shell i  then can be calculated according to: 

 

 11 22 33

3

i i i
ip σ σ σ+ +
= . (5.23) 
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Figure 5.3: Schematic of the shells (labeled by i) and atoms (labeled by j) in the system. Some 

atoms are omitted (represented by “…”) in the figure for clarity. 

 

(3) Elastic Constants    

It is convenient to write the stiffness tensor, ijklc , in eq.(5.11) in Voigt notation Cαβ . For 

cubic symmetric materials such as Si and Ge, the only non-zero components of Cαβ  are 11C , 12C  

and 44C . In order to compare the analytical solution with the simulation predictions in a self-

consistent way, 11C , 12C  and 44C used in the analytical expressions are specified based on the 

calculation performed by Kelires et al.112  using the Tersoff potential33. In Table 5.1, both the 

calculated data112 and the experimental data82,113 of 11C , 12C  and 44C  for  Si82 and Ge113 are 

provided.  
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Data Source  (GPa) (GPa) (GPa) 

Si (Experiment)82 165.7 63.9 79.6 

Si (Kelires)112 150.0 80.0 70.0 

Ge (Experiment)92 129.0 48.0 67.0 

Ge (Kelires)93 137.0 45.0 67.3 

  

Table 5.1: Calculated data112 and experimental data82,92 of elastic constants for Si and Ge. 

 

 (4) Pressure Profile    

The elasticity solution of the hydrostatic pressure for the embedded Ge-Si matrix system 

is obtained by substituting the Kelires112 parameters from Table 5.1 into eq.(5.11). The stress field 

associated with each precipitate displayed in Figure 5.2 is first investigated separately. For the 

convenience of discussion, we define a parameter, r, as the distance measured from the center of 

the spheroid to the outer surface of the spheroidal shell and choose the direction of r such that it is 

aligned with the semi-major axis of the spheroid. 

As shown below in Figure 5.4, the hydrostatic pressures as a function of r obtained from 

the simulation and analytical solution are plotted against each other. First, it is observed that the 

value of the simulated hydrostatic pressure is negative inside the precipitate, which is consistent 

with the fact that the lattice parameter of Ge is about 4.2% larger than that of Si. Secondly, the 

simulation reproduces the key prediction made by the elasticity theory, that is, a uniform 

transformation strain inside a precipitate leads to a uniform constrained strain (and stress) inside 

the precipitate. This is made possible by using a large enough number of atoms in the simulation 

system so that the precipitate can be considered as a continuum entity and the transformation strain 

of the precipitate can be considered as a constant. Thirdly, the simulation is in line with elasticity 
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theory that predicts that the hydrostatic pressure would decay rapidly outside the precipitate and 

become essentially zero in the region that is far away from the Ge-Si interface. Here it is assumed 

that the stress field just outside an isotropic inhomogeneity in an isotropic matrix56-58,96,114 is 

qualitatively the same as the one for an anisotropic inhomogeneity in an anisotropic matrix. Note 

that for aspect ratios, β , below 0.2, very large simulation cells are required to fully contain the 

elastic field. Therefore the aspect ratios considered in this work were limited to be above 0.2. 
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(a)                                              (b)                                               (c) 

 

                                                   

                                                                                                       

 

 

(d)                                             (e)                                               (f) 

 

 

                                                                                                        

 

 

(g)                                              (h)                                               (i) 

 

Figure 5.4: Hydrostatic pressure as a function of the distance from the precipitate center. Blue 

lines-atomistic simulation and red lines-continuum mechanics theory for (a) 0.2β = , (b) 0.3β = , 

(c) 0.4β = , (d) 0.5β = , (e) 0.6β = , (f) 0.7β = , (g) 0.8β = , (h) 0.9β =  and (i) 1.0β = . 
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(5) Elastic State of the Precipitate as a Function of Shape   

The dependence of the interior hydrostatic pressure and the strain energy associated with a 

Ge precipitate on the precipitate shapes are studied in this subsection. In the range of 0.2 1.0β≤ ≤

both the atomistic simulation and the elasticity model predict that there is only a very limited 

reduction in stress as β  decreases. The magnitude of hydrostatic pressure inside the precipitate 

stays constant at about 4500 MPa. When is β  below 0.2, analytical elasticity theory predicts that 

the shape will start to have larger impact on the stresses, but as mentioned above computational 

limitations make further investigation of this parameter range difficult. For 0.2 1.0β≤ ≤ , 

however, the consistency between the simulation and analytical solution supports the conclusions 

discussed by Nabarro115, Christian106 and Mura96: in the absence of other stress relaxation 

mechanisms such as interstitial emission at the matrix/precipitate interface, the only effective way 

to release the stress of a coherent precipitate is to first distort the precipitate at the matrix/precipitate 

interface so that it “breaks away” from the matrix and becomes incoherent, allowing the precipitate 

to freely deform to a flat plate so that the displacement and traction associated with the precipitate 

becomes very small, which will then lead to low stresses and low strain energies96. In another 

words, the coherency between the precipitate and the matrix can inhibit stress relaxation. According 

to Christian106,  the “break away” requires a high enough temperature such that the atoms can move 

rapidly to reajust their positions or recrystalize at the matrix/precipitate interface. As mentioned 

above, both the undeformed Ge and Si were initially created at zero temperature. Thus during the 

energy minimization process, the “break away” is very unlikely to happen. In addition, the low 

temperature results in very low interstitial emission probability to create space for expansion at the 

preipitate/matrix interface. As a result, the stresses in the system are not released effetively even 

after the coherent Ge preciptate is changed to a plate. 

Second, as discovered by Lee and Johnson97, the strain energy of a coherent precipitate 

softer than the matrix can only decreae by a small amount as the precipitate evolves from a sphere 



126 
 

to a plate. Although Lee and Johnson97 did not discuss much about the physics behind their results, 

the following order-of-magnitude estimation that links the pressure and the strain energy may 

provide more insights. From eq.(5.17) and Appendix B, it can be shown that the strain energy 

( )cohω β   for a coherent precipitate satisfies: 

 

 ( ) ( )* *~coh Tpω β β ε ,  (5.24) 

 

where the transformation strain *Tε is a constant (lattice misfit) and the hydrostatic pressure  *p  is 

a function of aspect ratio β . Consequently, when a coherent precipitate has very limited 

capabilities to release its stress (pressure) by changing its shape, only a limited reduction in strain 

energy can be achieved as the precipitate changes its shape. From Table 5.1, the data shows that 

the elastic constants of Ge are indeed smaller than those of Si. Therefore the findings of Lee and 

Johnson97 mentioned above are observed in our system, as expected.  

Next, quantitative measures of the strain energy are used to verify the above qualitative 

discussion. Note that unlike the stress profile that can be obtained directly in LAMMPS, the 

simulated strain energy needs to be extracted as follows because LAMMPS can only generate the 

total energy of the system. First, we calculate the formation energy ( fE ) of the precipitate: 

 

 ( )f Pure Pure
sys Si Si Ge GeE E N E N Eβ = − − ,  (5.25) 

 

where sysE  is the energy of the overall simulation system that contains the Ge precipitate, and SiN  

and GeN  represent the number of Si atoms and Ge atoms in the overall system, respectively. The 
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energies, Pure
SiE and Pure

GeE  are, respectively the per-atom energy of Si atoms (-4.63 eV/atom) in the 

pure Si crystal and per-atom energy of Ge atoms (-3.85 eV/atom) in the pure Ge crystal. 

 According to classical nucleation theory107,116,117, the precipitate formation energy can be 

written in the following form: 

 

 ( )f
OE A Vβ σ ω= + ,  (5.26) 

 

and 

 ( )( ) /f
OE A Vω β σ= −  (5.27) 

 

where A  and V  are the surface area and volume of the precipitate, respectively,  Oσ   and ω  are 

the surface energy per unit area and the strain energy per unit volume, respectively.  

To compute A  and V of the deformed precipitate, the elastic strain of the precipitate must 

be obtained first. We assume that the actual strain of the precipitate in the simulation system is the 

same as the analytical solution calculated from eq.(5.16) and Appendix A,  and also assume that  

Oσ  is independent of the aspect ratio, β  . The strain energy of the precipitate from the simulation 

as a function of aspect ratio is computed using Oσ =1.11 meV/ (0.017 J/m2), as calculated by Beck 

et al.118. As expected, the value of ω  based on the simulation results is almost a constant at about 

1.83×103 eV/ (2.93×103 J/m3), the relative deviation with respect to the analytical solution is below 

5%. In addition to the uncertainties in Oσ  , the difference between the simulation and analytical 

solution may come from the fact the precipitates created in the simulation are not perfect spheroids, 

thus: (1) the surface area or volume may not evolve smoothly as the aspect ratio changes and (2) 

the actual strain/stress in the simulation system may not be exactly the same as the ones obtain by 



128 
 

the continuum mechanics theory, in which a perfect shape and misfit is imposed. Nevertheless, the 

general good agreement between the simulation and continuum mechanics model verifies that a 

coherent precipitate will not release its strain energy effectively by changing its shape as discussed 

above.  
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5.2.2. Atomistic-Level Study of Amorphous SiO2 Precipitate 

Although in general the analytical expressions for the stress and strain energy associated 

with an incoherent precipitate are relatively simpler compared to those for a coherent precipitate, 

the disordered nature of an incoherent amorphous SiO2 precipitate creates a few obstacles for 

atomistic simulation studies. Most significantly, unlike the case for a coherent crystalline Ge 

precipitate that can be easily created by replacing lattice Si atoms, an amorphous SiO2
 precipitate 

has to be created separately by a separate process, inserted to the Si matrix, and then relaxed 

because the positions of its atoms cannot be predetermined in the matrix. In addition, a crystalline 

Ge precipitate always evolves from an initial configuration that has a well-defined 

matrix/precipitate interface while the amorphous SiO2 precipitate always evolves from a disordered 

configuration that corresponds to a distorted matrix/precipitate interface, which makes the stress 

relaxation process for the SiO2 precipitate more complex. As a result, it is generally challenging to 

optimize the SiO2 precipitate-matrix interface and generate a realistic configuration. A detailed 

description of the simulation used to relax amorphous SiO2 precipitates in bulk crystalline Si is 

presented below. 

(1) Simulation Procedure  

As mentioned in Section 5.1.1, one important feature of an incoherent precipitate is that its 

stress is always hydrostatic68,96,97.  Also a pure dilatational transformation strain is usually assumed 

in the literature69-71,96. Therefore, in our atomistic simulation system we create a SiO2 precipitate in 

Si matrix such that the transformation strain and the compressive stress applied to the precipitate 

are purely dilatational. We have chosen the value of the transformation strain to be 1.5% so that 

the materials in our system can exhibit linear elasticity behaviors. The specific steps for 

constructing the Si-SiO2 simulation system are discussed in the following.  
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 The first step is to create an amorphous SiO2 precipitate using the approach described in 

details by Chuang et al.34 As shown schematically in Figure 5.5, a bulk (periodic) amorphous SiO2 

phase is created by cooling a melted 5.82 nm × 5.82 nm × 5.82 nm bulk β-cristobalite SiO2 from 

5000K to 0K at a rate of 121 10× K/s. Then, a spherical precipitate is cut out of the bulk SiO2. In 

order to create a SiO2 precipitate that undergoes a 1.5% transformation strain in Si matrix, we need 

to create a spherical hole with SiR = 20 Å in a cubic pure Si simulation box, and insert a SiO2 

precipitate of which radius is 1.5% larger (
2SiOR = 20.3 Å ) than SiR . The SiO2 precipitate tends to 

relax and return to its original size in the hole and consequently the Si matrix will produce a 

compressive stress on the precipitate. Continuum mechanics theory predicts that the radius of the 

precipitate will be compressed from  
2SiOR = 20.3 Å to 

2SiOR = 20.1 Å . 

 

                         

(a)                                     (b)                                   (c)                                   (d) 

  

Figure 5.5: Schematic of the brief procedures to create an amorphous SiO2 precipitate (a) build a 

β-cristobalite SiO2 lattice (b) melt the β-cristobalite SiO2 at 5000K (c) quench the bulk SiO2 to 0K 

and (d) cut a spherical precipitate out of the bulk SiO2.  

 

To properly insert the SiO2 precipitate to the hole, the radius of the precipitate needs to be 

compressed to be 
2

 SiO SiR R R= −∆  so that a small gap of R∆ 34,51 is formed initially between the 

SiO2 phase and the Si phase, in order to avoid the unphysical situation in which the positions of 
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two atoms are overlapping or nearly overlapping at the matrix/precipitate interface. After the initial 

configuration is set up, a molecular statics simulation (using the Hessian-free truncated Newton 

algorithm) is performed in LAMMPS108 to minimize the energy with a convergence criterion that 

the energy change between two minimization steps be less than 1×10-14 eV. During the simulation, 

periodic boundary conditions are applied and no applied forces are imposed on the box. 

 

 

 

 

  

 

         (a)                                                   (b)                                             (c) 

      

Figure 5.6: Schematics of (a) an unstrained hole in a Si box, (b) an unstrained precipitate, (c) a 

compressed precipitate inserted to the hole. 

   

 (4) Pressure Profile    

In this section the hydrostatic pressure as a function of  r (where r is defined as the distance 

measured from the center of the precipitate) are studied. To present the results, the system is 

divided into spheroidal shells (with 500 atoms in each shell unless otherwise noted) extending 

outward from the center of the precipitate and the average pressure of atoms in each cell is plotted.  

Since there is no external force applied on the simulation box, based on continuum 

mechanics theory69-71,96, the pressure far away from the precipitate should decay to a value near 

zero. The size of the simulation box should be large enough so that the boundary of the system 

will not “feel” the precipitate. As a result, a convergence study on the simulation box size (Lbox) 

is first performed. The same SiO2 precipitate (containing 783 Si atoms and 1575 O atoms) is 
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placed in three different sizes of the Si boxes respectively: box (a) 8.15 nm × 8.15 nm × 8.15 nm 

(contains 27666 atoms in total), box (b) 9.77 nm × 9.77 nm × 9.77 nm (contains 47305 atoms in 

total) and box (c) 11.95 nm × 11.95 nm × 11.95 nm (contains 85836 atoms in total), then the 

pressure profiles are plotted in Figure 5.7. As shown on the plot, the three pressure profiles appear 

to be qualitatively the same, yet it is clear in box (a) the boundary can still “feel” the precipitate. 

To eliminate the boundary effect, Lbox needs to be increased to 11.95 nm. Therefore, box (c) is 

selected for further studies. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7: Hydrostatic pressure as a function of the distance from the precipitate center. Analytical 

solution-black line and simulation results from box (a)-green line, from box (b)-red lines and from 

box (c)-blue line.  

 

From Figure 5.7, we can also observe that, in contrast to the smooth pressure profile within 

a crystalline Ge precipitate, the pressure profile within an amorphous SiO2 precipitate exhibits 

more fluctuations. To reduce statistical uncertainty and to analyze the trend behind these 
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fluctuations, the simulations were repeated with SiO2 precipitates cut from 4 different locations 

of the bulk SiO2 and the pressures averaged over the 5 configurations are studied below. 

First the system is divided into spheroidal shells with 1000 atoms and the average pressure 

of atoms in each shell is calculated as presented in Figure 5.8 (1)-(5). Next these pressures are 

averaged over the 5 configurations and it can be seen from Figure 5.8 (6), the fluctuations 

observed in Figure 5.7 are reduced and the agreement improves with respect to the analytical 

solution. 

