39 research outputs found

    Myocardial Defect Detection Using PET-CT: Phantom Studies

    Get PDF
    It is expected that both noise and activity distribution can have impact on the detectability of a myocardial defect in a cardiac PET study. In this work, we performed phantom studies to investigate the detectability of a defect in the myocardium for different noise levels and activity distributions. We evaluated the performance of three reconstruction schemes: Filtered Back-Projection (FBP), Ordinary Poisson Ordered Subset Expectation Maximization (OP–OSEM), and Point Spread Function corrected OSEM (PSF–OSEM). We used the Channelized Hotelling Observer (CHO) for the task of myocardial defect detection. We found that the detectability of a myocardial defect is almost entirely dependent on the noise level and the contrast between the defect and its surroundings

    The Potential Usefulness of Magnetic Resonance Guided Focused Ultrasound for Obsessive Compulsive Disorders

    Get PDF
    Obsessive compulsive disorder is a debilitating condition characterized by recurrent obsessive thoughts and compulsive reactions. A great portion of the obsessive compulsive disorder (OCD) patients are managed successfully with psychiatric treatment such as selective serotonin-reuptake inhibitor and cognitive behavioral psychotherapy, but more than 10% of patients are remained as nonresponder who needs neurosurgical treatments. These patients are potential candidates for the neurosurgical management. There had been various kind of operation, lesioning such as leucotomy or cingulotomy or capsulotomy or limbic leucotomy, and with advent of stereotaxic approach and technical advances, deep brain stimulation was more chosen by neurosurgeon due to its characteristic of reversibility and adjustability. Gamma knife radiosurgery are also applied to make lesion targeting based on magnetic resonance (MR) imaging, but the complication of adverse radiation effect is not predictable. In the neurosurgical field, MR guided focused ultrasound has advantage of less invasiveness, real-time monitored procedure which is now growing to attempt to apply for various brain disorder. In this review, the neurosurgical treatment modalities for the treatment of OCD will be briefly reviewed and the current state of MR guided focused ultrasound for OCD will be suggested.ope

    Comparison of [18F]DOPA and [68Ga]DOTA-TOC as a PET imaging tracer before peptide receptor radionuclide therapy

    Get PDF
    BACKGROUND: In treatment of neuroendocrine neoplasms (NENs), confirmation of somatostatin receptor expression with 68Ga-DOTA somatostatin analogues is mandatory to determine eligibility for peptide receptor radionuclide therapy (PRRT). [18F]DOPA can detect additional lesions compared to [68Ga]DOTA-TOC. The aim of this study was to explore differences in tumour detection of both tracers and their relevance for selecting patients for PRRT. We retrospectively studied eight patients with NENs who underwent both [68Ga]DOTA-TOC and carbidopa-enhanced [18F]DOPA PET/CT, before first-time PRRT with [177Lu]DOTA-TATE. Tracer order was influenced due to stock availability or to detect suspected metastases with a second tracer. On CT, disease control was defined as a lesion showing complete response, partial response, or stable disease, according to RECIST 1.1. CRITERIA: RESULTS: Seven patients with in total 89 lesions completed four infusions of 7.4 GBq [177Lu]DOTA-TATE, one patient received only two cycles. Before treatment, [18F]DOPA PET/CT detected significantly more lesions than [68Ga]DOTA-TOC PET/CT (79 vs. 62, p < .001). After treatment, no difference in number of lesions with disease control was found for [18F]DOPA-only (5/27) and [68Ga]DOTA-TOC-only lesions (4/10, p = .25). [18F]DOPA detected more liver metastases (24/27) compared to [68Ga]DOTA-TOC (7/10, p = .006). Six patients showed inpatient heterogeneity in treatment response between [18F]DOPA-only and [68Ga]DOTA-TOC-only lesions. CONCLUSIONS: Response to PRRT with [177Lu]DOTA-TATE was comparable for both [68Ga]DOTA-TOC- and [18F]DOPA-only NEN lesions. [18F]DOPA may be capable of predicting response to PRRT while finding more lesions compared to [68Ga]DOTA-TOC, although these additional lesions are often small of size and undetected by diagnostic CT

