5,005 research outputs found

    Optimal Neural Codes for Natural Stimuli

    Get PDF
    The efficient coding hypothesis assumes that biological sensory systems use neural codes that are optimized to best possibly represent the stimuli that occur in their environment. When formulating such optimization problem of neural codes, two key components must be considered. The first is what types of constraints the neural codes must satisfy? The second is the objective function itself -- what is the goal of the neural codes? We seek to provide a systematic framework to address these types of problem. Previous work often assume one specific set of constraint and analytically or numerically solve the optimization problem. Here we want to put everything in a unified framework and show that these results can be understood from a much more generalized perspective. In particular, we provide analytical solutions for a variety of neural noise models and two types of constraint: a range constraint which specifies the max/min neural activity and a metabolic constraint which upper bounds the mean neural activity. In terms of objective functions, most common models rely on information theoretic measures, whereas alternative formulations propose incorporating downstream decoding performance. We systematically evaluate different optimality criteria based upon the LpL_p reconstruction error of the maximum likelihood decoder. This parametric family of optimal criteria includes special cases such as the information maximization criterion and the mean squared loss minimization of decoding error. We analytically derive the optimal tuning curve of a single neuron in terms of the reconstruction error norm pp to encode natural stimuli with an arbitrary input distribution. Under our framework, we can try to answer questions such as what is the objective function the neural code is actually using? Under what constraints can the predicted results provide a better fit for the actual data? Using different combination of objective function and constraints, we tested our analytical predictions against previously measured characteristics of some early visual systems found in biology. We find solutions under the metabolic constraint and low values of pp provides a better fit for physiology data on early visual perception systems

    Estimating Receptive Fields from Responses to Natural Stimuli with Asymmetric Intensity Distributions

    Get PDF
    The reasons for using natural stimuli to study sensory function are quickly mounting, as recent studies have revealed important differences in neural responses to natural and artificial stimuli. However, natural stimuli typically contain strong correlations and are spherically asymmetric (i.e. stimulus intensities are not symmetrically distributed around the mean), and these statistical complexities can bias receptive field (RF) estimates when standard techniques such as spike-triggered averaging or reverse correlation are used. While a number of approaches have been developed to explicitly correct the bias due to stimulus correlations, there is no complementary technique to correct the bias due to stimulus asymmetries. Here, we develop a method for RF estimation that corrects reverse correlation RF estimates for the spherical asymmetries present in natural stimuli. Using simulated neural responses, we demonstrate how stimulus asymmetries can bias reverse-correlation RF estimates (even for uncorrelated stimuli) and illustrate how this bias can be removed by explicit correction. We demonstrate the utility of the asymmetry correction method under experimental conditions by estimating RFs from the responses of retinal ganglion cells to natural stimuli and using these RFs to predict responses to novel stimuli

    Spontaneous Discrimination of Natural Stimuli by Chimpanzees (Pan troglodytes)

    Get PDF
    Six chimpanzees (Pan troglodytes) were presented with pairs of color photographic images of 5 different categories of animals (cat, chimp, gorilla, tiger, fish). The subjects responded to each pair using symbols for same and different. Both within- and between-category discriminations were tested, and all chimpanzees classified the image pairs in accordance with the 5 experimenter-defined categories under conditions of nondifferential reinforcement. Although previous studies have demonstrated identification or discrimination of natural categories by nonhuman animals, subjects were typically differentially reinforced for their responses. The present findings demonstrate that chimpanzees can classify natural objects spontaneously and that such classifications may be similar to those that would be observed in human subjects

    Natural stimuli for mice: environment statistics and behavioral responses

    Get PDF

    Creating effective focus cues in multi-plane 3D displays.

    Get PDF
    Focus cues are incorrect in conventional stereoscopic displays. This causes a dissociation of vergence and accommodation, which leads to visual fatigue and perceptual distortions. Multi-plane displays can minimize these problems by creating nearly correct focus cues. But to create the appearance of continuous depth in a multi-plane display, one needs to use depth-weighted blending: i.e., distribute light intensity between adjacent planes. Akeley et al. [ACM Trans. Graph. 23, 804 (2004)] and Liu and Hua [Opt. Express 18, 11562 (2009)] described rather different rules for depth-weighted blending. We examined the effectiveness of those and other rules using a model of a typical human eye and biologically plausible metrics for image quality. We find that the linear blending rule proposed by Akeley and colleagues [ACM Trans. Graph. 23, 804 (2004)] is the best solution for natural stimuli

    Functional Sensory Representations of Natural Stimuli: the Case of Spatial Hearing

    Get PDF
    In this thesis I attempt to explain mechanisms of neuronal coding in the auditory system as a form of adaptation to statistics of natural stereo sounds. To this end I analyse recordings of real-world auditory environments and construct novel statistical models of these data. I further compare regularities present in natural stimuli with known, experimentally observed neuronal mechanisms of spatial hearing. In a more general perspective, I use binaural auditory system as a starting point to consider the notion of function implemented by sensory neurons. In particular I argue for two, closely-related tenets: 1. The function of sensory neurons can not be fully elucidated without understanding statistics of natural stimuli they process. 2. Function of sensory representations is determined by redundancies present in the natural sensory environment. I present the evidence in support of the first tenet by describing and analysing marginal statistics of natural binaural sound. I compare observed, empirical distributions with knowledge from reductionist experiments. Such comparison allows to argue that the complexity of the spatial hearing task in the natural environment is much higher than analytic, physics-based predictions. I discuss the possibility that early brain stem circuits such as LSO and MSO do not \"compute sound localization\" as is often being claimed in the experimental literature. I propose that instead they perform a signal transformation, which constitutes the first step of a complex inference process. To support the second tenet I develop a hierarchical statistical model, which learns a joint sparse representation of amplitude and phase information from natural stereo sounds. I demonstrate that learned higher order features reproduce properties of auditory cortical neurons, when probed with spatial sounds. Reproduced aspects were hypothesized to be a manifestation of a fine-tuned computation specific to the sound-localization task. Here it is demonstrated that they rather reflect redundancies present in the natural stimulus. Taken together, results presented in this thesis suggest that efficient coding is a strategy useful for discovering structures (redundancies) in the input data. Their meaning has to be determined by the organism via environmental feedback
    • …
    corecore