 

 

 

 

 

    (a)                                                  (b)                                                  (c) 

 

                                                   

                                                                                                       

 

 

    (d)                                                  (e)                                                 (f) 

 

Figure 5.8: Hydrostatic pressure as a function of the distance from the precipitate center. Here (a), 

(b), (c), (d) and (e) represent the pressure profiles for 5 different SiO2 configurations while (f) 

represents the pressure profile averaged over the 5 configurations. Black lines-continuum 

mechanics theory, blue lines-atomistic simulation results for 5 different SiO2 configurations and 

green line-averaged pressure. 
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Another notable feature in Figure 5.8(f) is that within the region of one lattice parameter 

(5.432Å)   away from the matrix/precipitate interface (15Å<r<20Å ), a jump can be found in the 

pressure profile. This ‘jump’ can be seen more clearly in Figure 5.9 in which smaller shells 

containing only 500 atoms were used to discretize the system. In fact, on top of the statistical 

fluctuations, an observable jump in the pressure profile is expected when the difference in elastic 

constants of the precipitate and the matrix becomes large enough. Sometimes this behavior can 

even be observed near a more structured interface between a coherent isotropic crystalline 

precipitate and an isotropic crystalline matrix119. From a continuum perspective, the jump arises 

naturally due to the fact that (1) the Eshelby tensor as a function of position, r , is discontinuous96 

over the matrix/precipitate interface, and (2) the Eshelby tensor just outside the interface (the so-

called exterior-point Eshelby tensor) will not be converged114,120 to the Eshelby tensor just inside 

the interface (the so-called interior-point Eshelby tensor), when the position, r , moves onto the 

interface as a limiting case. From a microscopic perspective, it is understandable that whenever two 

different types of materials, A and B, are joined together by force, a difference in the atomic 

bonding will be created across the A/B interface. The changes in both interatomic distances as well 

as configurations will result in the stress per atom near the interface being larger107 than that in the 

interior of material A or B. Thus, a jump in the stress that is localized in the vicinity107 of the 

interface occurs. In principle, this localized stress can be reduced by a continuous readjustment of 

atoms position, i.e., the interfacial relaxation near the precipitate boundary. Part of the jump shown 

in Figure 5.9 might also be reduced by more effective interfacial relaxation during the simulation. 

In this regard, a thermal anneal might be helpful to facilitate relaxation that may smooth the stress 

profile. 
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    (a)                                                  (b)                                                 (c) 

 

                                                   

                                                                                                       

 

 

    (d)                                                  (e)                                                  (f) 

 

Figure 5.9: Hydrostatic pressure as a function of the distance from the precipitate center. Here (a), 

(b), (c), (d) and (e) represent the pressure profiles for 5 different SiO2 configurations while (f) 

represents the pressure profile averaged over the 5 configurations. Black lines-continuum 

mechanics theory, blue lines-atomistic simulation results for 5 different SiO2 configurations and 

green line-averaged pressure. 

 

In addition to the factors mentioned above, there are some other uncertainties that can also 

result in the discrepancy between the simulation result and the analytical solution, they are: (1) the 

configuration in the simulation is not a perfect sphere, in particular, the matrix/precipitate interface 

is not a smooth spherical surface (2) due to the relative small size (less than 4 nm in diameter) of 

the precipitate, the applicability of the strict assumptions of elastically homogenous material (made 

in the elasticity theory) to the amorphous SiO2 precipitate may not be valid. As a result, possible 

future studies should consider larger SiO2 precipitates in larger simulation boxes so that the 
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elasticity property of the system can be more in line with the continuum mechanics theory 

assumptions. Also cycles of different alternating high-low thermal anneals may be applied to the 

system to allow the matrix/precipitate to fully relax.  
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6. Summary and Outlook 
  

Robust quantitative prediction of oxide precipitation in crystalline silicon poses multiple 

challenges. From a physics point of view, the major complexities associated with oxide 

precipitation arises from the fact that the precipitation process generates high internal 

(compressive) stresses that must be released. Well-documented stress relief mechanisms associated 

with oxygen precipitation include interaction with intrinsic point defects present in the surrounding 

crystal matrix, i.e., vacancy absorption as discussed above15 and/or the equivalent process of self-

interstitial emission23, and morphological evolution in which the equilibrium precipitate shape 

evolves to reduce the strain energy. The morphological evolution accounts for the fact that larger 

oxide precipitates observed experimentally usually come in various morphologies (e.g., needles, 

plates, and polyhedrons) that appear to depend strongly on processing conditions.  

In this thesis, a continuum rate equation modeling framework was developed and 

implemented in our Comprehensive Aggregation Simulator for Silicon Processing (CASSP) code 

to simulate coupled oxide precipitation and vacancy aggregation in silicon crystals. The model 

accounts for: (1) diffusion-limited mass transport of point defects and oxygen to simulate 

precipitate aggregation and dissolution, (2) stress relaxation via matrix vacancy absorption and (3) 

variable oblate spheroid precipitate morphology. These phenomena collectively require the 

specification of multiple, difficult-to-measure parameters. Some of these parameters, such as the 

oxide precipitate-silicon matrix interface energy (which is the principal regression parameter of the 

overall modeling framework described in this thesis), are intrinsically multiscale in nature and 

outstanding ambiguities remain in their characterization. 

From a numerical method point of view, the major mathematical task associated with the model 

during a computer simulation is to solve a large system of highly non-linear, coupled, time-

dependent partial differential equations (PDEs) to determine the concentrations of point defects 

and clusters at various positions and times. As a result, several innovative algorithms were designed 
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and implemented to bypass the difficulties. First, in order to specify the growth and dissolution 

rates of oxide precipitates in the system of PDEs, the most energetically favorable morphologies 

and extent of vacancy absorption of oxide precipitates needs to be determined by performing 2D 

global optimizations of intricate free energy functions at each simulation step. We have identified 

that the speed and robustness of the global optimization are the key factors that determine the 

efficiency and convergence property of the model. Consequently we designed a numerical scheme 

such that the optimizations are collectively performed once before the simulation (instead of at each 

simulation step). The optimal parameters for specifying the morphology and vacancy absorption 

are pre-calculated and tabulated as function of processing conditions. Second, the strong coupling 

of oxide precipitate evolution and vacancies for stress relaxation produces substantial numerical 

instabilities, especially when oxide formation became significant relative to the vacancy 

concentration, leading to ill-conditioned systems of equations. To ensure stability, we have 

extended the partially explicit operator-splitting73 scheme (in which the point defect and cluster 

equations are integrated separately and sequentially) to a semi-implicit time integration scheme. In 

our new approach the point defects and cluster equations are now both embedded within a single 

iterative solution method, upon convergence, the scheme becomes essentially fully implicit with 

respect to both point defects and cluster concentrations.  

Using the simulation methodology described above, validated by a large database of oxide 

precipitate measurements, we studied the physics of oxide precipitation in detail and shed light on 

several features that are commonly observed in wafer thermal annealing processes although not 

entirely understood. First, and perhaps most significantly, we found that oxide precipitation during 

a rapid thermal annealing (RTA) process is largely governed by a complex interplay between the 

dynamics of the precipitate size distribution and the precipitate critical size. Both of these quantities 

are in turn complex functions of a number of physical parameters and point defect distributions. In 

particular, we have found that the anomalously high sensitivity of the final oxide precipitate density 

with respect to RTA temperatures is created by a subtle dependence of the initial size distribution 
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on the initial vacancy concentrations. At the early stage of a wafer anneal with higher RTA 

temperature, more vacancies and a higher vacancy supersaturation are generated. As a result, the 

nucleation barriers (and in particular the strain energy contribution) and critical sizes for small 

nuclei are reduced significantly. Consequently, compared to an anneal with lower RTA 

temperature, a larger number of stable precipitates can grow. The difference in the initial size 

distributions for different anneals is then magnified by the subsequent nucleation and growth 

anneal. As a result, a big divergence in the final oxide densities is found for relatively small 

differences in the initial RTA temperature. 

We have also found that the strong nonlinear dependence of the final oxide precipitate 

density on nucleation anneal duration is mainly established during the temperature ramp-up process 

right after the ‘nucleation step’ of the anneal. It was observed that when the temperature is 

increased, the critical size increases rapidly and ‘sweeps through’ the size distribution, causing a 

substantial dissolution of already-formed oxide precipitates. This dissolution is a nonlinear function 

of the nucleation anneal duration—at the end of longer nucleation anneals, a greater number of 

larger (and more stable) precipitates, which can survive the subsequent dissolution during the ramp-

up phase, are formed. Therefore a higher final precipitate density is produced during longer 

nucleation steps.  

Finally, we have found that the inverse dependence of final oxide precipitate density on 

nucleation anneal temperature is created by a subtle relationship between the nucleation rate and 

the vacancy absorption rate of oxide precipitates. Indeed, a higher temperature during the 

nucleation anneal generally leads to a faster nucleation of the oxide precipitate and intuitively 

should also lead to a higher final density. Yet to keep up with this high nucleation rate, vacancies 

are also consumed more rapidly (to reduce the nucleation barrier) at the early stage leaving fewer 

vacancies for the remainder of the process. Consequently, the oxide precipitation is counter-

intuitively suppressed at the later stages of the anneal. By contrast, a lower temperature during the 

nucleation anneal leads a lower nucleation rate but steadier vacancy consumption rate, the oxide 
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precipitates are therefore able to grow continuously and eventually a higher final density is 

generated.  

These findings collectively explain many of the well-known, yet difficult to predict, 

features of oxide precipitation during rapid thermal annealing processes. We believe that the 

modeling framework developed in this thesis is sufficiently predictive to be useful in the design 

and optimization of rapid thermal annealing processes. Yet, as always, there is room for further 

developments and improvements. Some possible future studies regarding the continuum modeling 

of oxide precipitation are briefly described here: 

1. In the present study, only those stress relaxation mechanisms that are compositionally 

conservative were considered in the continuum model and only SiO2 was considered as the 

precipitate composition. Several experimental studies121-126 suggest that the composition of oxide 

precipitates may take the form of SiOx, where x can vary from 1 to 2. The still-ongoing debate of 

this large variation in the precipitate composition suggests it may be worthwhile to study the oxide 

precipitation by considering a free energy description of oxide precipitates that includes the 

compositional relaxation mechanism proposed by Vanhellemont et al.25,32 and investigate its 

influence on the agreement between the model predictions and experimental data. 

2. While the parametric regressions performed to date have been quite successful, 

assumptions of specific forms of the surface energy function impose unnecessary structure onto the 

regressed function. A surface energy function based on a more general form, such as a B-spline 

function (discussed in more detail in Appendix C), with a controllable number of degrees-of-

freedom may be used in the future to provide a maximally flexible regression model with as few 

parameters as possible. 

3. Although only the vacancy emission process was considered in this thesis, there are 

situations in which self-interstitial emission may be preferable. Although, it is often the case that 

self-interstitial emission and vacancy adsorption can be treated as interchangeable processes 

through the reversible processes of point defect recombination and Frenkel pair formation, more 
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generalized models that include both point defect-mediated relaxation processes could provide 

additional model fidelity. 

4. The oblate spheroid geometry assumed in this thesis does not capture the needle-like 

precipitate shapes observed under some conditions. Additional morphological flexibility may be 

incorporated into future models to capture a wider range of annealing conditions. 
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Appendix A 
 

The expression of the elastic stress ( ijσ ) for a coherent anisotropic inhomogeneity (without 

shear stress) in an anisotropic matrix is given below. In the expression, ε  denotes the lattice 

mismatch between the inhomogeneity and the matrix, ijklS  represents the Eshelby tensor and *
ijC  

and ijC  denote the elastic constants of the inhomogeneity and matrix in Voigt notation respectively.  

 

11σ =  -(ε×(C11* + 2×C12*)×(3×C11×C12
2 + C11

3×S1111 + 2×C12
3×S1111 + C11

3×S2222 + 2×C12
3×S2222 

+ C11
3×S3333 + 2×C12

3×S3333 - C11
3 - 2×C12

3 - 3×C11×C12
2×S1111 + 2×C12
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2×C12
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C11×C12×C11*×S2233×S3311 + C11×C12×C12*×S2211×S3333 - C11×C12×C12*×S2233×S3311 + 

2×C12×C11*×C12*×S2211×S3322 - 2×C12×C11*×C12*×S2222×S3311 - 2×C12×C11*×C12*×S2211×S3333 + 

2×C12×C11*×C12*×S2233×S3311 + 2×C11×C11*×C12*×S2222×S3333 - 2×C11×C11*×C12*×S2233×S3322 - 

2×C11×C12×C11*×S1111×S2222×S3333 + 2×C11×C12×C11*×S1111×S2233×S3322 + 

2×C11×C12×C11*×S1122×S2211×S3333 - 2×C11×C12×C11*×S1122×S2233×S3311 - 

2×C11×C12×C11*×S1133×S2211×S3322 + 2×C11×C12×C11*×S1133×S2222×S3311 + 

2×C11×C12×C12*×S1111×S2222×S3333 - 2×C11×C12×C12*×S1111×S2233×S3322 - 

2×C11×C12×C12*×S1122×S2211×S3333 + 2×C11×C12×C12*×S1122×S2233×S3311 + 

2×C11×C12×C12*×S1133×S2211×S3322 - 2×C11×C12×C12*×S1133×S2222×S3311 - 

2×C11×C11*×C12*×S1111×S2222×S3333 + 2×C11×C11*×C12*×S1111×S2233×S3322 + 

2×C11×C11*×C12*×S1122×S2211×S3333 - 2×C11×C11*×C12*×S1122×S2233×S3311 - 

2×C11×C11*×C12*×S1133×S2211×S3322 + 2×C11×C11*×C12*×S1133×S2222×S3311 - 

4×C12×C11*×C12*×S1111×S2222×S3333 + 4×C12×C11*×C12*×S1111×S2233×S3322 + 

4×C12×C11*×C12*×S1122×S2211×S3333 - 4×C12×C11*×C12*×S1122×S2233×S3311 - 

4×C12×C11*×C12*×S1133×S2211×S3322 + 4×C12×C11*×C12*×S1133×S2222×S3311))/(3×C11×C12
2 + 

C11
3×S1111 + 2×C12

3×S1111 + C11
3×S2222 + 2×C12

3×S2222 + C11
3×S3333 + 2×C12

3×S3333 - C11
3 - 2×C12

3 - 

3×C11×C12
2×S1111 - C11

2×C11*×S1111 + C12
2×C11*×S1111 - 2×C12

2×C12*×S1111 - C11
2×C12*×S1122 - 

C12
2×C11*×S1122 - C11

2×C12*×S1133 - C12
2×C11*×S1133 - 3×C11×C12

2×S2222 - C11
2×C12*×S2211 - 

C12
2×C11*×S2211 - C11

2×C11*×S2222 + C12
2×C11*×S2222 - 2×C12

2×C12*×S2222 - C11
2×C12*×S2233 - 

C12
2×C11*×S2233 - 3×C11×C12

2×S3333 - C11
2×C12*×S3311 - C12

2×C11*×S3311 - C11
2×C12*×S3322 - 

C12
2×C11*×S3322 - C11

2×C11*×S3333 + C12
2×C11*×S3333 - 2×C12

2×C12*×S3333 - C11
3×S1111×S2222 + 

C11
3×S1122×S2211 - 2×C12

3×S1111×S2222 + 2×C12
3×S1122×S2211 - C11

3×S1111×S3333 + C11
3×S1133×S3311 - 

2×C12
3×S1111×S3333 + 2×C12

3×S1133×S3311 - C11
3×S2222×S3333 + C11

3×S2233×S3322 - 2×C12
3×S2222×S3333 
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+ 2×C12
3×S2233×S3322 + 2×C11×C12×C12*×S1111 + C11×C12×C11*×S1122 + C11×C12×C12*×S1122 + 

