2,260 research outputs found

    Simplifying The Non-Manifold Topology Of Multi-Partitioning Surface Networks

    Get PDF
    In bio-medical imaging, multi-partitioning surface networks: MPSNs) are very useful to model complex organs with multiple anatomical regions, such as a mouse brain. However, MPSNs are usually constructed from image data and might contain complex geometric and topological features. There has been much research on reducing the geometric complexity of a general surface: non-manifold or not) and the topological complexity of a closed, manifold surface. But there has been no attempt so far to reduce redundant topological features which are unique to non-manifold surfaces, such as curves and points where multiple sheets of surfaces join. In this thesis, we design interactive and automated means for removing redundant non-manifold topological features in MPSNs, which is a special class of non-manifold surfaces. The core of our approach is a mesh surgery operator that can effectively simplify the non-manifold topology while preserving the validity of the MPSN. The operator is implemented in an interactive user interface, allowing user-guided simplification of the input. We further develop an automatic algorithm that invokes the operator following a greedy heuristic. The algorithm is based on a novel, abstract representation of a non-manifold surface as a graph, which allows efficient discovery and scoring of possible surgery operations without the need for explicitly performing the surgeries on the mesh geometry

    Methodology for automatic recovering of 3D partitions from unstitched faces of non-manifold CAD models

    Get PDF
    Data exchanges between different software are currently used in industry to speed up the preparation of digital prototypes for Finite Element Analysis (FEA). Unfortunately, due to data loss, the yield of the transfer of manifold models rarely reaches 1. In the case of non-manifold models, the transfer results are even less satisfactory. This is particularly true for partitioned 3D models: during the data transfer based on the well-known exchange formats, all 3D partitions are generally lost. Partitions are mainly used for preparing mesh models required for advanced FEA: mapped meshing, material separation, definition of specific boundary conditions, etc. This paper sets up a methodology to automatically recover 3D partitions from exported non-manifold CAD models in order to increase the yield of the data exchange. Our fully automatic approach is based on three steps. First, starting from a set of potentially disconnected faces, the CAD model is stitched. Then, the shells used to create the 3D partitions are recovered using an iterative propagation strategy which starts from the so-called manifold vertices. Finally, using the identified closed shells, the 3D partitions can be reconstructed. The proposed methodology has been validated on academic as well as industrial examples.This work has been carried out under a research contract between the Research and Development Direction of the EDF Group and the Arts et Métiers ParisTech Aix-en-Provence

    Conforming restricted Delaunay mesh generation for piecewise smooth complexes

    Get PDF
    A Frontal-Delaunay refinement algorithm for mesh generation in piecewise smooth domains is described. Built using a restricted Delaunay framework, this new algorithm combines a number of novel features, including: (i) an unweighted, conforming restricted Delaunay representation for domains specified as a (non-manifold) collection of piecewise smooth surface patches and curve segments, (ii) a protection strategy for domains containing curve segments that subtend sharply acute angles, and (iii) a new class of off-centre refinement rules designed to achieve high-quality point-placement along embedded curve features. Experimental comparisons show that the new Frontal-Delaunay algorithm outperforms a classical (statically weighted) restricted Delaunay-refinement technique for a number of three-dimensional benchmark problems.Comment: To appear at the 25th International Meshing Roundtabl

    The equivariant parametrized hh-cobordism theorem, the non-manifold part

    Get PDF
    We construct a map from the suspension GG-spectrum ΣGM\Sigma_G^\infty M of a smooth compact GG-manifold to the equivariant AA-theory spectrum AG(M)A_G(M), and we show that its fiber is, on fixed points, a wedge of stable hh-cobordism spectra. This map is constructed as a map of spectral Mackey functors, which is compatible with tom Dieck style splitting formulas on fixed points. In order to synthesize different definitions of the suspension GG-spectrum as a spectral Mackey functor, we present a new perspective on spectral Mackey functors, viewing them as multifunctors on indexing categories for "rings on many objects" and modules over such. This perspective should be of independent interest

    Topology Preserving Simplification of 2D Non-Manifold Meshes with Embedded Structures

    Get PDF
    International audienceMesh simplification has received tremendous attention over the past years. Most of the previous works deal with a proper choice of error measures to guide the simplification. Preserving the topological characteristics of the mesh and possibly of data attached to the mesh is a more recent topic, the present paper is about.We introduce a new topology preserving simplification algorithm for triangular meshes, possibly non-manifold, with embedded polylines. In this context embedded means that the edges of the polylines are also edges of the mesh. The paper introduces a robust test to detect if the collapse of an edge in the mesh modifies either the topology of the mesh or the topology of the embedded polylines. This validity test is derived using combinatorial topology results. More precisely we define a so-called extended complex from the input mesh and the embedded polylines. We show that if an edge collapse of the mesh preserves the topology of this extended complex, then it also preserves both the topology of the mesh and the embedded polylines. Our validity test can be used for any 2-complex mesh, including non-manifold triangular meshes. It can be combined with any previously introduced error measure. Implementation of this validity test is described. We demonstrate the power and versatility of our method with scientific data sets from neuroscience, geology and CAD/CAM models from mechanical engineering
    corecore