    Image Quality and Activity Optimization in Oncologic F-18-FDG PET Using the Digital Biograph Vision PET/CT System

    Get PDF
    The first Biograph Vision PET/CT system (Siemens Healthineers) was installed at the University Medical Center Groningen. Improved performance of this system could allow for a reduction in activity administration or scan duration. This study evaluated the effects of reduced scan duration in oncologic 18F-FDG PET imaging on quantitative and subjective imaging parameters and its influence on clinical image interpretation. Methods: Patients referred for a clinical PET/CT scan were enrolled in this study, received a weight-based 18F-FDG injected activity, and underwent list-mode PET acquisition at 180 s per bed position (s/bp). Acquired PET data were reconstructed using the vendor-recommended clinical reconstruction protocol (hereafter referred to as "clinical"), using the clinical protocol with additional 2-mm gaussian filtering (hereafter referred to as "clinical+G2"), and-in conformance with European Association of Nuclear Medicine Research Ltd. (EARL) specifications-using different scan durations per bed position (180, 120, 60, 30, and 10 s). Reconstructed images were quantitatively assessed for comparison of SUVs and noise. In addition, clinically reconstructed images were qualitatively evaluated by 3 nuclear medicine physicians. Results: In total, 30 oncologic patients (22 men, 8 women; age: 48-88 y [range], 67 ± 9.6 y [mean ± SD]) received a single weight-based (3 MBq/kg) 18F-FDG injected activity (weight: 45-123 kg [range], 81 ± 15 kg [mean ± SD]; activity: 135-380 MBq [range], 241 ± 47.3 MBq [mean ± SD]). Significant differences in lesion SUVmax were found between the 180-s/bp images and the 30- and 10-s/bp images reconstructed using the clinical protocols, whereas no differences were found in lesion SUVpeak EARL-compliant images did not show differences in lesion SUVmax or SUVpeak between scan durations. Quantitative parameters showed minimal deviation (∼5%) in the 60-s/bp images. Therefore, further subjective image quality assessment was conducted using the 60-s/bp images. Qualitative assessment revealed the influence of personal preference on physicians' willingness to adopt the 60-s/bp images in clinical practice. Although quantitative PET parameters differed minimally, an increase in noise was observed. Conclusion: With the Biograph Vision PET/CT system for oncologic 18F-FDG imaging, scan duration or activity administration could be reduced by a factor of 3 or more with the use of the clinical+G2 or the EARL-compliant reconstruction protocol

    Dental artifacts in the head and neck region::implications for Dixon-based attenuation correction in PET/MR

    Get PDF
    BACKGROUND: In the absence of CT or traditional transmission sources in combined clinical positron emission tomography/magnetic resonance (PET/MR) systems, MR images are used for MR-based attenuation correction (MR-AC). The susceptibility effects due to metal implants challenge MR-AC in the neck region of patients with dental implants. The purpose of this study was to assess the frequency and magnitude of subsequent PET image distortions following MR-AC. METHODS: A total of 148 PET/MR patients with clear visual signal voids on the attenuation map in the dental region were included in this study. Patients were injected with [(18)F]-FDG, [(11)C]-PiB, [(18)F]-FET, or [(64)Cu]-DOTATATE. The PET/MR data were acquired over a single-bed position of 25.8 cm covering the head and neck. MR-AC was based on either standard MR-AC(DIXON) or MR-AC(INPAINTED) where the susceptibility-induced signal voids were substituted with soft tissue information. Our inpainting algorithm delineates the outer contour of signal voids breaching the anatomical volume using the non-attenuation-corrected PET image and classifies the inner air regions based on an aligned template of likely dental artifact areas. The reconstructed PET images were evaluated visually and quantitatively using regions of interests in reference regions. The volume of the artifacts and the computed relative differences in mean and max standardized uptake value (SUV) between the two PET images are reported. RESULTS: The MR-based volume of the susceptibility-induced signal voids on the MR-AC attenuation maps was between 1.6 and 520.8 mL. The corresponding/resulting bias of the reconstructed tracer distribution was localized mainly in the area of the signal void. The mean and maximum SUVs averaged across all patients increased after inpainting by 52% (± 11%) and 28% (± 11%), respectively, in the corrected region. SUV underestimation decreased with the distance to the signal void and correlated with the volume of the susceptibility artifact on the MR-AC attenuation map. CONCLUSIONS: Metallic dental work may cause severe MR signal voids. The resulting PET/MR artifacts may exceed the actual volume of the dental fillings. The subsequent bias in PET is severe in regions in and near the signal voids and may affect the conspicuity of lesions in the mandibular region. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s40658-015-0112-5) contains supplementary material, which is available to authorized users