C11×C12×C11*×S1133 + C11×C12×C12*×S1133 + C11×C12×C11*×S2211 + C11×C12×C12*×S2211 + 

2×C11×C12×C12*×S2222 + C11×C12×C11*×S2233 + C11×C12×C12*×S2233 + C11×C12×C11*×S3311 + 

C11×C12×C12*×S3311 + C11×C12×C11*×S3322 + C11×C12×C12*×S3322 + 2×C11×C12×C12*×S3333 + 

3×C11×C12
2×S1111×S2222 - 3×C11×C12

2×S1122×S2211 - C11×C11*2×S1111×S2222 + C11×C11*2×S1122×S2211 

+ 2×C11
2×C11*×S1111×S2222 - 2×C11

2×C11*×S1122×S2211 + C11×C12*2×S1111×S2222 - 

C11×C12*2×S1122×S2211 - 2×C12
2×C11*×S1111×S2222 + 2×C12

2×C11*×S1122×S2211 - 

2×C12×C12*2×S1111×S2222 + 2×C12×C12*2×S1122×S2211 + 4×C12
2×C12*×S1111×S2222 - 

4×C12
2×C12*×S1122×S2211 + C11×C12*2×S1111×S2233 - C11×C12*2×S1133×S2211 + C12×C11*2×S1111×S2233 

- C12×C11*2×S1133×S2211 + C11
2×C12*×S1111×S2233 - C11

2×C12*×S1133×S2211 + C12
2×C11*×S1111×S2233 - 

C12
2×C11*×S1133×S2211 - C11×C12*2×S1122×S2233 + C11×C12*2×S1133×S2222 - C12×C11*2×S1122×S2233 + 

C12×C11*2×S1133×S2222 - C11
2×C12*×S1122×S2233 + C11

2×C12*×S1133×S2222 - C12
2×C11*×S1122×S2233 + 

C12
2×C11*×S1133×S2222 + 3×C11×C12

2×S1111×S3333 - 3×C11×C12
2×S1133×S3311 + C11×C12*2×S1111×S3322 

- C11×C12*2×S1122×S3311 + C12×C11*2×S1111×S3322 - C12×C11*2×S1122×S3311 + C11
2×C12*×S1111×S3322 - 

C11
2×C12*×S1122×S3311 + C12

2×C11*×S1111×S3322 - C12
2×C11*×S1122×S3311 - C11×C11*2×S1111×S3333 + 

C11×C11*2×S1133×S3311 + 2×C11
2×C11*×S1111×S3333 - 2×C11

2×C11*×S1133×S3311 + 

C11×C12*2×S1111×S3333 - C11×C12*2×S1133×S3311 - 2×C12
2×C11*×S1111×S3333 + 

2×C12
2×C11*×S1133×S3311 - 2×C12×C12*2×S1111×S3333 + 2×C12×C12*2×S1133×S3311 + 

4×C12
2×C12*×S1111×S3333 - 4×C12

2×C12*×S1133×S3311 + C11×C12*2×S1122×S3333 - 

C11×C12*2×S1133×S3322 + C12×C11*2×S1122×S3333 - C12×C11*2×S1133×S3322 + C11
2×C12*×S1122×S3333 - 

C11
2×C12*×S1133×S3322 + C12

2×C11*×S1122×S3333 - C12
2×C11*×S1133×S3322 + 3×C11×C12

2×S2222×S3333 - 

3×C11×C12
2×S2233×S3322 - C11×C12*2×S2211×S3322 + C11×C12*2×S2222×S3311 - C12×C11*2×S2211×S3322 + 

C12×C11*2×S2222×S3311 - C11
2×C12*×S2211×S3322 + C11

2×C12*×S2222×S3311 - C12
2×C11*×S2211×S3322 + 

C12
2×C11*×S2222×S3311 + C11×C12*2×S2211×S3333 - C11×C12*2×S2233×S3311 + C12×C11*2×S2211×S3333 - 

C12×C11*2×S2233×S3311 + C11
2×C12*×S2211×S3333 - C11

2×C12*×S2233×S3311 + C12
2×C11*×S2211×S3333 - 

C12
2×C11*×S2233×S3311 - C11×C11*2×S2222×S3333 + C11×C11*2×S2233×S3322 + 2×C11

2×C11*×S2222×S3333 
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- 2×C11
2×C11*×S2233×S3322 + C11×C12*2×S2222×S3333 - C11×C12*2×S2233×S3322 - 

2×C12
2×C11*×S2222×S3333 + 2×C12

2×C11*×S2233×S3322 - 2×C12×C12*2×S2222×S3333 + 

2×C12×C12*2×S2233×S3322 + 4×C12
2×C12*×S2222×S3333 - 4×C12

2×C12*×S2233×S3322 + 

C11
3×S1111×S2222×S3333 - C11

3×S1111×S2233×S3322 - C11
3×S1122×S2211×S3333 + C11

3×S1122×S2233×S3311 + 

C11
3×S1133×S2211×S3322 - C11

3×S1133×S2222×S3311 + 2×C12
3×S1111×S2222×S3333 - 

2×C12
3×S1111×S2233×S3322 - 2×C12

3×S1122×S2211×S3333 + 2×C12
3×S1122×S2233×S3311 + 

2×C12
3×S1133×S2211×S3322 - 2×C12

3×S1133×S2222×S3311 - C11*3×S1111×S2222×S3333 + 

C11*3×S1111×S2233×S3322 + C11*3×S1122×S2211×S3333 - C11*3×S1122×S2233×S3311 - 

C11*3×S1133×S2211×S3322 + C11*3×S1133×S2222×S3311 - 2×C12*3×S1111×S2222×S3333 + 

2×C12*3×S1111×S2233×S3322 + 2×C12*3×S1122×S2211×S3333 - 2×C12*3×S1122×S2233×S3311 - 

2×C12*3×S1133×S2211×S3322 + 2×C12*3×S1133×S2222×S3311 - 3×C11×C12
2×S1111×S2222×S3333 + 

3×C11×C12
2×S1111×S2233×S3322 + 3×C11×C12

2×S1122×S2211×S3333 - 3×C11×C12
2×S1122×S2233×S3311 - 

3×C11×C12
2×S1133×S2211×S3322 + 3×C11×C12

2×S1133×S2222×S3311 + 3×C11×C11*2×S1111×S2222×S3333 - 

3×C11×C11*2×S1111×S2233×S3322 - 3×C11×C11*2×S1122×S2211×S3333 + 3×C11×C11*2×S1122×S2233×S3311 

+ 3×C11×C11*2×S1133×S2211×S3322 - 3×C11×C11*2×S1133×S2222×S3311 - 3×C11
2×C11*×S1111×S2222×S3333 

+ 3×C11
2×C11*×S1111×S2233×S3322 + 3×C11

2×C11*×S1122×S2211×S3333 - 

3×C11
2×C11*×S1122×S2233×S3311 - 3×C11

2×C11*×S1133×S2211×S3322 + 3×C11
2×C11*×S1133×S2222×S3311 - 

3×C11×C12*2×S1111×S2222×S3333 + 3×C11×C12*2×S1111×S2233×S3322 + 3×C11×C12*2×S1122×S2211×S3333 

- 3×C11×C12*2×S1122×S2233×S3311 - 3×C11×C12*2×S1133×S2211×S3322 + 3×C11×C12*2×S1133×S2222×S3311 

+ 3×C12
2×C11*×S1111×S2222×S3333 - 3×C12

2×C11*×S1111×S2233×S3322 - 3×C12
2×C11*×S1122×S2211×S3333 

+ 3×C12
2×C11*×S1122×S2233×S3311 + 3×C12

2×C11*×S1133×S2211×S3322 - 

3×C12
2×C11*×S1133×S2222×S3311 + 6×C12×C12*2×S1111×S2222×S3333 - 6×C12×C12*2×S1111×S2233×S3322 - 

6×C12×C12*2×S1122×S2211×S3333 + 6×C12×C12*2×S1122×S2233×S3311 + 6×C12×C12*2×S1133×S2211×S3322 

- 6×C12×C12*2×S1133×S2222×S3311 - 6×C12
2×C12*×S1111×S2222×S3333 + 6×C12

2×C12*×S1111×S2233×S3322 

+ 6×C12
2×C12*×S1122×S2211×S3333 - 6×C12

2×C12*×S1122×S2233×S3311 - 6×C12
2×C12*×S1133×S2211×S3322 

+ 6×C12
2×C12*×S1133×S2222×S3311 + 3×C11*×C12*2×S1111×S2222×S3333 - 
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3×C11*×C12*2×S1111×S2233×S3322 - 3×C11*×C12*2×S1122×S2211×S3333 + 

3×C11*×C12*2×S1122×S2233×S3311 + 3×C11*×C12*2×S1133×S2211×S3322 - 

3×C11*×C12*2×S1133×S2222×S3311 - 4×C11×C12×C12*×S1111×S2222 + 4×C11×C12×C12*×S1122×S2211 - 

C11×C12×C11*×S1111×S2233 + C11×C12×C11*×S1133×S2211 - C11×C12×C12*×S1111×S2233 + 

C11×C12×C12*×S1133×S2211 + C11×C12×C11*×S1122×S2233 - C11×C12×C11*×S1133×S2222 + 

C11×C12×C12*×S1122×S2233 - C11×C12×C12*×S1133×S2222 + 2×C12×C11*×C12*×S1111×S2222 - 

2×C12×C11*×C12*×S1122×S2211 - C11×C11*×C12*×S1111×S2233 + C11×C11*×C12*×S1133×S2211 - 

C12×C11*×C12*×S1111×S2233 + C12×C11*×C12*×S1133×S2211 + C11×C11*×C12*×S1122×S2233 - 

C11×C11*×C12*×S1133×S2222 + C12×C11*×C12*×S1122×S2233 - C12×C11*×C12*×S1133×S2222 - 

C11×C12×C11*×S1111×S3322 + C11×C12×C11*×S1122×S3311 - C11×C12×C12*×S1111×S3322 + 

C11×C12×C12*×S1122×S3311 - 4×C11×C12×C12*×S1111×S3333 + 4×C11×C12×C12*×S1133×S3311 - 

C11×C12×C11*×S1122×S3333 + C11×C12×C11*×S1133×S3322 - C11×C12×C12*×S1122×S3333 + 

C11×C12×C12*×S1133×S3322 - C11×C11*×C12*×S1111×S3322 + C11×C11*×C12*×S1122×S3311 - 

C12×C11*×C12*×S1111×S3322 + C12×C11*×C12*×S1122×S3311 + 2×C12×C11*×C12*×S1111×S3333 - 

2×C12×C11*×C12*×S1133×S3311 - C11×C11*×C12*×S1122×S3333 + C11×C11*×C12*×S1133×S3322 - 

C12×C11*×C12*×S1122×S3333 + C12×C11*×C12*×S1133×S3322 + C11×C12×C11*×S2211×S3322 - 

C11×C12×C11*×S2222×S3311 + C11×C12×C12*×S2211×S3322 - C11×C12×C12*×S2222×S3311 - 

C11×C12×C11*×S2211×S3333 + C11×C12×C11*×S2233×S3311 - C11×C12×C12*×S2211×S3333 + 

C11×C12×C12*×S2233×S3311 - 4×C11×C12×C12*×S2222×S3333 + 4×C11×C12×C12*×S2233×S3322 + 

C11×C11*×C12*×S2211×S3322 - C11×C11*×C12*×S2222×S3311 + C12×C11*×C12*×S2211×S3322 - 

C12×C11*×C12*×S2222×S3311 - C11×C11*×C12*×S2211×S3333 + C11×C11*×C12*×S2233×S3311 - 

C12×C11*×C12*×S2211×S3333 + C12×C11*×C12*×S2233×S3311 + 2×C12×C11*×C12*×S2222×S3333 - 

2×C12×C11*×C12*×S2233×S3322 + 6×C11×C12×C12*×S1111×S2222×S3333 - 

6×C11×C12×C12*×S1111×S2233×S3322 - 6×C11×C12×C12*×S1122×S2211×S3333 + 

6×C11×C12×C12*×S1122×S2233×S3311 + 6×C11×C12×C12*×S1133×S2211×S3322 - 

6×C11×C12×C12*×S1133×S2222×S3311 - 6×C12×C11*×C12*×S1111×S2222×S3333 + 
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6×C12×C11*×C12*×S1111×S2233×S3322 + 6×C12×C11*×C12*×S1122×S2211×S3333 - 

6×C12×C11*×C12*×S1122×S2233×S3311 - 6×C12×C11*×C12*×S1133×S2211×S3322 + 

6×C12×C11*×C12*×S1133×S2222×S3311) 
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22σ =-(ε×(C11* + 2×C12*)×(3×C11×C12
2 + C11

3×S1111 + 2×C12
3×S1111 + C11

3×S2222 + 2×C12
3×S2222 + 

C11
3×S3333 + 2×C12

3×S3333 - C11
3 - 2×C12

3 - 3×C11×C12
2×S1111 - C11

2×C11*×S1111 + C11
2×C12*×S1111 

+ C12
2×C11*×S1111 - C12

2×C12*×S1111 - C12
2×C11*×S1122 + C12

2×C12*×S1122 - C12
2×C11*×S1133 + 

C12
2×C12*×S1133 - 3×C11×C12

2×S2222 + C11
2×C11*×S2211 - C11

2×C12*×S2211 + 2×C12
2×C11*×S2222 - 

2×C12
2×C12*×S2222 + C11

2×C11*×S2233 - C11
2×C12*×S2233 - 3×C11×C12

2×S3333 - C12
2×C11*×S3311 + 

C12
2×C12*×S3311 - C12

2×C11*×S3322 + C12
2×C12*×S3322 - C11

2×C11*×S3333 + C11
2×C12*×S3333 + 

C12
2×C11*×S3333 - C12

2×C12*×S3333 - C11
3×S1111×S2222 + C11

3×S1122×S2211 - 2×C12
3×S1111×S2222 + 

2×C12
3×S1122×S2211 - C11

3×S1111×S3333 + C11
3×S1133×S3311 - 2×C12

3×S1111×S3333 + 2×C12
3×S1133×S3311 

- C11
3×S2222×S3333 + C11

3×S2233×S3322 - 2×C12
3×S2222×S3333 + 2×C12

3×S2233×S3322 + 

C11×C12×C11*×S1122 - C11×C12×C12*×S1122 + C11×C12×C11*×S1133 - C11×C12×C12*×S1133 - 

C11×C12×C11*×S2211 + C11×C12×C12*×S2211 - 2×C11×C12×C11*×S2222 + 2×C11×C12×C12*×S2222 - 

C11×C12×C11*×S2233 + C11×C12×C12*×S2233 + C11×C12×C11*×S3311 - C11×C12×C12*×S3311 + 

C11×C12×C11*×S3322 - C11×C12×C12*×S3322 + 3×C11×C12
2×S1111×S2222 - 3×C11×C12

2×S1122×S2211 + 

C11
2×C11*×S1111×S2222 - C11

2×C11*×S1122×S2211 - C12×C11*2×S1111×S2222 + C12×C11*2×S1122×S2211 - 

C11
2×C12*×S1111×S2222 + C11

2×C12*×S1122×S2211 - 3×C12
2×C11*×S1111×S2222 + 

3×C12
2×C11*×S1122×S2211 - C12×C12*2×S1111×S2222 + C12×C12*2×S1122×S2211 + 

3×C12
2×C12*×S1111×S2222 - 3×C12

2×C12*×S1122×S2211 + C11×C11*2×S1111×S2233 - 

C11×C11*2×S1133×S2211 - C11
2×C11*×S1111×S2233 + C11

2×C11*×S1133×S2211 + C11×C12*2×S1111×S2233 - 

C11×C12*2×S1133×S2211 + C11
2×C12*×S1111×S2233 - C11

2×C12*×S1133×S2211 - C12×C11*2×S1122×S2233 + 

C12×C11*2×S1133×S2222 - C12
2×C11*×S1122×S2233 + C12

2×C11*×S1133×S2222 - C12×C12*2×S1122×S2233 + 

C12×C12*2×S1133×S2222 + C12
2×C12*×S1122×S2233 - C12

2×C12*×S1133×S2222 + 3×C11×C12
2×S1111×S3333 - 

3×C11×C12
2×S1133×S3311 + C12×C11*2×S1111×S3322 - C12×C11*2×S1122×S3311 + C12

2×C11*×S1111×S3322 - 

C12
2×C11*×S1122×S3311 + C12×C12*2×S1111×S3322 - C12×C12*2×S1122×S3311 - C12

2×C12*×S1111×S3322 + 

C12
2×C12*×S1122×S3311 - C11×C11*2×S1111×S3333 + C11×C11*2×S1133×S3311 + 2×C11

2×C11*×S1111×S3333 

- 2×C11
2×C11*×S1133×S3311 - C11×C12*2×S1111×S3333 + C11×C12*2×S1133×S3311 - 
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2×C11
2×C12*×S1111×S3333 + 2×C11

