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Bennemann, Marc Stöhr, Mikaella Sarrou. For me - it was a great science lesson,

eye opening experience and (crucially) lots of fun! Thank you all for many hours

spent in the acoustic free field, discussions and draft corrections!

It is not an exaggeration, if I say that I would not manage to do anything

constructive in Leipzig, if I was not taken care of in almost all not-directly-

scientific aspects of life by the Institute’s staff. A thousand thanks to Antje

Vandenberg for not only managing the administration of the group in a way

that makes the bureaucracy invisible to us, but (perhaps most importantly) for

creating a warm and joyful atmosphere. I will miss our mensa lunches greatly!

Thanks to Heike Rackwitz for her help in finding a roof over my head and keeping

it in one piece. Many thanks to Ingo Brüggemann, Katarzyna Bajer, Christine
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Chapter 1

Introduction

The brain does not ”see” the world the way its owner does. It exists concealed

in the silent and dark space confined by the skull (or other anatomical structure)

leading the animal through its surrounding. Every movement is planned and

exectuted basing on the information present in physical stimuli - light, sound etc,

but represented by series of electric potentials generated by sensory neurons.

Understanding the way in which the environment reflects itself in the neuronal

activity is perhaps one of the primary goals of neurobiology. Over time sensory

neuroscience - the subfield specifically devoted to this problem has developed.

Using a broad repertoire of experimental and theoretical approaches it attempts

to find answers to the great question - why and how do animals perceive the

world in a way they do?

1.1 The notion of neuronal function

Following the great research tradition, which can be dated back to Gustav Fech-

ner, Hermann von Helmholtz and Edgar Adrian, sensory neuroscience attempts

to quantitatively characterize the relationship between properties of the stimu-

lus, neuronal activity and perception. This at first very courageous and unusual

thought that the way one perceives the world emerges from the electric activity of

”little gray cells” has lead to a largely successful research program. Still however,

many fundamental questions remain unanswered.

At the end of the XIXth and at the beginning of the XXth century it has

been observed that the electric activity of nerve fibers can be triggered by specific

properties of the environment. Adrian has accidentally discovered that when he

walked in the toad’s field of vision the optic nerve was eliciting electric pulses [2].

Basing on physical considerations Helmholtz proposed that nerve cells located at
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different positions along the cochlea decompose complex sounds into pure tones

[54]. Activity of each cell would therefore underlie the perception of pitch.

Research into the function of the nervous system started gaining pace in

the second half of the XXth century. Results, which are now considered the

foundation of visual neuroscience, have been obtained by Hubel and Wiesel in

1959 [59]. After arduous testing the visual cortex of the cat by exposing the

animal to numerous stimuli types they observed a previously unknown effect.

Neurons located in early visual areas seemed to be responsive to light bars of

a particular orientation. Depending on the degree of invariance to the spatial

shift of the stimulus, those cells have been named simple and complex. Since

in laboratory conditions they increased firing rates in the presence of edge-like

structures their function has been decided to be ”edge detection”.

Almost in parallel interesting discoveries were made in the frog’s visual sys-

tem. Horace Barlow in Cambridge demonstrated that neurons in the retina of the

frog respond to presence or lack of black dots [10]. In the frog’s world fast moving

round black objects often corespond to the presence of food - a fly. Consider-

ing this behavioural importance Barlow called discovered cells ”fly detectors”

automatically ascribing them a particular function.

The observation that neuronal populations seem to extract information about

different aspects of the environment from the raw stimulus input provoked theo-

retical considerations. Polish neurophysiologist Jerzy Konorski working in  Lódź

combined many results arising at the time into a coherent conceptual framework

[70]. He suggested that neurons hierarchically extract and represent more and

more abstract properties of the stimulus in a processing cascade. According to

the Konorski’s hypothesis the highest level of the processing hierarchy would con-

sist of ”gnostic units” - cells which represent abstract concepts. Not much later

Jeremy Lettvin in Boston developed a similar concept. He named it, however

with a dose of flamboyant humour - ”the grandmother cells” (Lettvin introduced

the term in 1969 during the course ”Biological Foundations for Perception and

Knowledge” taught at MIT [48]). This name precisely defines the function such

neurons are expected to implement - they would elicit electric pulses only in

the presence of the individual’s grandmother. Years later experimental results

supporting Konorski’s and Lettvins predictions have been delivered. Neurons

modulated by the identity of a person depicted on an image have been found

both in humans [113] and monkeys [32]. One mismatch with the Lettvin’s theory

has been that it was not the grandmother, who influenced the neuronal activity

of recorded units. It was the actress - Jennifer Aniston [113].