    Amyloid-dependent and amyloid-independent effects of Tau in individuals without dementia

    Get PDF
    Objective: To investigate the relationship between the topography of amyloid-β plaques, tau neurofibrillary tangles, and the overlap between the two, with cognitive dysfunction in individuals without dementia. Methods: We evaluated 154 individuals who were assessed with amyloid-β PET with [18F]AZD4694, tau-PET with [18F]MK6240, structural MRI, and neuropsychological testing. We also evaluated an independent cohort of 240 individuals who were assessed with amyloid-β PET with [18F]Florbetapir, tau-PET with [18F]Flortaucipir, structural MRI, and neuropsychological testing. Using the VoxelStats toolbox, we conducted voxel-wise linear regressions between amyloid-PET, tau-PET, and their interaction with cognitive function, correcting for age, sex, and years of education. Results: In both cohorts, we observed that tau-PET standardized uptake value ratio in medial temporal lobes was associated with clinical dementia rating Sum of Boxes (CDR-SoB) scores independently of local amyloid-PET uptake (FWE corrected at p < 0.001). We also observed in both cohorts that in regions of the neocortex, associations between neocortical tau-PET and clinical function were dependent on local amyloid-PET (FWE corrected at p < 0.001). Interpretation: In medial temporal brain regions, characterized by the accumulation of tau pathology in the absence of amyloid-β, tau had direct associations with cognitive dysfunction. In brain regions characterized by the accumulation of both amyloid-β and tau pathologies such as the posterior cingulate and medial frontal cortices, tau’s relationship with cognitive dysfunction was dependent on local amyloid-β concentrations. Our results provide evidence that amyloid-β in Alzheimer’s disease influences cognition by potentiating the deleterious effects of tau pathology

    Cerebral blood flow and glucose metabolism in healthy volunteers measured using a high-resolution PET scanner

    Get PDF
    BACKGROUND: Positron emission tomography (PET) allows for the measurement of cerebral blood flow (CBF; based on [(15)O]H(2)O) and cerebral metabolic rate of glucose utilization (CMR(glu); based on [(18) F]-2-fluoro-2-deoxy-d-glucose ([(18) F]FDG)). By using kinetic modeling, quantitative CBF and CMR(glu) values can be obtained. However, hardware limitations led to the development of semiquantitive calculation schemes which are still widely used. In this paper, the analysis of CMR(glu) and CBF scans, acquired on a current state-of-the-art PET brain scanner, is presented. In particular, the correspondence between nonlinear as well as linearized methods for the determination of CBF and CMR(glu) is investigated. As a further step towards widespread clinical applicability, the use of an image-derived input function (IDIF) is investigated. METHODS: Thirteen healthy male volunteers were included in this study. Each subject had one scanning session in the fasting state, consisting of a dynamic [(15)O]H(2)O scan and a dynamic [(18) F]FDG PET scan, acquired at a high-resolution research tomograph. Time-activity curves (TACs) were generated for automatically delineated and for manually drawn gray matter (GM) and white matter regions. Input functions were derived using on-line arterial blood sampling (blood sampler derived input function (BSIF)). Additionally, the possibility of using carotid artery IDIFs was investigated. Data were analyzed using nonlinear regression (NLR) of regional TACs and parametric methods. RESULTS: After quality control, 9 CMR(glu) and 11 CBF scans were available for analysis. Average GM CMR(glu) values were 0.33 ± 0.04 μmol/cm(3) per minute, and average CBF values were 0.43 ± 0.09 mL/cm(3) per minute. Good correlation between NLR and parametric CMR(glu) measurements was obtained as well as between NLR and parametric CBF values. For CMR(glu) Patlak linearization, BSIF and IDIF derived results were similar. The use of an IDIF, however, did not provide reliable CBF estimates. CONCLUSION: Nonlinear regression analysis, allowing for the derivation of regional CBF and CMR(glu) values, can be applied to data acquired with high-spatial resolution current state-of-the-art PET brain scanners. Linearized models, applied to the voxel level, resulted in comparable values. CMR(glu) measurements do not require invasive arterial sampling to define the input function. TRIAL REGISTRATION: ClinicalTrials.gov NCT0062608