2×C12*×S1133×S3311 - 2×C12
2×C11*×S1111×S3333 + 

2×C12
2×C11*×S1133×S3311 + 2×C12

2×C12*×S1111×S3333 - 2×C12
2×C12*×S1133×S3311 + 

C12×C11*2×S1122×S3333 - C12×C11*2×S1133×S3322 + C12
2×C11*×S1122×S3333 - C12

2×C11*×S1133×S3322 + 

C12×C12*2×S1122×S3333 - C12×C12*2×S1133×S3322 - C12
2×C12*×S1122×S3333 + C12

2×C12*×S1133×S3322 + 

3×C11×C12
2×S2222×S3333 - 3×C11×C12

2×S2233×S3322 - C12×C11*2×S2211×S3322 + C12×C11*2×S2222×S3311 

- C12
2×C11*×S2211×S3322 + C12

2×C11*×S2222×S3311 - C12×C12*2×S2211×S3322 + C12×C12*2×S2222×S3311 

+ C12
2×C12*×S2211×S3322 - C12

2×C12*×S2222×S3311 + C11×C11*2×S2211×S3333 - C11×C11*2×S2233×S3311 - 

C11
2×C11*×S2211×S3333 + C11

2×C11*×S2233×S3311 + C11×C12*2×S2211×S3333 - C11×C12*2×S2233×S3311 + 

C11
2×C12*×S2211×S3333 - C11

2×C12*×S2233×S3311 + C11
2×C11*×S2222×S3333 - C11

2×C11*×S2233×S3322 - 

C12×C11*2×S2222×S3333 + C12×C11*2×S2233×S3322 - C11
2×C12*×S2222×S3333 + C11

2×C12*×S2233×S3322 - 

3×C12
2×C11*×S2222×S3333 + 3×C12

2×C11*×S2233×S3322 - C12×C12*2×S2222×S3333 + 

C12×C12*2×S2233×S3322 + 3×C12
2×C12*×S2222×S3333 - 3×C12

2×C12*×S2233×S3322 + 

C11
3×S1111×S2222×S3333 - C11

3×S1111×S2233×S3322 - C11
3×S1122×S2211×S3333 + C11

3×S1122×S2233×S3311 + 

C11
3×S1133×S2211×S3322 - C11

3×S1133×S2222×S3311 + 2×C12
3×S1111×S2222×S3333 - 

2×C12
3×S1111×S2233×S3322 - 2×C12

3×S1122×S2211×S3333 + 2×C12
3×S1122×S2233×S3311 + 

2×C12
3×S1133×S2211×S3322 - 2×C12

3×S1133×S2222×S3311 - 3×C11×C12
2×S1111×S2222×S3333 + 

3×C11×C12
2×S1111×S2233×S3322 + 3×C11×C12

2×S1122×S2211×S3333 - 3×C11×C12
2×S1122×S2233×S3311 - 

3×C11×C12
2×S1133×S2211×S3322 + 3×C11×C12

2×S1133×S2222×S3311 + C11×C11*2×S1111×S2222×S3333 - 

C11×C11*2×S1111×S2233×S3322 - C11×C11*2×S1122×S2211×S3333 + C11×C11*2×S1122×S2233×S3311 + 

C11×C11*2×S1133×S2211×S3322 - C11×C11*2×S1133×S2222×S3311 - 2×C11
2×C11*×S1111×S2222×S3333 + 

2×C11
2×C11*×S1111×S2233×S3322 + 2×C11

2×C11*×S1122×S2211×S3333 - 2×C11
2×C11*×S1122×S2233×S3311 - 

2×C11
2×C11*×S1133×S2211×S3322 + 2×C11

2×C11*×S1133×S2222×S3311 + C11×C12*2×S1111×S2222×S3333 - 

C11×C12*2×S1111×S2233×S3322 - C11×C12*2×S1122×S2211×S3333 + C11×C12*2×S1122×S2233×S3311 + 

C11×C12*2×S1133×S2211×S3322 - C11×C12*2×S1133×S2222×S3311 + 2×C12×C11*2×S1111×S2222×S3333 - 

2×C12×C11*2×S1111×S2233×S3322 - 2×C12×C11*2×S1122×S2211×S3333 + 2×C12×C11*2×S1122×S2233×S3311 

+ 2×C12×C11*2×S1133×S2211×S3322 - 2×C12×C11*2×S1133×S2222×S3311 + 
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2×C11
2×C12*×S1111×S2222×S3333 - 2×C11

2×C12*×S1111×S2233×S3322 - 2×C11
2×C12*×S1122×S2211×S3333 + 

2×C11
2×C12*×S1122×S2233×S3311 + 2×C11

2×C12*×S1133×S2211×S3322 - 2×C11
2×C12*×S1133×S2222×S3311 

+ 4×C12
2×C11*×S1111×S2222×S3333 - 4×C12

2×C11*×S1111×S2233×S3322 - 4×C12
2×C11*×S1122×S2211×S3333 

+ 4×C12
2×C11*×S1122×S2233×S3311 + 4×C12

2×C11*×S1133×S2211×S3322 - 

4×C12
2×C11*×S1133×S2222×S3311 + 2×C12×C12*2×S1111×S2222×S3333 - 2×C12×C12*2×S1111×S2233×S3322 - 

2×C12×C12*2×S1122×S2211×S3333 + 2×C12×C12*2×S1122×S2233×S3311 + 2×C12×C12*2×S1133×S2211×S3322 

- 2×C12×C12*2×S1133×S2222×S3311 - 4×C12
2×C12*×S1111×S2222×S3333 + 4×C12

2×C12*×S1111×S2233×S3322 

+ 4×C12
2×C12*×S1122×S2211×S3333 - 4×C12

2×C12*×S1122×S2233×S3311 - 4×C12
2×C12*×S1133×S2211×S3322 

+ 4×C12
2×C12*×S1133×S2222×S3311 + 2×C11×C12×C11*×S1111×S2222 - 2×C11×C12×C11*×S1122×S2211 - 

2×C11×C12×C12*×S1111×S2222 + 2×C11×C12×C12*×S1122×S2211 + C11×C12×C11*×S1111×S2233 - 

C11×C12×C11*×S1133×S2211 - C11×C12×C12*×S1111×S2233 + C11×C12×C12*×S1133×S2211 + 

C11×C12×C11*×S1122×S2233 - C11×C12×C11*×S1133×S2222 - C11×C12×C12*×S1122×S2233 + 

C11×C12×C12*×S1133×S2222 + 2×C12×C11*×C12*×S1111×S2222 - 2×C12×C11*×C12*×S1122×S2211 - 

2×C11×C11*×C12*×S1111×S2233 + 2×C11×C11*×C12*×S1133×S2211 + 2×C12×C11*×C12*×S1122×S2233 - 

2×C12×C11*×C12*×S1133×S2222 - C11×C12×C11*×S1111×S3322 + C11×C12×C11*×S1122×S3311 + 

C11×C12×C12*×S1111×S3322 - C11×C12×C12*×S1122×S3311 - C11×C12×C11*×S1122×S3333 + 

C11×C12×C11*×S1133×S3322 + C11×C12×C12*×S1122×S3333 - C11×C12×C12*×S1133×S3322 - 

2×C12×C11*×C12*×S1111×S3322 + 2×C12×C11*×C12*×S1122×S3311 + 2×C11×C11*×C12*×S1111×S3333 - 

2×C11×C11*×C12*×S1133×S3311 - 2×C12×C11*×C12*×S1122×S3333 + 2×C12×C11*×C12*×S1133×S3322 + 

C11×C12×C11*×S2211×S3322 - C11×C12×C11*×S2222×S3311 - C11×C12×C12*×S2211×S3322 + 

C11×C12×C12*×S2222×S3311 + C11×C12×C11*×S2211×S3333 - C11×C12×C11*×S2233×S3311 - 

C11×C12×C12*×S2211×S3333 + C11×C12×C12*×S2233×S3311 + 2×C11×C12×C11*×S2222×S3333 - 

2×C11×C12×C11*×S2233×S3322 - 2×C11×C12×C12*×S2222×S3333 + 2×C11×C12×C12*×S2233×S3322 + 

2×C12×C11*×C12*×S2211×S3322 - 2×C12×C11*×C12*×S2222×S3311 - 2×C11×C11*×C12*×S2211×S3333 + 

2×C11×C11*×C12*×S2233×S3311 + 2×C12×C11*×C12*×S2222×S3333 - 2×C12×C11*×C12*×S2233×S3322 - 

2×C11×C12×C11*×S1111×S2222×S3333 + 2×C11×C12×C11*×S1111×S2233×S3322 + 
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2×C11×C12×C11*×S1122×S2211×S3333 - 2×C11×C12×C11*×S1122×S2233×S3311 - 

2×C11×C12×C11*×S1133×S2211×S3322 + 2×C11×C12×C11*×S1133×S2222×S3311 + 

2×C11×C12×C12*×S1111×S2222×S3333 - 2×C11×C12×C12*×S1111×S2233×S3322 - 

2×C11×C12×C12*×S1122×S2211×S3333 + 2×C11×C12×C12*×S1122×S2233×S3311 + 

2×C11×C12×C12*×S1133×S2211×S3322 - 2×C11×C12×C12*×S1133×S2222×S3311 - 

2×C11×C11*×C12*×S1111×S2222×S3333 + 2×C11×C11*×C12*×S1111×S2233×S3322 + 

2×C11×C11*×C12*×S1122×S2211×S3333 - 2×C11×C11*×C12*×S1122×S2233×S3311 - 

2×C11×C11*×C12*×S1133×S2211×S3322 + 2×C11×C11*×C12*×S1133×S2222×S3311 - 

4×C12×C11*×C12*×S1111×S2222×S3333 + 4×C12×C11*×C12*×S1111×S2233×S3322 + 

4×C12×C11*×C12*×S1122×S2211×S3333 - 4×C12×C11*×C12*×S1122×S2233×S3311 - 

4×C12×C11*×C12*×S1133×S2211×S3322 + 4×C12×C11*×C12*×S1133×S2222×S3311))/(3×C11×C12
2 + 

C11
3×S1111 + 2×C12

3×S1111 + C11
3×S2222 + 2×C12

3×S2222 + C11
3×S3333 + 2×C12

3×S3333 - C11
3 - 2×C12

3 - 

3×C11×C12
2×S1111 - C11

2×C11*×S1111 + C12
2×C11*×S1111 - 2×C12

2×C12*×S1111 - C11
2×C12*×S1122 - 

C12
2×C11*×S1122 - C11

2×C12*×S1133 - C12
2×C11*×S1133 - 3×C11×C12

2×S2222 - C11
2×C12*×S2211 - 

C12
2×C11*×S2211 - C11

2×C11*×S2222 + C12
2×C11*×S2222 - 2×C12

2×C12*×S2222 - C11
2×C12*×S2233 - 

C12
2×C11*×S2233 - 3×C11×C12

2×S3333 - C11
2×C12*×S3311 - C12

2×C11*×S3311 - C11
2×C12*×S3322 - 

C12
2×C11*×S3322 - C11

2×C11*×S3333 + C12
2×C11*×S3333 - 2×C12

2×C12*×S3333 - C11
3×S1111×S2222 + 

C11
3×S1122×S2211 - 2×C12

3×S1111×S2222 + 2×C12
3×S1122×S2211 - C11

3×S1111×S3333 + C11
3×S1133×S3311 - 

2×C12
3×S1111×S3333 + 2×C12

3×S1133×S3311 - C11
3×S2222×S3333 + C11

3×S2233×S3322 - 2×C12
3×S2222×S3333 

+ 2×C12
3×S2233×S3322 + 2×C11×C12×C12*×S1111 + C11×C12×C11*×S1122 + C11×C12×C12*×S1122 + 

C11×C12×C11*×S1133 + C11×C12×C12*×S1133 + C11×C12×C11*×S2211 + C11×C12×C12*×S2211 + 

2×C11×C12×C12*×S2222 + C11×C12×C11*×S2233 + C11×C12×C12*×S2233 + C11×C12×C11*×S3311 + 

C11×C12×C12*×S3311 + C11×C12×C11*×S3322 + C11×C12×C12*×S3322 + 2×C11×C12×C12*×S3333 + 

3×C11×C12
2×S1111×S2222 - 3×C11×C12

2×S1122×S2211 - C11×C11*2×S1111×S2222 + C11×C11*2×S1122×S2211 

+ 2×C11
2×C11*×S1111×S2222 - 2×C11

2×C11*×S1122×S2211 + C11×C12*2×S1111×S2222 - 

C11×C12*2×S1122×S2211 - 2×C12
2×C11*×S1111×S2222 + 2×C12

2×C11*×S1122×S2211 - 
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2×C12×C12*2×S1111×S2222 + 2×C12×C12*2×S1122×S2211 + 4×C12
2×C12*×S1111×S2222 - 

4×C12
2×C12*×S1122×S2211 + C11×C12*2×S1111×S2233 - C11×C12*2×S1133×S2211 + C12×C11*2×S1111×S2233 

- C12×C11*2×S1133×S2211 + C11
2×C12*×S1111×S2233 - C11

2×C12*×S1133×S2211 + C12
2×C11*×S1111×S2233 - 

C12
2×C11*×S1133×S2211 - C11×C12*2×S1122×S2233 + C11×C12*2×S1133×S2222 - C12×C11*2×S1122×S2233 + 

C12×C11*2×S1133×S2222 - C11
2×C12*×S1122×S2233 + C11

2×C12*×S1133×S2222 - C12
2×C11*×S1122×S2233 + 

C12
2×C11*×S1133×S2222 + 3×C11×C12

2×S1111×S3333 - 3×C11×C12
2×S1133×S3311 + C11×C12*2×S1111×S3322 

- C11×C12*2×S1122×S3311 + C12×C11*2×S1111×S3322 - C12×C11*2×S1122×S3311 + C11
2×C12*×S1111×S3322 - 

C11
2×C12*×S1122×S3311 + C12

2×C11*×S1111×S3322 - C12
2×C11*×S1122×S3311 - C11×C11*2×S1111×S3333 + 

C11×C11*2×S1133×S3311 + 2×C11
2×C11*×S1111×S3333 - 2×C11

2×C11*×S1133×S3311 + 

C11×C12*2×S1111×S3333 - C11×C12*2×S1133×S3311 - 2×C12
2×C11*×S1111×S3333 + 

2×C12
2×C11*×S1133×S3311 - 2×C12×C12*2×S1111×S3333 + 2×C12×C12*2×S1133×S3311 + 

4×C12
2×C12*×S1111×S3333 - 4×C12

2×C12*×S1133×S3311 + C11×C12*2×S1122×S3333 - 

C11×C12*2×S1133×S3322 + C12×C11*2×S1122×S3333 - C12×C11*2×S1133×S3322 + C11
2×C12*×S1122×S3333 - 

C11
2×C12*×S1133×S3322 + C12

2×C11*×S1122×S3333 - C12
2×C11*×S1133×S3322 + 3×C11×C12

2×S2222×S3333 - 

3×C11×C12
2×S2233×S3322 - C11×C12*2×S2211×S3322 + C11×C12*2×S2222×S3311 - C12×C11*2×S2211×S3322 + 

C12×C11*2×S2222×S3311 - C11
2×C12*×S2211×S3322 + C11

2×C12*×S2222×S3311 - C12
2×C11*×S2211×S3322 + 

C12
2×C11*×S2222×S3311 + C11×C12*2×S2211×S3333 - C11×C12*2×S2233×S3311 + C12×C11*2×S2211×S3333 - 

C12×C11*2×S2233×S3311 + C11
2×C12*×S2211×S3333 - C11

2×C12*×S2233×S3311 + C12
2×C11*×S2211×S3333 - 

C12
2×C11*×S2233×S3311 - C11×C11*2×S2222×S3333 + C11×C11*2×S2233×S3322 + 2×C11

2×C11*×S2222×S3333 

- 2×C11
2×C11*×S2233×S3322 + C11×C12*2×S2222×S3333 - C11×C12*2×S2233×S3322 - 

2×C12
2×C11*×S2222×S3333 + 2×C12

2×C11*×S2233×S3322 - 2×C12×C12*2×S2222×S3333 + 

2×C12×C12*2×S2233×S3322 + 4×C12
2×C12*×S2222×S3333 - 4×C12

2×C12*×S2233×S3322 + 

C11
3×S1111×S2222×S3333 - C11

3×S1111×S2233×S3322 - C11
3×S1122×S2211×S3333 + C11

3×S1122×S2233×S3311 + 

C11
3×S1133×S2211×S3322 - C11

3×S1133×S2222×S3311 + 2×C12
3×S1111×S2222×S3333 - 

2×C12
3×S1111×S2233×S3322 - 2×C12

3×S1122×S2211×S3333 + 2×C12
3×S1122×S2233×S3311 + 

2×C12
3×S1133×S2211×S3322 - 2×C12

3×S1133×S2222×S3311 - C11*3×S1111×S2222×S3333 + 
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C11*3×S1111×S2233×S3322 + C11*3×S1122×S2211×S3333 - C11*3×S1122×S2233×S3311 - 