From edges to faces. From pure tones to the musical rhythm. Neurons in

different parts of the nervous system seem to extract and represent very differ-

ent, but often complex and subtle properties of the stimulus, while being non-

responsive to changes in other parameters. The aspect of the physical world,
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which is being made explicit by the activity of the neuron is often associated

with this neuron’s function. Edge detectors, face cells, pitch-sensitive neurons,

sound-source localizers. In an emerging view sensory systems consist of basic

units of clearly segregated and well defined functions. In some cases existence of

such segregation is firstly being hypothesized, with no precise definition of how

the separation should be performed. A prominent example comes from visual

neuroscience, where dorsal and ventral streams are supposed to independently

process spatial (”where”) and identity-related (”what”) information.

The postulated concept of sensory segregation is not free from theoretical lim-

itations. Firstly, computational mechanisms which underlie neuronal functions

(either hypothesized or experimentally observed ones) are often hard to under-

stand or imagine. How is the grandmother’s identity extracted from an image?

How is a position of a sound source separated from its timbre? It is not clear

whether those questions reflect just our limited algorithmic knowledge required

to perform described computations, or are of a more fundamental nature. The

second (perhaps largest) conceptual drawback of the notion of functional sensory

segregation is the well-known ”binding problem”. Let’s imagine one listens to

a jazz quartet. The ears perceive overlapping waves of air pressure generated

by four instruments. Auditory neurons process the music of each instrument in

separated channels devoted to pitch, timbre, spatial location, and other perhaps

unknown, or unnamed features of sound. If such a strict segregation happens,

how is the information fused together correctly to form a percept? Why does one

not perceive a piano playing a melody of a cello, located where the drums stand,

rather than the real quartet?

Taking above mentioned issues into consideration, one can ask broadly - does

the nervous system consist of a loose collection of functional subsystems, each

devoted and ”pre-designed” to have a separate function and process a different

stimulus aspect? From a theoretical point of view this may lead to a more

practical problem - which conceptual frameworks and theories can be useful in

functional characterization of sensory neurons? And the big question - what is

the function implemented by sensory neurons - what do they actually do?

1.2 Neuronal function in the laboratory - the experimenter’s

point of view

Perhaps the earliest and most broadly applied approach to characterization of

neuronal function, can be exemplified by already mentioned work of Adrian,

Hubel and Wiesel among many others. The experimenter pre-assumes that the

function of a neuron is to represent a particular physical parameter φ say the

angular position of a sound source in the head entered coordinate system. The

animal is exposed to a range of parameter values, while the neuronal activity is

7



Figure 1.1: A classical approach to the neuronal function characterization. A)
Variation of an experimental parameter φ leads to a modification of neuronal
activity r (e.g. firing rate). B) A plot of a function T , which maps the parameter
in question to activity value is often referred to as ”the tuning curve”

being recorded. In the following step the experimenter computes a feature r of the

electrophysiological signal (very often it is the firing rate - an average amount of

action potentials elicited by the neuron in a time interval). Collected data is used

to estimate the mapping from the stimulus parameter to the neurophysiological

activity, as implemented by the sensory neuron1, which is known as the tuning

curve. The tuning curve T is therefore a function:

T (φ) = r (1.1)

A schema of this procedure is depicted on figure 1.1. If a modification of

the parameter φ systematically triggers a change of the neuronal response r, one

may draw a conclusion that the neuron represents this particular parameter. The

form of the representation is defined by the shape of the tuning curve.

This research philosophy has tremendously advanced our understanding of the

nervous system. However, as with any approach, among numerous advantages it

has certain drawbacks. At the most fundamental level stimuli live in the high-

dimensional ”natural space”. Its dimensionality is defined by the number of

sensory receptors (cells transforming physical stimuli into the electric activity)

in the sensory epithelium - in the human auditory system this corresponds to

roughly 20000 hair cells per cochlea. The number of dimensions additionally

expands, when one considers temporal change of the stimulus. A sensory neuron

implements a mapping from the space of the time-varying stimulus s into the

(typically much lower dimensional) space of neuronal activity2r:.