    Dopamine Transporter and Reward Anticipation in a Dimensional Perspective : A Multimodal Brain Imaging Study

    Get PDF
    We would like to thank Christine Baron, Vincent Brulon, Stéphane LeHelleix, Stéphane Demphel, Claude Comtat, Frédéric Dollé, Philippe Gervais, and Renaud Maroy from the Service Hospitalier Frédéric Joliot for their efficient technical support and 11C radioligand preparation. They thank Marie Prat, Audrey Pepin, and Audrey Mabondo for their help in PET processing and Pr. Maria-Joao Santiago-Ribeiro and Dr Renaud de Beaurepaire for their involvement in the recruitment of participants.Peer reviewedPostprin

    A comparison of 18F-FDG PET/MR with PET/CT in pulmonary tuberculosis

    Get PDF
    PURPOSE: PET/computed tomography (CT) has been shown to detect lesions in patients with pulmonary tuberculosis (PTB) and may be useful for assessing PTB disease in clinical research studies. However, radiation dose is of concern for clinical research in individuals with an underlying curable disease. This study aimed to determine whether PET/MR is equivalent to PET/CT in PTB. MATERIALS AND METHODS: Ten patients with microbiologically confirmed PTB were recruited. Patients received 129.0±4.1 MBq of fluorine-18-fluorodeoxyglucose. Five of the 10 patients underwent a PET/MR scan, followed by PET/CT. The remaining five were first imaged on the PET/CT, followed by the PET/MRI. PET acquisition began at 66.7±14.4 min (mean±SD) after injection when performing PET/MR first (PET/CT: 117.2±5.6 min) and 92.4±7.6 min when patients were imaged on PET/MR second (PET/CT: 61.1±3.9 min). PET data were reconstructed iteratively with Ordinary-Poisson Ordered-Subset Expectation-Maximization and reconstruction parameters were matched across the two scanners. A visual lesion detection task and a standardized uptake value (SUV) analysis were carried out. The CT Hounsfield unit values of PTB lesions were also compared with MR-based attenuation correction mu-map tissue classes. RESULTS: A total of 108 PTB lesions were detected on PET/MR and 112 on PET/CT. SUV analysis was carried out on 50 of these lesions that were observed with both modalities. Mean standardized uptake value (SUVmean) and maximum standardized uptake value (SUVmax) were significantly lower on PET/MR (SUVmean: 2.6±1.4; SUVmax: 4.3±2.5) than PET/CT (SUVmean: 3.5±1.5; SUVmax: 5.3±2.4). CONCLUSION: PET/MR visual performance was shown to be comparable to PET/CT in terms of the number of PTB lesions detected. SUVs were significantly lower on PET/MR. Dixon-based attenuation correction underestimates the linear attenuation coefficient of PTB lesions, resulting in lower SUVs compared with PET/CT. However, the use of PET/MR to measure the response of lung lesions to assess response to treatment in research studies is unlikely to be affected by these differences in quantification
    corecore