C11*3×S1133×S2211×S3322 + C11*3×S1133×S2222×S3311 - 2×C12*3×S1111×S2222×S3333 + 

2×C12*3×S1111×S2233×S3322 + 2×C12*3×S1122×S2211×S3333 - 2×C12*3×S1122×S2233×S3311 - 

2×C12*3×S1133×S2211×S3322 + 2×C12*3×S1133×S2222×S3311 - 3×C11×C12
2×S1111×S2222×S3333 + 

3×C11×C12
2×S1111×S2233×S3322 + 3×C11×C12

2×S1122×S2211×S3333 - 3×C11×C12
2×S1122×S2233×S3311 - 

3×C11×C12
2×S1133×S2211×S3322 + 3×C11×C12

2×S1133×S2222×S3311 + 3×C11×C11*2×S1111×S2222×S3333 - 

3×C11×C11*2×S1111×S2233×S3322 - 3×C11×C11*2×S1122×S2211×S3333 + 3×C11×C11*2×S1122×S2233×S3311 

+ 3×C11×C11*2×S1133×S2211×S3322 - 3×C11×C11*2×S1133×S2222×S3311 - 3×C11
2×C11*×S1111×S2222×S3333 

+ 3×C11
2×C11*×S1111×S2233×S3322 + 3×C11

2×C11*×S1122×S2211×S3333 - 

3×C11
2×C11*×S1122×S2233×S3311 - 3×C11

2×C11*×S1133×S2211×S3322 + 3×C11
2×C11*×S1133×S2222×S3311 - 

3×C11×C12*2×S1111×S2222×S3333 + 3×C11×C12*2×S1111×S2233×S3322 + 3×C11×C12*2×S1122×S2211×S3333 

- 3×C11×C12*2×S1122×S2233×S3311 - 3×C11×C12*2×S1133×S2211×S3322 + 3×C11×C12*2×S1133×S2222×S3311 

+ 3×C12
2×C11*×S1111×S2222×S3333 - 3×C12

2×C11*×S1111×S2233×S3322 - 3×C12
2×C11*×S1122×S2211×S3333 

+ 3×C12
2×C11*×S1122×S2233×S3311 + 3×C12

2×C11*×S1133×S2211×S3322 - 

3×C12
2×C11*×S1133×S2222×S3311 + 6×C12×C12*2×S1111×S2222×S3333 - 6×C12×C12*2×S1111×S2233×S3322 - 

6×C12×C12*2×S1122×S2211×S3333 + 6×C12×C12*2×S1122×S2233×S3311 + 6×C12×C12*2×S1133×S2211×S3322 

- 6×C12×C12*2×S1133×S2222×S3311 - 6×C12
2×C12*×S1111×S2222×S3333 + 6×C12

2×C12*×S1111×S2233×S3322 

+ 6×C12
2×C12*×S1122×S2211×S3333 - 6×C12

2×C12*×S1122×S2233×S3311 - 6×C12
2×C12*×S1133×S2211×S3322 

+ 6×C12
2×C12*×S1133×S2222×S3311 + 3×C11*×C12*2×S1111×S2222×S3333 - 

3×C11*×C12*2×S1111×S2233×S3322 - 3×C11*×C12*2×S1122×S2211×S3333 + 

3×C11*×C12*2×S1122×S2233×S3311 + 3×C11*×C12*2×S1133×S2211×S3322 - 

3×C11*×C12*2×S1133×S2222×S3311 - 4×C11×C12×C12*×S1111×S2222 + 4×C11×C12×C12*×S1122×S2211 - 

C11×C12×C11*×S1111×S2233 + C11×C12×C11*×S1133×S2211 - C11×C12×C12*×S1111×S2233 + 

C11×C12×C12*×S1133×S2211 + C11×C12×C11*×S1122×S2233 - C11×C12×C11*×S1133×S2222 + 

C11×C12×C12*×S1122×S2233 - C11×C12×C12*×S1133×S2222 + 2×C12×C11*×C12*×S1111×S2222 - 

2×C12×C11*×C12*×S1122×S2211 - C11×C11*×C12*×S1111×S2233 + C11×C11*×C12*×S1133×S2211 - 
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C12×C11*×C12*×S1111×S2233 + C12×C11*×C12*×S1133×S2211 + C11×C11*×C12*×S1122×S2233 - 

C11×C11*×C12*×S1133×S2222 + C12×C11*×C12*×S1122×S2233 - C12×C11*×C12*×S1133×S2222 - 

C11×C12×C11*×S1111×S3322 + C11×C12×C11*×S1122×S3311 - C11×C12×C12*×S1111×S3322 + 

C11×C12×C12*×S1122×S3311 - 4×C11×C12×C12*×S1111×S3333 + 4×C11×C12×C12*×S1133×S3311 - 

C11×C12×C11*×S1122×S3333 + C11×C12×C11*×S1133×S3322 - C11×C12×C12*×S1122×S3333 + 

C11×C12×C12*×S1133×S3322 - C11×C11*×C12*×S1111×S3322 + C11×C11*×C12*×S1122×S3311 - 

C12×C11*×C12*×S1111×S3322 + C12×C11*×C12*×S1122×S3311 + 2×C12×C11*×C12*×S1111×S3333 - 

2×C12×C11*×C12*×S1133×S3311 - C11×C11*×C12*×S1122×S3333 + C11×C11*×C12*×S1133×S3322 - 

C12×C11*×C12*×S1122×S3333 + C12×C11*×C12*×S1133×S3322 + C11×C12×C11*×S2211×S3322 - 

C11×C12×C11*×S2222×S3311 + C11×C12×C12*×S2211×S3322 - C11×C12×C12*×S2222×S3311 - 

C11×C12×C11*×S2211×S3333 + C11×C12×C11*×S2233×S3311 - C11×C12×C12*×S2211×S3333 + 

C11×C12×C12*×S2233×S3311 - 4×C11×C12×C12*×S2222×S3333 + 4×C11×C12×C12*×S2233×S3322 + 

C11×C11*×C12*×S2211×S3322 - C11×C11*×C12*×S2222×S3311 + C12×C11*×C12*×S2211×S3322 - 

C12×C11*×C12*×S2222×S3311 - C11×C11*×C12*×S2211×S3333 + C11×C11*×C12*×S2233×S3311 - 

C12×C11*×C12*×S2211×S3333 + C12×C11*×C12*×S2233×S3311 + 2×C12×C11*×C12*×S2222×S3333 - 

2×C12×C11*×C12*×S2233×S3322 + 6×C11×C12×C12*×S1111×S2222×S3333 - 

6×C11×C12×C12*×S1111×S2233×S3322 - 6×C11×C12×C12*×S1122×S2211×S3333 + 

6×C11×C12×C12*×S1122×S2233×S3311 + 6×C11×C12×C12*×S1133×S2211×S3322 - 

6×C11×C12×C12*×S1133×S2222×S3311 - 6×C12×C11*×C12*×S1111×S2222×S3333 + 

6×C12×C11*×C12*×S1111×S2233×S3322 + 6×C12×C11*×C12*×S1122×S2211×S3333 - 

6×C12×C11*×C12*×S1122×S2233×S3311 - 6×C12×C11*×C12*×S1133×S2211×S3322 + 

6×C12×C11*×C12*×S1133×S2222×S3311) 
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33σ = -(ε×(C11* + 2×C12*)×(3×C11×C12
2 + C11

3×S1111 + 2×C12
3×S1111 + C11

3×S2222 + 2×C12
3×S2222 + 

C11
3×S3333 + 2×C12

3×S3333 - C11
3 - 2×C12

3 - 3×C11×C12
2×S1111 - C11

2×C11*×S1111 + C11
2×C12*×S1111 

+ C12
2×C11*×S1111 - C12

2×C12*×S1111 - C12
2×C11*×S1122 + C12

2×C12*×S1122 - C12
2×C11*×S1133 + 

C12
2×C12*×S1133 - 3×C11×C12

2×S2222 - C12
2×C11*×S2211 + C12

2×C12*×S2211 - C11
2×C11*×S2222 + 

C11
2×C12*×S2222 + C12

2×C11*×S2222 - C12
2×C12*×S2222 - C12

2×C11*×S2233 + C12
2×C12*×S2233 - 

3×C11×C12
2×S3333 + C11

2×C11*×S3311 - C11
2×C12*×S3311 + C11

2×C11*×S3322 - C11
2×C12*×S3322 + 

2×C12
2×C11*×S3333 - 2×C12

2×C12*×S3333 - C11
3×S1111×S2222 + C11

3×S1122×S2211 - 2×C12
3×S1111×S2222 

+ 2×C12
3×S1122×S2211 - C11

3×S1111×S3333 + C11
3×S1133×S3311 - 2×C12

3×S1111×S3333 + 

2×C12
3×S1133×S3311 - C11

3×S2222×S3333 + C11
3×S2233×S3322 - 2×C12

3×S2222×S3333 + 2×C12
3×S2233×S3322 

+ C11×C12×C11*×S1122 - C11×C12×C12*×S1122 + C11×C12×C11*×S1133 - C11×C12×C12*×S1133 + 

C11×C12×C11*×S2211 - C11×C12×C12*×S2211 + C11×C12×C11*×S2233 - C11×C12×C12*×S2233 - 

C11×C12×C11*×S3311 + C11×C12×C12*×S3311 - C11×C12×C11*×S3322 + C11×C12×C12*×S3322 - 

2×C11×C12×C11*×S3333 + 2×C11×C12×C12*×S3333 + 3×C11×C12
2×S1111×S2222 - 

3×C11×C12
2×S1122×S2211 - C11×C11*2×S1111×S2222 + C11×C11*2×S1122×S2211 + 

2×C11
2×C11*×S1111×S2222 - 2×C11

2×C11*×S1122×S2211 - C11×C12*2×S1111×S2222 + 

C11×C12*2×S1122×S2211 - 2×C11
2×C12*×S1111×S2222 + 2×C11

2×C12*×S1122×S2211 - 

2×C12
2×C11*×S1111×S2222 + 2×C12

2×C11*×S1122×S2211 + 2×C12
2×C12*×S1111×S2222 - 

2×C12
2×C12*×S1122×S2211 + C12×C11*2×S1111×S2233 - C12×C11*2×S1133×S2211 + C12

2×C11*×S1111×S2233 

- C12
2×C11*×S1133×S2211 + C12×C12*2×S1111×S2233 - C12×C12*2×S1133×S2211 - C12

2×C12*×S1111×S2233 + 

C12
2×C12*×S1133×S2211 - C12×C11*2×S1122×S2233 + C12×C11*2×S1133×S2222 - C12

2×C11*×S1122×S2233 + 

C12
2×C11*×S1133×S2222 - C12×C12*2×S1122×S2233 + C12×C12*2×S1133×S2222 + C12

2×C12*×S1122×S2233 - 

C12
2×C12*×S1133×S2222 + 3×C11×C12

2×S1111×S3333 - 3×C11×C12
2×S1133×S3311 + C11×C11*2×S1111×S3322 

- C11×C11*2×S1122×S3311 - C11
2×C11*×S1111×S3322 + C11

2×C11*×S1122×S3311 + C11×C12*2×S1111×S3322 - 

C11×C12*2×S1122×S3311 + C11
2×C12*×S1111×S3322 - C11

2×C12*×S1122×S3311 + C11
2×C11*×S1111×S3333 - 

C11
2×C11*×S1133×S3311 - C12×C11*2×S1111×S3333 + C12×C11*2×S1133×S3311 - C11

2×C12*×S1111×S3333 + 
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C11
2×C12*×S1133×S3311 - 3×C12

2×C11*×S1111×S3333 + 3×C12
2×C11*×S1133×S3311 - 

C12×C12*2×S1111×S3333 + C12×C12*2×S1133×S3311 + 3×C12
2×C12*×S1111×S3333 - 

3×C12
2×C12*×S1133×S3311 + C12×C11*2×S1122×S3333 - C12×C11*2×S1133×S3322 + C12

2×C11*×S1122×S3333 

- C12
2×C11*×S1133×S3322 + C12×C12*2×S1122×S3333 - C12×C12*2×S1133×S3322 - C12

2×C12*×S1122×S3333 + 

C12
2×C12*×S1133×S3322 + 3×C11×C12

2×S2222×S3333 - 3×C11×C12
2×S2233×S3322 - C11×C11*2×S2211×S3322 

+ C11×C11*2×S2222×S3311 + C11
2×C11*×S2211×S3322 - C11

2×C11*×S2222×S3311 - C11×C12*2×S2211×S3322 

+ C11×C12*2×S2222×S3311 - C11
2×C12*×S2211×S3322 + C11

2×C12*×S2222×S3311 + C12×C11*2×S2211×S3333 

- C12×C11*2×S2233×S3311 + C12
2×C11*×S2211×S3333 - C12

2×C11*×S2233×S3311 + C12×C12*2×S2211×S3333 - 

C12×C12*2×S2233×S3311 - C12
2×C12*×S2211×S3333 + C12

2×C12*×S2233×S3311 + C11
2×C11*×S2222×S3333 - 

C11
2×C11*×S2233×S3322 - C12×C11*2×S2222×S3333 + C12×C11*2×S2233×S3322 - C11

2×C12*×S2222×S3333 + 

C11
2×C12*×S2233×S3322 - 3×C12

2×C11*×S2222×S3333 + 3×C12
2×C11*×S2233×S3322 - 

C12×C12*2×S2222×S3333 + C12×C12*2×S2233×S3322 + 3×C12
2×C12*×S2222×S3333 - 

3×C12
2×C12*×S2233×S3322 + C11

3×S1111×S2222×S3333 - C11
3×S1111×S2233×S3322 - C11

3×S1122×S2211×S3333 

+ C11
3×S1122×S2233×S3311 + C11

3×S1133×S2211×S3322 - C11
3×S1133×S2222×S3311 + 

2×C12
3×S1111×S2222×S3333 - 2×C12

3×S1111×S2233×S3322 - 2×C12
3×S1122×S2211×S3333 + 

2×C12
3×S1122×S2233×S3311 + 2×C12

3×S1133×S2211×S3322 - 2×C12
3×S1133×S2222×S3311 - 

3×C11×C12
2×S1111×S2222×S3333 + 3×C11×C12

2×S1111×S2233×S3322 + 3×C11×C12
2×S1122×S2211×S3333 - 

3×C11×C12
2×S1122×S2233×S3311 - 3×C11×C12

2×S1133×S2211×S3322 + 3×C11×C12
2×S1133×S2222×S3311 + 

C11×C11*2×S1111×S2222×S3333 - C11×C11*2×S1111×S2233×S3322 - C11×C11*2×S1122×S2211×S3333 + 

C11×C11*2×S1122×S2233×S3311 + C11×C11*2×S1133×S2211×S3322 - C11×C11*2×S1133×S2222×S3311 - 

2×C11
2×C11*×S1111×S2222×S3333 + 2×C11

2×C11*×S1111×S2233×S3322 + 2×C11
2×C11*×S1122×S2211×S3333 

- 2×C11
2×C11*×S1122×S2233×S3311 - 2×C11

2×C11*×S1133×S2211×S3322 + 2×C11
2×C11*×S1133×S2222×S3311 

+ C11×C12*2×S1111×S2222×S3333 - C11×C12*2×S1111×S2233×S3322 - C11×C12*2×S1122×S2211×S3333 + 

C11×C12*2×S1122×S2233×S3311 + C11×C12*2×S1133×S2211×S3322 - C11×C12*2×S1133×S2222×S3311 + 

2×C12×C11*2×S1111×S2222×S3333 - 2×C12×C11*2×S1111×S2233×S3322 - 2×C12×C11*2×S1122×S2211×S3333 + 

2×C12×C11*2×S1122×S2233×S3311 + 2×C12×C11*2×S1133×S2211×S3322 - 2×C12×C11*2×S1133×S2222×S3311 
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+ 2×C11
2×C12*×S1111×S2222×S3333 - 2×C11