1One should note that in a more general (and also broadly used) setting the mapping of
the stimulus on spiking activity is not deterministic. Due to different sources of noise and
uncertainty the relationship is defined by a conditional probability distribution p(r|φ). For
simplicity however, here I use the deterministic notation.

2It is important to stress that at most stages of the processing hierarchy down-stream neu-
rons operate on inputs from up-stream neurons not on the actual stimulus. They are however
characterized by the function they play in the stimulus processing, or a feature they repre-
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Figure 1.2: An actual mapping from the parameter space to the neuronal ac-
tivity. The preselected experimental parameter φ is mapped to the space of
epithelium activations s by the function E(φ). In a most fundamental sense neu-
ronal responses r are defined in the epithelium space by the function R(s) = r.
The mapping between the experimental parameter and the neuronal activity is
therefore defined by a composition of two functions r = R(E(φ)).

R(s) = r (1.2)

The function R can be thought of as a conceptualization of the neuron’s

true receptive field i.e. the computation that phylogeny, ontogeny and learning

have led it to perform. It of course remains unknown to the experimenter, and

full understanding of the mapping described by equation 1.2 remains one of the

”holy-grails” of sensory neuroscience.

When analysing the sensitivity of a neuron to the preselected parameter φ,

one gradually changes its value, and observes a systematic change in the neural

response. The important, yet subtle caveat is that observed modulation is defined

by the receptive field R not a tuning curve3 T . Modulation of the parameter φ

(for instance the angular position of a sound source) yields a physical stimulus

(a waveform), which excites sensory receptors generating the sensory signal s

(spatiotemporal activation of left and right cochlea). The mapping between φ and

s is defined by another function E. Modulation of neuronal firing in a response

to the change of φ is therefore described by a composition of two functions:

r = R(E(φ)) (1.3)

This situation is depicted on figure 1.2. The experimental approach described

at the beginning of this section, and depicted on figure 1.1 can easily overlook the

sent. The function of previously mentioned face-specific cells is defined by the properties of the
represented stimulus not spike trains received from the lower parts of the visual system.

3The terms ”receptive field” and ”tuning curve” are not strictly defined and are often used
as equivalent in the literature. In this discussion I use them separately. The receptive field R is
the real mapping from the stimulus space into neuronal activity that a neuron implements. The
tuning curve T is an experimentally obtained estimate of a mapping of a pre-defined parameter
φ to neuronal activity.
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existence of the intermediate function E. What it does instead of approximating

R with T , is an approximation of R(E). Function R implemented by a neuron

can be very different from the experimentally observed tuning curve T . Yet, if

different responses to a change of the parameter φ are experimentally obtained,

it may be erroneously concluded that the sole function of the observed neuron is

to represent the value of φ. Briefly speaking - characterizing neuronal response

to the change of a certain parameter is not necessarily equivalent to determining

this neuron’s function.

The conceptual problems discussed above are closely related to specific issues

encountered in auditory neurophysiology. A particularly important one is the

sensitivity-selectivity dichotomy. Neurons which respond exclusively to one pa-

rameter and do not carry any information about any other stimulus features are

called stimulus-specific. Specificity of a unit allows to draw a strong conclusion

about its supposed function. On the other hand it is possible that the neuron is

merely sensitive to a particular parameter i.e. it non-exclusively responds to a

variation of multiple parameters, including the one in question. Observed change

in the neuronal firing may yield a conclusion that the neuron’s function is to rep-

resent a single feature only, while in reality it represents numerous other aspects.

In the auditory cortex the majority of neurons seem to be sensitive to timbre,

pitch and sound position [15], while units selective exclusively to one of those

parameters are hardly found [14].

Experimental methodology described in this section does not include more

explorative approaches based on the analysis of response conditional ensembles

(RCEs). The RCE is a set of stimuli (typically generated by a random process),

which preceded the spike elicitation. RCE based methods can be classified de-

pending on the statistic they analyze. Prominent examples are the spike triggered

average (STA), spike triggered covariance (STC) [126] and information theoretic

methods such as maximally-informative dimensions [128]. These methods do not

presuppose sensitivity to any high-level parameter. Instead, they sample the

stimulus space and attempt to infer the neuronal mapping R from the observed

RCE. For this reason they suffer much less from conceptual drawbacks described

here. Their results, however maybe hard to interpret, since the RCE lies in the

high-dimensional ”epithelium space”. I do not discuss them in detail, since they

are not broadly used in the analysis of spatial hearing mechanisms.