2×C12*×S1111×S2233×S3322 - 2×C11
2×C12*×S1122×S2211×S3333 

+ 2×C11
2×C12*×S1122×S2233×S3311 + 2×C11

2×C12*×S1133×S2211×S3322 - 

2×C11
2×C12*×S1133×S2222×S3311 + 4×C12

2×C11*×S1111×S2222×S3333 - 4×C12
2×C11*×S1111×S2233×S3322 - 

4×C12
2×C11*×S1122×S2211×S3333 + 4×C12

2×C11*×S1122×S2233×S3311 + 4×C12
2×C11*×S1133×S2211×S3322 

- 4×C12
2×C11*×S1133×S2222×S3311 + 2×C12×C12*2×S1111×S2222×S3333 - 2×C12×C12*2×S1111×S2233×S3322 

- 2×C12×C12*2×S1122×S2211×S3333 + 2×C12×C12*2×S1122×S2233×S3311 + 

2×C12×C12*2×S1133×S2211×S3322 - 2×C12×C12*2×S1133×S2222×S3311 - 4×C12
2×C12*×S1111×S2222×S3333 + 

4×C12
2×C12*×S1111×S2233×S3322 + 4×C12

2×C12*×S1122×S2211×S3333 - 4×C12
2×C12*×S1122×S2233×S3311 - 

4×C12
2×C12*×S1133×S2211×S3322 + 4×C12

2×C12*×S1133×S2222×S3311 - C11×C12×C11*×S1111×S2233 + 

C11×C12×C11*×S1133×S2211 + C11×C12×C12*×S1111×S2233 - C11×C12×C12*×S1133×S2211 + 

C11×C12×C11*×S1122×S2233 - C11×C12×C11*×S1133×S2222 - C11×C12×C12*×S1122×S2233 + 

C11×C12×C12*×S1133×S2222 + 2×C11×C11*×C12*×S1111×S2222 - 2×C11×C11*×C12*×S1122×S2211 - 

2×C12×C11*×C12*×S1111×S2233 + 2×C12×C11*×C12*×S1133×S2211 + 2×C12×C11*×C12*×S1122×S2233 - 

2×C12×C11*×C12*×S1133×S2222 + C11×C12×C11*×S1111×S3322 - C11×C12×C11*×S1122×S3311 - 

C11×C12×C12*×S1111×S3322 + C11×C12×C12*×S1122×S3311 + 2×C11×C12×C11*×S1111×S3333 - 

2×C11×C12×C11*×S1133×S3311 - 2×C11×C12×C12*×S1111×S3333 + 2×C11×C12×C12*×S1133×S3311 - 

C11×C12×C11*×S1122×S3333 + C11×C12×C11*×S1133×S3322 + C11×C12×C12*×S1122×S3333 - 

C11×C12×C12*×S1133×S3322 - 2×C11×C11*×C12*×S1111×S3322 + 2×C11×C11*×C12*×S1122×S3311 + 

2×C12×C11*×C12*×S1111×S3333 - 2×C12×C11*×C12*×S1133×S3311 - 2×C12×C11*×C12*×S1122×S3333 + 

2×C12×C11*×C12*×S1133×S3322 - C11×C12×C11*×S2211×S3322 + C11×C12×C11*×S2222×S3311 + 

C11×C12×C12*×S2211×S3322 - C11×C12×C12*×S2222×S3311 - C11×C12×C11*×S2211×S3333 + 

C11×C12×C11*×S2233×S3311 + C11×C12×C12*×S2211×S3333 - C11×C12×C12*×S2233×S3311 + 

2×C11×C12×C11*×S2222×S3333 - 2×C11×C12×C11*×S2233×S3322 - 2×C11×C12×C12*×S2222×S3333 + 

2×C11×C12×C12*×S2233×S3322 + 2×C11×C11*×C12*×S2211×S3322 - 2×C11×C11*×C12*×S2222×S3311 - 

2×C12×C11*×C12*×S2211×S3333 + 2×C12×C11*×C12*×S2233×S3311 + 2×C12×C11*×C12*×S2222×S3333 - 

2×C12×C11*×C12*×S2233×S3322 - 2×C11×C12×C11*×S1111×S2222×S3333 + 
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2×C11×C12×C11*×S1111×S2233×S3322 + 2×C11×C12×C11*×S1122×S2211×S3333 - 

2×C11×C12×C11*×S1122×S2233×S3311 - 2×C11×C12×C11*×S1133×S2211×S3322 + 

2×C11×C12×C11*×S1133×S2222×S3311 + 2×C11×C12×C12*×S1111×S2222×S3333 - 

2×C11×C12×C12*×S1111×S2233×S3322 - 2×C11×C12×C12*×S1122×S2211×S3333 + 

2×C11×C12×C12*×S1122×S2233×S3311 + 2×C11×C12×C12*×S1133×S2211×S3322 - 

2×C11×C12×C12*×S1133×S2222×S3311 - 2×C11×C11*×C12*×S1111×S2222×S3333 + 

2×C11×C11*×C12*×S1111×S2233×S3322 + 2×C11×C11*×C12*×S1122×S2211×S3333 - 

2×C11×C11*×C12*×S1122×S2233×S3311 - 2×C11×C11*×C12*×S1133×S2211×S3322 + 

2×C11×C11*×C12*×S1133×S2222×S3311 - 4×C12×C11*×C12*×S1111×S2222×S3333 + 

4×C12×C11*×C12*×S1111×S2233×S3322 + 4×C12×C11*×C12*×S1122×S2211×S3333 - 

4×C12×C11*×C12*×S1122×S2233×S3311 - 4×C12×C11*×C12*×S1133×S2211×S3322 + 

4×C12×C11*×C12*×S1133×S2222×S3311))/(3×C11×C12
2 + C11

3×S1111 + 2×C12
3×S1111 + C11

3×S2222 + 

2×C12
3×S2222 + C11

3×S3333 + 2×C12
3×S3333 - C11

3 - 2×C12
3 - 3×C11×C12

2×S1111 - C11
2×C11*×S1111 + 

C12
2×C11*×S1111 - 2×C12

2×C12*×S1111 - C11
2×C12*×S1122 - C12

2×C11*×S1122 - C11
2×C12*×S1133 - 

C12
2×C11*×S1133 - 3×C11×C12

2×S2222 - C11
2×C12*×S2211 - C12

2×C11*×S2211 - C11
2×C11*×S2222 + 

C12
2×C11*×S2222 - 2×C12

2×C12*×S2222 - C11
2×C12*×S2233 - C12

2×C11*×S2233 - 3×C11×C12
2×S3333 - 

C11
2×C12*×S3311 - C12

2×C11*×S3311 - C11
2×C12*×S3322 - C12

2×C11*×S3322 - C11
2×C11*×S3333 + 

C12
2×C11*×S3333 - 2×C12

2×C12*×S3333 - C11
3×S1111×S2222 + C11

3×S1122×S2211 - 2×C12
3×S1111×S2222 + 

2×C12
3×S1122×S2211 - C11

3×S1111×S3333 + C11
3×S1133×S3311 - 2×C12

3×S1111×S3333 + 2×C12
3×S1133×S3311 

- C11
3×S2222×S3333 + C11

3×S2233×S3322 - 2×C12
3×S2222×S3333 + 2×C12

3×S2233×S3322 + 

2×C11×C12×C12*×S1111 + C11×C12×C11*×S1122 + C11×C12×C12*×S1122 + C11×C12×C11*×S1133 + 

C11×C12×C12*×S1133 + C11×C12×C11*×S2211 + C11×C12×C12*×S2211 + 2×C11×C12×C12*×S2222 + 

C11×C12×C11*×S2233 + C11×C12×C12*×S2233 + C11×C12×C11*×S3311 + C11×C12×C12*×S3311 + 

C11×C12×C11*×S3322 + C11×C12×C12*×S3322 + 2×C11×C12×C12*×S3333 + 3×C11×C12
2×S1111×S2222 - 

3×C11×C12
2×S1122×S2211 - C11×C11*2×S1111×S2222 + C11×C11*2×S1122×S2211 + 

2×C11
2×C11*×S1111×S2222 - 2×C11

2×C11*×S1122×S2211 + C11×C12*2×S1111×S2222 - 
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C11×C12*2×S1122×S2211 - 2×C12
2×C11*×S1111×S2222 + 2×C12

2×C11*×S1122×S2211 - 

2×C12×C12*2×S1111×S2222 + 2×C12×C12*2×S1122×S2211 + 4×C12
2×C12*×S1111×S2222 - 

4×C12
2×C12*×S1122×S2211 + C11×C12*2×S1111×S2233 - C11×C12*2×S1133×S2211 + C12×C11*2×S1111×S2233 

- C12×C11*2×S1133×S2211 + C11
2×C12*×S1111×S2233 - C11

2×C12*×S1133×S2211 + C12
2×C11*×S1111×S2233 - 

C12
2×C11*×S1133×S2211 - C11×C12*2×S1122×S2233 + C11×C12*2×S1133×S2222 - C12×C11*2×S1122×S2233 + 

C12×C11*2×S1133×S2222 - C11
2×C12*×S1122×S2233 + C11

2×C12*×S1133×S2222 - C12
2×C11*×S1122×S2233 + 

C12
2×C11*×S1133×S2222 + 3×C11×C12

2×S1111×S3333 - 3×C11×C12
2×S1133×S3311 + C11×C12*2×S1111×S3322 

- C11×C12*2×S1122×S3311 + C12×C11*2×S1111×S3322 - C12×C11*2×S1122×S3311 + C11
2×C12*×S1111×S3322 - 

C11
2×C12*×S1122×S3311 + C12

2×C11*×S1111×S3322 - C12
2×C11*×S1122×S3311 - C11×C11*2×S1111×S3333 + 

C11×C11*2×S1133×S3311 + 2×C11
2×C11*×S1111×S3333 - 2×C11

2×C11*×S1133×S3311 + 

C11×C12*2×S1111×S3333 - C11×C12*2×S1133×S3311 - 2×C12
2×C11*×S1111×S3333 + 

2×C12
2×C11*×S1133×S3311 - 2×C12×C12*2×S1111×S3333 + 2×C12×C12*2×S1133×S3311 + 

4×C12
2×C12*×S1111×S3333 - 4×C12

2×C12*×S1133×S3311 + C11×C12*2×S1122×S3333 - 

C11×C12*2×S1133×S3322 + C12×C11*2×S1122×S3333 - C12×C11*2×S1133×S3322 + C11
2×C12*×S1122×S3333 - 

C11
2×C12*×S1133×S3322 + C12

2×C11*×S1122×S3333 - C12
2×C11*×S1133×S3322 + 3×C11×C12

2×S2222×S3333 - 

3×C11×C12
2×S2233×S3322 - C11×C12*2×S2211×S3322 + C11×C12*2×S2222×S3311 - C12×C11*2×S2211×S3322 + 

C12×C11*2×S2222×S3311 - C11
2×C12*×S2211×S3322 + C11

2×C12*×S2222×S3311 - C12
2×C11*×S2211×S3322 + 

C12
2×C11*×S2222×S3311 + C11×C12*2×S2211×S3333 - C11×C12*2×S2233×S3311 + C12×C11*2×S2211×S3333 - 

C12×C11*2×S2233×S3311 + C11
2×C12*×S2211×S3333 - C11

2×C12*×S2233×S3311 + C12
2×C11*×S2211×S3333 - 

C12
2×C11*×S2233×S3311 - C11×C11*2×S2222×S3333 + C11×C11*2×S2233×S3322 + 2×C11

2×C11*×S2222×S3333 

- 2×C11
2×C11*×S2233×S3322 + C11×C12*2×S2222×S3333 - C11×C12*2×S2233×S3322 - 

2×C12
2×C11*×S2222×S3333 + 2×C12

2×C11*×S2233×S3322 - 2×C12×C12*2×S2222×S3333 + 

2×C12×C12*2×S2233×S3322 + 4×C12
2×C12*×S2222×S3333 - 4×C12

2×C12*×S2233×S3322 + 

C11
3×S1111×S2222×S3333 - C11

3×S1111×S2233×S3322 - C11
3×S1122×S2211×S3333 + C11

3×S1122×S2233×S3311 + 

C11
3×S1133×S2211×S3322 - C11

3×S1133×S2222×S3311 + 2×C12
3×S1111×S2222×S3333 - 

2×C12
3×S1111×S2233×S3322 - 2×C12

3×S1122×S2211×S3333 + 2×C12
3×S1122×S2233×S3311 + 
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2×C12
3×S1133×S2211×S3322 - 2×C12

3×S1133×S2222×S3311 - C11*3×S1111×S2222×S3333 + 

C11*3×S1111×S2233×S3322 + C11*3×S1122×S2211×S3333 - C11*3×S1122×S2233×S3311 - 

C11*3×S1133×S2211×S3322 + C11*3×S1133×S2222×S3311 - 2×C12*3×S1111×S2222×S3333 + 

2×C12*3×S1111×S2233×S3322 + 2×C12*3×S1122×S2211×S3333 - 2×C12*3×S1122×S2233×S3311 - 

2×C12*3×S1133×S2211×S3322 + 2×C12*3×S1133×S2222×S3311 - 3×C11×C12
2×S1111×S2222×S3333 + 

3×C11×C12
2×S1111×S2233×S3322 + 3×C11×C12

2×S1122×S2211×S3333 - 3×C11×C12
2×S1122×S2233×S3311 - 

3×C11×C12
2×S1133×S2211×S3322 + 3×C11×C12

2×S1133×S2222×S3311 + 3×C11×C11*2×S1111×S2222×S3333 - 

3×C11×C11*2×S1111×S2233×S3322 - 3×C11×C11*2×S1122×S2211×S3333 + 3×C11×C11*2×S1122×S2233×S3311 

+ 3×C11×C11*2×S1133×S2211×S3322 - 3×C11×C11*2×S1133×S2222×S3311 - 3×C11
2×C11*×S1111×S2222×S3333 

+ 3×C11
2×C11*×S1111×S2233×S3322 + 3×C11

2×C11*×S1122×S2211×S3333 - 

3×C11
2×C11*×S1122×S2233×S3311 - 3×C11

2×C11*×S1133×S2211×S3322 + 3×C11
2×C11*×S1133×S2222×S3311 - 

3×C11×C12*2×S1111×S2222×S3333 + 3×C11×C12*2×S1111×S2233×S3322 + 3×C11×C12*2×S1122×S2211×S3333 

- 3×C11×C12*2×S1122×S2233×S3311 - 3×C11×C12*2×S1133×S2211×S3322 + 3×C11×C12*2×S1133×S2222×S3311 

+ 3×C12
2×C11*×S1111×S2222×S3333 - 3×C12

2×C11*×S1111×S2233×S3322 - 3×C12
2×C11*×S1122×S2211×S3333 

+ 3×C12
2×C11*×S1122×S2233×S3311 + 3×C12

2×C11*×S1133×S2211×S3322 - 

3×C12
2×C11*×S1133×S2222×S3311 + 6×C12×C12*2×S1111×S2222×S3333 - 6×C12×C12*2×S1111×S2233×S3322 - 

6×C12×C12*2×S1122×S2211×S3333 + 6×C12×C12*2×S1122×S2233×S3311 + 6×C12×C12*2×S1133×S2211×S3322 

- 6×C12×C12*2×S1133×S2222×S3311 - 6×C12
2×C12*×S1111×S2222×S3333 + 6×C12

2×C12*×S1111×S2233×S3322 

+ 6×C12
2×C12*×S1122×S2211×S3333 - 6×C12

2×C12*×S1122×S2233×S3311 - 6×C12
2×C12*×S1133×S2211×S3322 

+ 6×C12
2×C12*×S1133×S2222×S3311 + 3×C11*×C12*2×S1111×S2222×S3333 - 

3×C11*×C12*2×S1111×S2233×S3322 - 3×C11*×C12*2×S1122×S2211×S3333 + 

3×C11*×C12*2×S1122×S2233×S3311 + 3×C11*×C12*2×S1133×S2211×S3322 - 

3×C11*×C12*2×S1133×S2222×S3311 - 4×C11×C12×C12*×S1111×S2222 + 4×C11×C12×C12*×S1122×S2211 - 

C11×C12×C11*×S1111×S2233 + C11×C12×C11*×S1133×S2211 - C11×C12×C12*×S1111×S2233 + 

C11×C12×C12*×S1133×S2211 + C11×C12×C11*×S1122×S2233 - C11×C12×C11*×S1133×S2222 + 

C11×C12×C12*×S1122×S2233 - C11×C12×C12*×S1133×S2222 + 2×C12×C11*×C12*×S1111×S2222 - 
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2×C12×C11*×C12*×S1122×S2211 - C11×C11*×C12*×S1111×S2233 + C11×C11*×C12*×S1133×S2211 - 

C12×C11*×C12*×S1111×S2233 + C12×C11*×C12*×S1133×S2211 + C11×C11*×C12*×S1122×S2233 - 

C11×C11*×C12*×S1133×S2222 + C12×C11*×C12*×S1122×S2233 - C12×C11*×C12*×S1133×S2222 - 

C11×C12×C11*×S1111×S3322 + C11×C12×C11*×S1122×S3311 - C11×C12×C12*×S1111×S3322 + 

C11×C12×C12*×S1122×S3311 - 4×C11×C12×C12*×S1111×S3333 + 4×C11×C12×C12*×S1133×S3311 - 

C11×C12×C11*×S1122×S3333 + C11×C12×C11*×S1133×S3322 - C11×C12×C12*×S1122×S3333 + 

C11×C12×C12*×S1133×S3322 - C11×C11*×C12*×S1111×S3322 + C11×C11*×C12*×S1122×S3311 - 

C12×C11*×C12*×S1111×S3322 + C12×C11*×C12*×S1122×S3311 + 2×C12×C11*×C12*×S1111×S3333 - 

2×C12×C11*×C12*×S1133×S3311 - C11×C11*×C12*×S1122×S3333 + C11×C11*×C12*×S1133×S3322 - 

C12×C11*×C12*×S1122×S3333 + C12×C11*×C12*×S1133×S3322 + C11×C12×C11*×S2211×S3322 - 

C11×C12×C11*×S2222×S3311 + C11×C12×C12*×S2211×S3322 - C11×C12×C12*×S2222×S3311 - 

C11×C12×C11*×S2211×S3333 + C11×C12×C11*×S2233×S3311 - C11×C12×C12*×S2211×S3333 + 

C11×C12×C12*×S2233×S3311 - 4×C11×C12×C12*×S2222×S3333 + 4×C11×C12×C12*×S2233×S3322 + 

C11×C11*×C12*×S2211×S3322 - C11×C11*×C12*×S2222×S3311 + C12×C11*×C12*×S2211×S3322 - 

C12×C11*×C12*×S2222×S3311 - C11×C11*×C12*×S2211×S3333 + C11×C11*×C12*×S2233×S3311 - 

C12×C11*×C12*×S2211×S3333 + C12×C11*×C12*×S2233×S3311 + 2×C12×C11*×C12*×S2222×S3333 - 

2×C12×C11*×C12*×S2233×S3322 + 6×C11×C12×C12*×S1111×S2222×S3333 - 

6×C11×C12×C12*×S1111×S2233×S3322 - 6×C11×C12×C12*×S1122×S2211×S3333 + 

6×C11×C12×C12*×S1122×S2233×S3311 + 6×C11×C12×C12*×S1133×S2211×S3322 - 

6×C11×C12×C12*×S1133×S2222×S3311 - 6×C12×C11*×C12*×S1111×S2222×S3333 + 

6×C12×C11*×C12*×S1111×S2233×S3322 + 6×C12×C11*×C12*×S1122×S2211×S3333 - 

6×C12×C11*×C12*×S1122×S2233×S3311 - 6×C12×C11*×C12*×S1133×S2211×S3322 + 

6×C12×C11*×C12*×S1133×S2222×S3311) 
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Appendix B 
 

The closed form expression of the strain energy per unit volume ( cohω ) for a coherent 

anisotropic inhomogeneity (without shear stress) in an anisotropic matrix is given below. In the 

expression, ε  denotes the lattice mismatch between the inhomogeneity and the matrix, ijklS  is 

referred to as the Eshelby tensor and *
ijC  and ijC  denote the elastic constants of the inhomogeneity 

and matrix respectively.  

 

cohω = (ε2×(C11 + 2×C12)×(C11* + 2×C12*)×(3×C11
2×S1111 + 3×C12

2×S1111 + 3×C11
2×S2222 + 

3×C12
2×S2222 + 3×C11

2×S3333 + 3×C12
2×S3333 - 3×C11

2 - 3×C12
2 + 6×C11×C12 - 6×C11×C12×S1111 - 

2×C11×C11*×S1111 + 2×C11×C12*×S1111 + 2×C12×C11*×S1111 - 2×C12×C12*×S1111 + C11×C11*×S1122 - 

C11×C12*×S1122 - C12×C11*×S1122 + C12×C12*×S1122 + C11×C11*×S1133 - C11×C12*×S1133 - 

C12×C11*×S1133 + C12×C12*×S1133 - 6×C11×C12×S2222 + C11×C11*×S2211 - C11×C12*×S2211 - 

C12×C11*×S2211 + C12×C12*×S2211 - 2×C11×C11*×S2222 + 2×C11×C12*×S2222 + 2×C12×C11*×S2222 - 

2×C12×C12*×S2222 + C11×C11*×S2233 - C11×C12*×S2233 - C12×C11*×S2233 + C12×C12*×S2233 - 

6×C11×C12×S3333 + C11×C11*×S3311 - C11×C12*×S3311 - C12×C11*×S3311 + C12×C12*×S3311 + 

C11×C11*×S3322 - C11×C12*×S3322 - C12×C11*×S3322 + C12×C12*×S3322 - 2×C11×C11*×S3333 + 

2×C11×C12*×S3333 + 2×C12×C11*×S3333 - 2×C12×C12*×S3333 - 3×C11
2×S1111×S2222 + 

3×C11
2×S1122×S2211 - 3×C12

2×S1111×S2222 + 3×C12
2×S1122×S2211 - C11*2×S1111×S2222 + 

C11*2×S1122×S2211 - C12*2×S1111×S2222 + C12*2×S1122×S2211 + C11*2×S1111×S2233 - C11*2×S1133×S2211 + 

C12*2×S1111×S2233 - C12*2×S1133×S2211 - C11*2×S1122×S2233 + C11*2×S1133×S2222 - C12*2×S1122×S2233 + 

C12*2×S1133×S2222 - 3×C11
2×S1111×S3333 + 3×C11

2×S1133×S3311 - 3×C12
2×S1111×S3333 + 

3×C12
2×S1133×S3311 + C11*2×S1111×S3322 - C11*2×S1122×S3311 + C12*2×S1111×S3322 - C12*2×S1122×S3311 

- C11*2×S1111×S3333 + C11*2×S1133×S3311 - C12*2×S1111×S3333 + C12*2×S1133×S3311 + C11*2×S1122×S3333 

- C11*2×S1133×S3322 + C12*2×S1122×S3333 - C12*2×S1133×S3322 - 3×C11
2×S2222×S3333 + 
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3×C11
2×S2233×S3322 - 3×C12

2×S2222×S3333 + 3×C12
2×S2233×S3322 - C11*2×S2211×S3322 + 

C11*2×S2222×S3311 - C12*2×S2211×S3322 + C12*2×S2222×S3311 + C11*2×S2211×S3333 - C11*2×S2233×S3311 + 

C12*2×S2211×S3333 - C12*2×S2233×S3311 - C11*2×S2222×S3333 + C11*2×S2233×S3322 - C12*2×S2222×S3333 + 

C12*2×S2233×S3322 + 6×C11×C12×S1111×S2222 - 6×C11×C12×S1122×S2211 + 4×C11×C11*×S1111×S2222 - 

4×C11×C11*×S1122×S2211 - 4×C11×C12*×S1111×S2222 + 4×C11×C12*×S1122×S2211 - 

4×C12×C11*×S1111×S2222 + 4×C12×C11*×S1122×S2211 + 4×C12×C12*×S1111×S2222 - 

4×C12×C12*×S1122×S2211 - C11×C11*×S1111×S2233 + C11×C11*×S1133×S2211 + C11×C12*×S1111×S2233 - 

C11×C12*×S1133×S2211 + C12×C11*×S1111×S2233 - C12×C11*×S1133×S2211 - C12×C12*×S1111×S2233 + 

C12×C12*×S1133×S2211 + C11×C11*×S1122×S2233 - C11×C11*×S1133×S2222 - C11×C12*×S1122×S2233 + 

C11×C12*×S1133×S2222 - C12×C11*×S1122×S2233 + C12×C11*×S1133×S2222 + C12×C12*×S1122×S2233 - 

C12×C12*×S1133×S2222 + 2×C11*×C12*×S1111×S2222 - 2×C11*×C12*×S1122×S2211 - 

2×C11*×C12*×S1111×S2233 + 2×C11*×C12*×S1133×S2211 + 2×C11*×C12*×S1122×S2233 - 

2×C11*×C12*×S1133×S2222 + 6×C11×C12×S1111×S3333 - 6×C11×C12×S1133×S3311 - C11×C11*×S1111×S3322 

+ C11×C11*×S1122×S3311 + C11×C12*×S1111×S3322 - C11×C12*×S1122×S3311 + C12×C11*×S1111×S3322 - 

C12×C11*×S1122×S3311 - C12×C12*×S1111×S3322 + C12×C12*×S1122×S3311 + 4×C11×C11*×S1111×S3333 - 

4×C11×C11*×S1133×S3311 - 4×C11×C12*×S1111×S3333 + 4×C11×C12*×S1133×S3311 - 

4×C12×C11*×S1111×S3333 + 4×C12×C11*×S1133×S3311 + 4×C12×C12*×S1111×S3333 - 

4×C12×C12*×S1133×S3311 - C11×C11*×S1122×S3333 + C11×C11*×S1133×S3322 + C11×C12*×S1122×S3333 - 

C11×C12*×S1133×S3322 + C12×C11*×S1122×S3333 - C12×C11*×S1133×S3322 - C12×C12*×S1122×S3333 + 

C12×C12*×S1133×S3322 - 2×C11*×C12*×S1111×S3322 + 2×C11*×C12*×S1122×S3311 + 

2×C11*×C12*×S1111×S3333 - 2×C11*×C12*×S1133×S3311 - 2×C11*×C12*×S1122×S3333 + 

2×C11*×C12*×S1133×S3322 + 6×C11×C12×S2222×S3333 - 6×C11×C12×S2233×S3322 + 

C11×C11*×S2211×S3322 - C11×C11*×S2222×S3311 - C11×C12*×S2211×S3322 + C11×C12*×S2222×S3311 - 

C12×C11*×S2211×S3322 + C12×C11*×S2222×S3311 + C12×C12*×S2211×S3322 - C12×C12*×S2222×S3311 - 

C11×C11*×S2211×S3333 + C11×C11*×S2233×S3311 + C11×C12*×S2211×S3333 - C11×C12*×S2233×S3311 + 

C12×C11*×S2211×S3333 - C12×C11*×S2233×S3311 - C12×C12*×S2211×S3333 + C12×C12*×S2233×S3311 + 
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4×C11×C11*×S2222×S3333 - 4×C11×C11*×S2233×S3322 - 4×C11×C12*×S2222×S3333 + 