1.3 Neuronal function in the natural environment - the

organism’s point of view

The perspective of the organism (or rather its nervous system) differs in funda-

mental ways from that of the experimenter. It is exposed to a constant stream

of sensory information, consisting not of well defined and interpretable parame-
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ters but of the raw, high-dimensional stimulus signal exciting sensory receptors.

Stimuli are generated by numerous simultaneously active objects (for instance

sound sources), which overlap, interact with each other and are affected by the

environmental background (acoustics in case of sound). In such a setting it is

extremely hard to define clearly separated aspects of the environment. If, for

instance, one wants to refer to the sound source position, one has to decide first,

which out of many sound sources is of interest. Additional questions are: is it

separable from the background? Do other sources of similar quality overlap with

it? Is the identity of the sound also important (perhaps it can carry additional

information about the sound location)? Real world situations rarely reflect re-

ductionistic and well-controlled experimental settings, where only a single, well

interpretable aspect of the experimental setup (not necessarily of the stimulus)

is being modulated. Interested reader should refer to an opinion article, which

addresses conceptual problems of natural scene analysis [80].

A crucial property of stimuli generated by natural scenes is their ambiguity.

If an unknown number of sources generates signals of an also unknown structure

a situation can arise, where many different scene configurations correspond to the

same stimulus value. It is also possible that sensory data do not suffice to find a

clear solution. Such problems are known as ill-posed. In auditory neuroscience a

classical example of an ill-posed problem is known as ”the cocktail party problem”

[90], where multiple overlapping sound sources collapse on the single stimulus

waveform.

Due to ambiguity and presence of multiple noise sources extraction of stimulus

features useful in accomplishing meaningful behavioural tasks is an inherently

statistical problem. Properties of the environment, which are modelled by simple

experimental parameters in the laboratory have to be inferred from the sensory

stream [109, 110, 83]. To successfully interact with the environment the internal

states of the organism (specifically its nervous system) have to be correlated with

aspects of a scene relevant for survival, which happens by transforming the raw

stimulus stream.

The above considerations raise important questions. In order to remain in-

formed about the environment do neurons need to have clearly defined functions,

which are sharply segregated and easily interpretable as experimental parame-

ters? Does the separation into high-level functions defined by the natural lan-

guage of human observers (”timbre encoding”, ”sound position encoding”) hap-

pen at all?

1.4 Outline and scope of this thesis

Prior to answering questions about sensory representations employed by a par-

ticular system the level of abstraction at which the analysis will be performed
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should be chosen. Very different questions can be asked about the same system -

their choice depends in most cases on individual preferences rooted in the back-

ground and the research culture of the particular field. Questions naturally asked

by a neurophysiologist could be whether the spike timing or rates carry sensory

information, or what is the role of inhibitory neurons in sound localization. A

statistician would rather ask what are the quantities that the nervous system

attempts to estimate and how can this computation be carried out given sensory

data.

A conceptual framework, which relates these perspectives to each other was

provided by David Marr in his seminal book [87]. Marr has proposed that any

information processing system (and the nervous system in particular) should be

analyzed at three levels of abstraction. He ordered them from most to least

abstract (definitions presented below are direct quotations from [87]):

1. Computational theory - What is the goal of the computation, why is it

appropriate, and what is the logic of strategy it can be carried out?

2. Representation and algorithm - How can this computational theory be imple-

mented? In particular, what is the representation for the input and output,

and what is the algorithm for the transformation?

3. Hardware implementation - How can the representation and algorithm be

realized physically?

Marr’s levels are not fully independent, for instance the choice of an algo-

rithm will be very often constrained by the available hardware. Despite that the

hierarchy has proven to be useful to study neural systems. In this thesis which

considers the function sensory neurons play in representing sensory information

as exemplified by the binaural hearing system I focus on the two highest levels -

computational and algorithmic. Even though auditory neurophysiology provides

numerous fascinating examples of physical mechanisms (for instance the sub-

milisecond spike coding of interaural phase differences), I will not discuss them.

Instead I will consider tasks of spatial hearing from an information-processing

perspective.

Following the existing research field, which attempts to connect neuronal

function with statistical properties of the natural sensory environment, I will

argue for two general, closely related tenets:

1. The function of sensory neurons can not be fully elucidated without

understanding statistics of natural stimuli they process. While reduc-

tionist experimental designs using artificial stimuli may raise easily interpretable

results and provide intuitions they can not suffice to fully elucidate the function

of a sensory neuron. Artificial stimuli hardly reflect the complexity of naturally
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encountered information which the system evolved to deal with. Simplistic stim-

uli considered in isolation can lead to too fast conclusions and misconceptions

about the function of the system. Finally, one can not predict the richness of the

natural environment - artificial stimuli will not include all possible cases faced by

the organism. In order to discover them one has to explore natural data.

2. Function of sensory representations is determined by redundancies

present in the natural sensory environment. As discussed in the first sec-

tion of this chapter there are many possible experimental parameters, modulation

of which correlates with a change of neuronal activity. Taking the interpretation

of such results to the extreme one may conclude that for each ad-hoc defined

experimental parameter there should be a subsystem within the brain which rep-

resents it. One may, however, counter-argue taking the evolutionary perspective,

which stresses the necessity for adaptation to the environment. According to it

the nervous system must not consist of a loose collection of ”problem-solving cir-

cuits”. It may be rather encoding correlated structures i.e. redundancies present

in its natural input. Such structures in turn correspond to interpretable and

potentially behaviourally relevant environmental states. This statement is a con-

sequence of a hypothesis known as the efficient coding hypothesis or redundancy

reduction [10, 7].

The argumentation is based on a concrete example. I study statistics of

natural stereo sounds and compare them with known properties of the binaural

hearing system. This part of the nervous system has been a subject of extensive

physiological and psychophysical research, yet not much work has been done from

the theoretical perspective presented here.

As mentioned in the second tenet the general theoretical framework I use

in this thesis is provided by the efficient coding hypothesis (described in detail

in chapter 2). Briefly stated, the hypothesis says that sensory neurons encode

redundant stimulus patterns while minimizing mutual dependencies. The hy-

pothesis has been succesfully applied in many domains of sensory neuroscience.

Here I refer to it in an attempt to explain certain mechanisms of spatial hearing.

The thesis is structured as follows:

Chapter 2 presents the theoretical toolbox provided by the efficient coding hy-

pothesis. It discusses formal tools derived from information theory and

statistics to identify optimal representations of sensory data. Statistical

algorithms (sparse coding and independent component analysis) inspired

by the efficient coding hypothesis are discussed. The chapter concludes

with speculations about the role of redundancy reduction in formation of

neuronal functions.
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Chapter 3 provides a crude overview of the exemplary sensory task studied

here - spatial hearing. It presents anatomy and physiology of the binaural

auditory system, and discusses the current knowledge of neuronal repre-

sentations of the auditory space. In the final section it describes what is

known about connections between natural statistics of auditory stimuli and

hearing mechanisms.

Chapter 4 is the first out of three chapters, which describe original contribu-

tions of this thesis. It describes analysis of marginal statistics of natural

binaural sounds. It compares observed cue distributions with knowledge

from reductionist experiments. Such comparison allows to argue that the

complexity of the spatial hearing task in the natural environment is much

higher than analytical, physics-based predictions. It is discussed that early

brain stem circuits such as LSO and MSO do not ”compute sound local-

ization” as is often being claimed in the experimental literature. Instead it

is proposed that they perform a signal transformation, which constitutes a

first step of a complex inference process. Results of this chapter have been

published in [99].

Chapter 5 develops a hierarchical statistical model, which learns a joint sparse

representation of the amplitude and phase information from natural stereo

sounds. It is demonstrated that learned higher order features reproduce

properties of auditory cortical neurons when probed with spatial sounds.

Reproduced aspects were hypothesized to be a manifestation of a fine-tuned

computation specific to the sound-localization task. Here it is demonstrated

that they rather reflect redundancies present in the natural stimulus. More-

over, the learned representation couples ”what” and ”where” information,

and does not separate them into distinct streams which also matches exper-

imental observations. The article resulting from this chapter is currently

under review [98].

Chapter 6 demonstrates that, in principle, learning a sparse factorial code of

natural spectrograms can lead to the extraction and separation of spatial

/ identity relevant information. The results of this chapter suggest that

efficient coding is a strategy useful for discovering structures (redundancies)

in the input data. Their meaning has to be determined by the organism

via environmental feedback. Results of this chapter have been published in

[97].