4×C11×C12*×S2233×S3322 - 4×C12×C11*×S2222×S3333 + 4×C12×C11*×S2233×S3322 + 

4×C12×C12*×S2222×S3333 - 4×C12×C12*×S2233×S3322 + 2×C11*×C12*×S2211×S3322 - 

2×C11*×C12*×S2222×S3311 - 2×C11*×C12*×S2211×S3333 + 2×C11*×C12*×S2233×S3311 + 

2×C11*×C12*×S2222×S3333 - 2×C11*×C12*×S2233×S3322 + 3×C11
2×S1111×S2222×S3333 - 

3×C11
2×S1111×S2233×S3322 - 3×C11

2×S1122×S2211×S3333 + 3×C11
2×S1122×S2233×S3311 + 

3×C11
2×S1133×S2211×S3322 - 3×C11

2×S1133×S2222×S3311 + 3×C12
2×S1111×S2222×S3333 - 

3×C12
2×S1111×S2233×S3322 - 3×C12

2×S1122×S2211×S3333 + 3×C12
2×S1122×S2233×S3311 + 

3×C12
2×S1133×S2211×S3322 - 3×C12

2×S1133×S2222×S3311 + 3×C11*2×S1111×S2222×S3333 - 

3×C11*2×S1111×S2233×S3322 - 3×C11*2×S1122×S2211×S3333 + 3×C11*2×S1122×S2233×S3311 + 

3×C11*2×S1133×S2211×S3322 - 3×C11*2×S1133×S2222×S3311 + 3×C12*2×S1111×S2222×S3333 - 

3×C12*2×S1111×S2233×S3322 - 3×C12*2×S1122×S2211×S3333 + 3×C12*2×S1122×S2233×S3311 + 

3×C12*2×S1133×S2211×S3322 - 3×C12*2×S1133×S2222×S3311 - 6×C11×C12×S1111×S2222×S3333 + 

6×C11×C12×S1111×S2233×S3322 + 6×C11×C12×S1122×S2211×S3333 - 6×C11×C12×S1122×S2233×S3311 - 

6×C11×C12×S1133×S2211×S3322 + 6×C11×C12×S1133×S2222×S3311 - 6×C11×C11*×S1111×S2222×S3333 + 

6×C11×C11*×S1111×S2233×S3322 + 6×C11×C11*×S1122×S2211×S3333 - 6×C11×C11*×S1122×S2233×S3311 - 

6×C11×C11*×S1133×S2211×S3322 + 6×C11×C11*×S1133×S2222×S3311 + 6×C11×C12*×S1111×S2222×S3333 - 

6×C11×C12*×S1111×S2233×S3322 - 6×C11×C12*×S1122×S2211×S3333 + 6×C11×C12*×S1122×S2233×S3311 + 

6×C11×C12*×S1133×S2211×S3322 - 6×C11×C12*×S1133×S2222×S3311 + 6×C12×C11*×S1111×S2222×S3333 - 

6×C12×C11*×S1111×S2233×S3322 - 6×C12×C11*×S1122×S2211×S3333 + 6×C12×C11*×S1122×S2233×S3311 + 

6×C12×C11*×S1133×S2211×S3322 - 6×C12×C11*×S1133×S2222×S3311 - 6×C12×C12*×S1111×S2222×S3333 + 

6×C12×C12*×S1111×S2233×S3322 + 6×C12×C12*×S1122×S2211×S3333 - 6×C12×C12*×S1122×S2233×S3311 - 

6×C12×C12*×S1133×S2211×S3322 + 6×C12×C12*×S1133×S2222×S3311 - 6×C11*×C12*×S1111×S2222×S3333 + 

6×C11*×C12*×S1111×S2233×S3322 + 6×C11*×C12*×S1122×S2211×S3333 - 6×C11*×C12*×S1122×S2233×S3311 

- 6×C11*×C12*×S1133×S2211×S3322 + 6×C11*×C12*×S1133×S2222×S3311))/(2×(3×C11×C12
2 + C11

3×S1111 

+ 2×C12
3×S1111 + C11

3×S2222 + 2×C12
3×S2222 + C11

3×S3333 + 2×C12
3×S3333 - C11

3 - 2×C12
3 - 



167 
 

3×C11×C12
2×S1111 - C11

2×C11*×S1111 + C12
2×C11*×S1111 - 2×C12

2×C12*×S1111 - C11
2×C12*×S1122 - 

C12
2×C11*×S1122 - C11

2×C12*×S1133 - C12
2×C11*×S1133 - 3×C11×C12

2×S2222 - C11
2×C12*×S2211 - 

C12
2×C11*×S2211 - C11

2×C11*×S2222 + C12
2×C11*×S2222 - 2×C12

2×C12*×S2222 - C11
2×C12*×S2233 - 

C12
2×C11*×S2233 - 3×C11×C12

2×S3333 - C11
2×C12*×S3311 - C12

2×C11*×S3311 - C11
2×C12*×S3322 - 

C12
2×C11*×S3322 - C11

2×C11*×S3333 + C12
2×C11*×S3333 - 2×C12

2×C12*×S3333 - C11
3×S1111×S2222 + 

C11
3×S1122×S2211 - 2×C12

3×S1111×S2222 + 2×C12
3×S1122×S2211 - C11

3×S1111×S3333 + C11
3×S1133×S3311 - 

2×C12
3×S1111×S3333 + 2×C12

3×S1133×S3311 - C11
3×S2222×S3333 + C11

3×S2233×S3322 - 2×C12
3×S2222×S3333 

+ 2×C12
3×S2233×S3322 + 2×C11×C12×C12*×S1111 + C11×C12×C11*×S1122 + C11×C12×C12*×S1122 + 

C11×C12×C11*×S1133 + C11×C12×C12*×S1133 + C11×C12×C11*×S2211 + C11×C12×C12*×S2211 + 

2×C11×C12×C12*×S2222 + C11×C12×C11*×S2233 + C11×C12×C12*×S2233 + C11×C12×C11*×S3311 + 

C11×C12×C12*×S3311 + C11×C12×C11*×S3322 + C11×C12×C12*×S3322 + 2×C11×C12×C12*×S3333 + 

3×C11×C12
2×S1111×S2222 - 3×C11×C12

2×S1122×S2211 - C11×C11*2×S1111×S2222 + C11×C11*2×S1122×S2211 

+ 2×C11
2×C11*×S1111×S2222 - 2×C11

2×C11*×S1122×S2211 + C11×C12*2×S1111×S2222 - 

C11×C12*2×S1122×S2211 - 2×C12
2×C11*×S1111×S2222 + 2×C12

2×C11*×S1122×S2211 - 

2×C12×C12*2×S1111×S2222 + 2×C12×C12*2×S1122×S2211 + 4×C12
2×C12*×S1111×S2222 - 

4×C12
2×C12*×S1122×S2211 + C11×C12*2×S1111×S2233 - C11×C12*2×S1133×S2211 + C12×C11*2×S1111×S2233 

- C12×C11*2×S1133×S2211 + C11
2×C12*×S1111×S2233 - C11

2×C12*×S1133×S2211 + C12
2×C11*×S1111×S2233 - 

C12
2×C11*×S1133×S2211 - C11×C12*2×S1122×S2233 + C11×C12*2×S1133×S2222 - C12×C11*2×S1122×S2233 + 

C12×C11*2×S1133×S2222 - C11
2×C12*×S1122×S2233 + C11

2×C12*×S1133×S2222 - C12
2×C11*×S1122×S2233 + 

C12
2×C11*×S1133×S2222 + 3×C11×C12

2×S1111×S3333 - 3×C11×C12
2×S1133×S3311 + C11×C12*2×S1111×S3322 

- C11×C12*2×S1122×S3311 + C12×C11*2×S1111×S3322 - C12×C11*2×S1122×S3311 + C11
2×C12*×S1111×S3322 - 

C11
2×C12*×S1122×S3311 + C12

2×C11*×S1111×S3322 - C12
2×C11*×S1122×S3311 - C11×C11*2×S1111×S3333 + 

C11×C11*2×S1133×S3311 + 2×C11
2×C11*×S1111×S3333 - 2×C11

2×C11*×S1133×S3311 + 

C11×C12*2×S1111×S3333 - C11×C12*2×S1133×S3311 - 2×C12
2×C11*×S1111×S3333 + 

2×C12
2×C11*×S1133×S3311 - 2×C12×C12*2×S1111×S3333 + 2×C12×C12*2×S1133×S3311 + 

4×C12
2×C12*×S1111×S3333 - 4×C12

2×C12*×S1133×S3311 + C11×C12*2×S1122×S3333 - 
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C11×C12*2×S1133×S3322 + C12×C11*2×S1122×S3333 - C12×C11*2×S1133×S3322 + C11
2×C12*×S1122×S3333 - 

C11
2×C12*×S1133×S3322 + C12

2×C11*×S1122×S3333 - C12
2×C11*×S1133×S3322 + 3×C11×C12

2×S2222×S3333 - 

3×C11×C12
2×S2233×S3322 - C11×C12*2×S2211×S3322 + C11×C12*2×S2222×S3311 - C12×C11*2×S2211×S3322 + 

C12×C11*2×S2222×S3311 - C11
2×C12*×S2211×S3322 + C11

2×C12*×S2222×S3311 - C12
2×C11*×S2211×S3322 + 

C12
2×C11*×S2222×S3311 + C11×C12*2×S2211×S3333 - C11×C12*2×S2233×S3311 + C12×C11*2×S2211×S3333 - 

C12×C11*2×S2233×S3311 + C11
2×C12*×S2211×S3333 - C11

2×C12*×S2233×S3311 + C12
2×C11*×S2211×S3333 - 

C12
2×C11*×S2233×S3311 - C11×C11*2×S2222×S3333 + C11×C11*2×S2233×S3322 + 2×C11

2×C11*×S2222×S3333 

- 2×C11
2×C11*×S2233×S3322 + C11×C12*2×S2222×S3333 - C11×C12*2×S2233×S3322 - 

2×C12
2×C11*×S2222×S3333 + 2×C12

2×C11*×S2233×S3322 - 2×C12×C12*2×S2222×S3333 + 

2×C12×C12*2×S2233×S3322 + 4×C12
2×C12*×S2222×S3333 - 4×C12

2×C12*×S2233×S3322 + 

C11
3×S1111×S2222×S3333 - C11

3×S1111×S2233×S3322 - C11
3×S1122×S2211×S3333 + C11

3×S1122×S2233×S3311 + 

C11
3×S1133×S2211×S3322 - C11

3×S1133×S2222×S3311 + 2×C12
3×S1111×S2222×S3333 - 

2×C12
3×S1111×S2233×S3322 - 2×C12

3×S1122×S2211×S3333 + 2×C12
3×S1122×S2233×S3311 + 

2×C12
3×S1133×S2211×S3322 - 2×C12

3×S1133×S2222×S3311 - C11*3×S1111×S2222×S3333 + 

C11*3×S1111×S2233×S3322 + C11*3×S1122×S2211×S3333 - C11*3×S1122×S2233×S3311 - 

C11*3×S1133×S2211×S3322 + C11*3×S1133×S2222×S3311 - 2×C12*3×S1111×S2222×S3333 + 

2×C12*3×S1111×S2233×S3322 + 2×C12*3×S1122×S2211×S3333 - 2×C12*3×S1122×S2233×S3311 - 

2×C12*3×S1133×S2211×S3322 + 2×C12*3×S1133×S2222×S3311 - 3×C11×C12
2×S1111×S2222×S3333 + 

3×C11×C12
2×S1111×S2233×S3322 + 3×C11×C12

2×S1122×S2211×S3333 - 3×C11×C12
2×S1122×S2233×S3311 - 

3×C11×C12
2×S1133×S2211×S3322 + 3×C11×C12

2×S1133×S2222×S3311 + 3×C11×C11*2×S1111×S2222×S3333 - 

3×C11×C11*2×S1111×S2233×S3322 - 3×C11×C11*2×S1122×S2211×S3333 + 3×C11×C11*2×S1122×S2233×S3311 

+ 3×C11×C11*2×S1133×S2211×S3322 - 3×C11×C11*2×S1133×S2222×S3311 - 3×C11
2×C11*×S1111×S2222×S3333 

+ 3×C11
2×C11*×S1111×S2233×S3322 + 3×C11

2×C11*×S1122×S2211×S3333 - 

3×C11
2×C11*×S1122×S2233×S3311 - 3×C11

2×C11*×S1133×S2211×S3322 + 3×C11
2×C11*×S1133×S2222×S3311 - 

3×C11×C12*2×S1111×S2222×S3333 + 3×C11×C12*2×S1111×S2233×S3322 + 3×C11×C12*2×S1122×S2211×S3333 

- 3×C11×C12*2×S1122×S2233×S3311 - 3×C11×C12*2×S1133×S2211×S3322 + 3×C11×C12*2×S1133×S2222×S3311 
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+ 3×C12
2×C11*×S1111×S2222×S3333 - 3×C12

2×C11*×S1111×S2233×S3322 - 3×C12
2×C11*×S1122×S2211×S3333 

+ 3×C12
2×C11*×S1122×S2233×S3311 + 3×C12

2×C11*×S1133×S2211×S3322 - 

3×C12
2×C11*×S1133×S2222×S3311 + 6×C12×C12*2×S1111×S2222×S3333 - 6×C12×C12*2×S1111×S2233×S3322 - 

6×C12×C12*2×S1122×S2211×S3333 + 6×C12×C12*2×S1122×S2233×S3311 + 6×C12×C12*2×S1133×S2211×S3322 

- 6×C12×C12*2×S1133×S2222×S3311 - 6×C12
2×C12*×S1111×S2222×S3333 + 6×C12

2×C12*×S1111×S2233×S3322 

+ 6×C12
2×C12*×S1122×S2211×S3333 - 6×C12

2×C12*×S1122×S2233×S3311 - 6×C12
2×C12*×S1133×S2211×S3322 

+ 6×C12
2×C12*×S1133×S2222×S3311 + 3×C11*×C12*2×S1111×S2222×S3333 - 

3×C11*×C12*2×S1111×S2233×S3322 - 3×C11*×C12*2×S1122×S2211×S3333 + 

3×C11*×C12*2×S1122×S2233×S3311 + 3×C11*×C12*2×S1133×S2211×S3322 - 

3×C11*×C12*2×S1133×S2222×S3311 - 4×C11×C12×C12*×S1111×S2222 + 4×C11×C12×C12*×S1122×S2211 - 

C11×C12×C11*×S1111×S2233 + C11×C12×C11*×S1133×S2211 - C11×C12×C12*×S1111×S2233 + 

C11×C12×C12*×S1133×S2211 + C11×C12×C11*×S1122×S2233 - C11×C12×C11*×S1133×S2222 + 

C11×C12×C12*×S1122×S2233 - C11×C12×C12*×S1133×S2222 + 2×C12×C11*×C12*×S1111×S2222 - 

2×C12×C11*×C12*×S1122×S2211 - C11×C11*×C12*×S1111×S2233 + C11×C11*×C12*×S1133×S2211 - 

C12×C11*×C12*×S1111×S2233 + C12×C11*×C12*×S1133×S2211 + C11×C11*×C12*×S1122×S2233 - 

C11×C11*×C12*×S1133×S2222 + C12×C11*×C12*×S1122×S2233 - C12×C11*×C12*×S1133×S2222 - 

C11×C12×C11*×S1111×S3322 + C11×C12×C11*×S1122×S3311 - C11×C12×C12*×S1111×S3322 + 

C11×C12×C12*×S1122×S3311 - 4×C11×C12×C12*×S1111×S3333 + 4×C11×C12×C12*×S1133×S3311 - 

C11×C12×C11*×S1122×S3333 + C11×C12×C11*×S1133×S3322 - C11×C12×C12*×S1122×S3333 + 

C11×C12×C12*×S1133×S3322 - C11×C11*×C12*×S1111×S3322 + C11×C11*×C12*×S1122×S3311 - 

C12×C11*×C12*×S1111×S3322 + C12×C11*×C12*×S1122×S3311 + 2×C12×C11*×C12*×S1111×S3333 - 

2×C12×C11*×C12*×S1133×S3311 - C11×C11*×C12*×S1122×S3333 + C11×C11*×C12*×S1133×S3322 - 

C12×C11*×C12*×S1122×S3333 + C12×C11*×C12*×S1133×S3322 + C11×C12×C11*×S2211×S3322 - 

C11×C12×C11*×S2222×S3311 + C11×C12×C12*×S2211×S3322 - C11×C12×C12*×S2222×S3311 - 

C11×C12×C11*×S2211×S3333 + C11×C12×C11*×S2233×S3311 - C11×C12×C12*×S2211×S3333 + 

C11×C12×C12*×S2233×S3311 - 4×C11×C12×C12*×S2222×S3333 + 4×C11×C12×C12*×S2233×S3322 + 
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C11×C11*×C12*×S2211×S3322 - C11×C11*×C12*×S2222×S3311 + C12×C11*×C12*×S2211×S3322 - 

C12×C11*×C12*×S2222×S3311 - C11×C11*×C12*×S2211×S3333 + C11×C11*×C12*×S2233×S3311 - 

C12×C11*×C12*×S2211×S3333 + C12×C11*×C12*×S2233×S3311 + 2×C12×C11*×C12*×S2222×S3333 - 

2×C12×C11*×C12*×S2233×S3322 + 6×C11×C12×C12*×S1111×S2222×S3333 - 

6×C11×C12×C12*×S1111×S2233×S3322 - 6×C11×C12×C12*×S1122×S2211×S3333 + 

6×C11×C12×C12*×S1122×S2233×S3311 + 6×C11×C12×C12*×S1133×S2211×S3322 - 

6×C11×C12×C12*×S1133×S2222×S3311 - 6×C12×C11*×C12*×S1111×S2222×S3333 + 

6×C12×C11*×C12*×S1111×S2233×S3322 + 6×C12×C11*×C12*×S1122×S2211×S3333 - 

6×C12×C11*×C12*×S1122×S2233×S3311 - 6×C12×C11*×C12*×S1133×S2211×S3322 + 

6×C12×C11*×C12*×S1133×S2222×S3311)) 
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Appendix C 
 

A B-spline function is a powerful tool that is commonly used in various 3D 

computer-aided design packages127. By using the B-spline function, a curve or a surface can be 

constructed by using various control points. The control points can be treated as “magnets” that 

attract the curve or surface to them, which allows localized control of the function shape by moving 

the individual control points without influencing the overall shape of the function. An examples of 

two B-spline curves (curve 1: red, curve 2: blue) constructed by 6 control points are shown in 

Figure 6.1. The overall shapes of two curves are essentially the same except at around 5x =  where 

the control point for curve 2 is lower. 

 

                                      

 

Figure 6.1: Schematic of B-spline curves and its control points. Red-curve 1 and Blue-curve 2. 

 

The B-spline function is a linear combination of control points and basis functions. The 

basis function is a piecewise polynomial function. The places where the pieces meet are known as 

knots. The coordinates of 3D B-spline surface (constructed by n m×  control points) in a 

Cartesian coordinates can be calculated by: 
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,

( )
,3 ,3

0 0
( ) ( )

i j

n m
ctrl x

Bspline i j
i j

x u u C
= =

= Φ Φ∑∑  , (28) 

  
,

( )
,3 ,3

0 0
( ) ( )

i j

n m
ctrl y

Bspline i j
i j

y u u C
= =

= Φ Φ∑∑  , (29) 

 
,

( )
,3 ,3

0 0
( ) ( )

i j

n m
ctrl z

Bspline i j
i j

z u u C
= =

= Φ Φ∑∑  , (30) 

 

where i and j represents the grid of the control points (i for x coordinates and j for y coordinates) ,

,

( ) , ( , , )
i j

ctrlC x y zϕ ϕ =  are the (x,y,z) coordinates of the control points and ,3jΦ  is the basis function 

defined on an interval 1i iu u u +< <   ( iu are the knots):  

 

 1
,0

1
0

i i
i

u u u
else

+< <
Φ = 


 , (31) 

 1
, , 1 1, 1

1 1

( ) ( )i pi
i d i d i d

i p i i p i

u uu u u u
u u u u

+ +
− + −

+ + + +

−−
Φ = Φ + Φ

− −
.  (32) 

 

Shown in Figure 6.2 is an example of a 3D B-spline surface energy that reproduces the 

general features of the “P1” interface energy model discussed in Chapter 4 using 10 parameters. 
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(a)                                                                                        (b) 

 

Figure 6.2: (a) 2D contour plot of the surface energy as a function of vacancy fraction ( Vγ ) and 

log scale cluster size ( n ). (b) Control points. 
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