Chapter 7 concludes this work by summarizing results presented in chapters

4 − 6, and discussing them in the light of the initial tenets. It discusses

strengths as well as drawbacks and limitations of the proposed approach.
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Chapter 2

Efficient Coding in Sensory

Systems

”The wing would be a most mystifying structure if one did not know that birds

flew” wrote Horace Barlow in the opening of his famous paper [10]. Indeed, with-

out theories, which are able to account for large sets of empirical regularities, our

scientific efforts would be limited to collecting detailed observations with no con-

nection between any two. In neurobiology theoretical approaches do not yet have

the same status as in physics - they are rarely able to form quantitative predic-

tions basing on solely analytical considerations. However candidate principles,

which can potentially provide useful theoretical frameworks exist. Perhaps the

most prominent one stems from the work of Barlow [10] and Attneave [7] done

in the fifties and sixties. It is known as the efficient coding hypothesis.

In this chapter I begin by introducing information-theoretic concepts on which

the efficient coding hypothesis builds. I proceed by describing the hypothesis itself

and discussing statistical models which emerged from the considerations based

on it: sparse coding and independent component analysis. The chapter concludes

with a discussion of a potential role that efficient coding can play in the formation

of functional sensory representations.

2.1 Information Theory

Information theory has been developed by Claude Shannon [127], an electrical

engineer working at Bell Laboratories. Even though originally it was supposed to

be applied to electric communication channels, such as telephones, it has quickly

been picked up by researchers in multiple different areas, including neurobiology.

In this section I introduce selected information-theoretic concepts required to
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define the notion of efficient coding, as used in neurobiology. For an in-depth

overview of information theory, the interested reader may refer to a classical

textbook [29], on which most of this section is based.

2.1.1 Entropy

Let X and Y be discrete random variables with alphabets X ,Y and the proba-

bility mass functions p(x) = Pr{X = x}, x ∈ X and p(y) = Pr{Y = y}, y ∈ Y
1.

The entropy H(X) of the variable X is defined by:

H(X) = −
∑
x∈X

p(x) log p(x) (2.1)

0 log 0 is assumed here to be equal to 0. If the logarithm is of base 2, the unit

of entropy is a bit. Entropy can be interpreted as a measure of uncertainty, which

an observer has about the outcome of a random trial. In other words, observing

a draw from the distribution p(x) carries H(X) bits of information on average.

The joint entropy of two random variables X,Y is simply a function of their

joint probability mass function:

H(X,Y ) = −
∑
x∈X

∑
y∈Y

p(x, y) log p(x, y) (2.2)

Joint entropy can be considered as entropy of a vector-valued random vari-

able. The entropy is associated with the uncertainty, which is reduced by the

information gain. Here the notion of conditional entropy becomes useful:

H(X|Y ) = −
∑
y∈Y

p(y)
∑
x∈X

p(x|y) log p(x|y) (2.3)

Conditional entropy defines the average amount of uncertainty that remains

about X after Y has been observed. The relationship between conditional and

joint entropy of two variables is known as the chain rule for entropies which is

defined as follows:

H(X,Y ) = H(X) +H(Y |X) (2.4)

= H(Y ) +H(X|Y ) (2.5)

The chain rule can be extended for a vector of random variables X = (X1, X2, . . . , Xn).

It takes the following form:

1In principle variables X and Y can have different probability mass functions px(x) and
py(y). For simplicity, I use the same notation p(x), p(y).
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H(X) = H(X1, X2, . . . , Xn) =

n∑
i=1

H(Xi|Xi−1, . . . , X1) (2.6)

2.1.2 Mutual Information

Entropy of a variable quantifies its uncertainty - it defines the amount of informa-

tion (the number of bits) required on average to obtain that variable’s description.

The related concept is mutual information I(X;Y ) - a measure of information

that variable X carries about a different variable Y . It is defined in the following

way:

I(X;Y ) =
∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
(2.7)

.

Mutual information is a non-negative quantity (I(X;Y ) ≥ 0). It describes

the reduction of uncertainty of one variable after observation of the other. It can

be also understood as a measure of statistical dependence between two variables.

If X and Y are independent their mutual information is equal to 0 and vice versa.

The entropy of a variable X can be then decomposed into the conditional

entropy given variable Y and their mutual information:

H(X) = H(X|Y ) + I(X;Y ) (2.8)

An important property of mutual information is known as the data processing

inequality. Let three random variables X,Y, Z form a Markov chain (denoted as

X → Y → Z) i.e. :

p(x, y, z) = p(x)p(y|x)p(z|y) (2.9)

The data processing inequality states that there exist no transformation of Y

(either deterministic or random), which could increase information about X:

I(X;Z) ≤ I(X;Y ) (2.10)

see [29] for a proof. It is a property of a particular importance from the point

of view of neurobiology. It states that without any additional sensory data no

downstream sensory neuron can have more information about the input than its

predecessors in the processing stream.

2.2 Efficient Coding Hypothesis

The development of information theory in the late forties and early fifties almost

immediately drew the attention of researchers in disciplines outside of telecommu-

nications. It has been quickly noted that information theoretic concepts should
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be of special interest to brain sciences - psychology and neurobiology. After all,

those fields attempt to understand how the nervous system processes information,

and Shannon’s formal tools address precisely this problem.

Fred Attneave [7] and Horace Barlow [10] suggested a hypothesis rooted in

information theory which exerted profound influence on the study of perception

and neuronal processing. They had observed that natural stimuli are redun-

dant both in space and time. These homogeneities provide structure, which is

determined by the state of the environment, hence carries relevant behavioural

information. Sensory neurons which are supposed to encode stimulus patterns

informative about the organism’s surrounding should therefore transmit stimulus

redundancies. Moreover, in order to successfully interact with the environment

the organism may need all the information it can get. This means that informa-

tion flow from the environment to the nervous system should be maximized.

If one neuron transmits information about some stimulus aspect there is no

need to transmit it for a second time - it would be an uninformative and non-

economical use of processing resources. Neurons should therefore represent mu-

tually non-redundant features of the stimulus. This postulated maximization of

intra (adaptation of receptive fields to correlated stimulus structures) - and min-

imization of inter (encoding of non-overlapping patterns) - neuronal redundance

is known as the efficient coding hypothesis.

More formally let X = (X1, . . . , Xn) be the sensory signal and Y = (Y1, . . . , Yn)

the output of a neuron which encodes it. The postulated goal of sensory coding is

to maximize the information flow1 from the environment into the nervous system

i.e. the mutual information I(X; Y). We know that mutual information can be

decomposed as:

I(X; Y) = H(Y)−H(Y|X) (2.11)

Assuming that noise which determines the encoding distribution p(y|x) is

stationary and of constant variance, the conditional entropy H(Y|X) is constant

as well, and does not depend on the input value x. One can therefore see that

the information maximization is equivalent to the maximization of the entropy

of the neuronal code H(Y).

Based on equations 2.6, 2.8, the joint entropy of the code can be decomposed

into the difference of a sum of single-neuron entropies and mutual information

that any of them carries about all others:

H(Y) = H(Y1, . . . , Yn) =

n∑
i=1

H(Yi)−
n∑
i=1

I(Yi;Yi−1, . . . , Y1) (2.12)

1It should be noted that the term ”information flow” has often a separate technical meaning
(see [8]) for instance. In this context, by information flow I mean mutual information.
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What follows from equations 2.11, 2.12 is that maximization of the informa-

tion flow is achieved when mutual information between single neurons is mini-

mized (
∑n

i=1 I(Yi;Yi−1, . . . , Y1 → 0). When it goes to zero the total entropy of

the code is equal to the sum of single-neuron entropies:

H(Y) =

n∑
i=1

H(Yi) (2.13)

This is equivalent to stating that the activity of single neurons is indepen-

dent. In this case their joint probability p(y) is equal to the product of marginal

probabilities:

p(y) = p(y1, . . . , yn) =
n∏
i=1

p(yi) (2.14)

An illustration of non-efficient and efficient codes is depicted on figure 2.1

A) and B) respectively. Stimulus information (equivalent to it’s entropy H(X))

is represented by the area of the large circle. Entropies of single neurons are

depicted by small circles. Their overlap with the stimulus corresponds to the

mutual information I(X; Y), which is marked by shaded gray. The goal of the

efficient code is to maximize the total gray area constrained by the number of

neurons and their information coding capabilities. It becomes clear that coding

efficiency is maximized when all neurons are coding stimulus-related information

(small circles overlap with the large one) and encode non-redundant stimulus

aspects (the total dark-gray area, marking the neuronal overlap is minimized).

The impact of the efficient coding hypothesis on neuroscience can be ascribed

to the fact that it is able to form experimental predictions applicable to a broad

range of sensory systems. The first prediction says that activity of sensory neu-

rons at consecutive stages of processing should be progressively more independent

when the system is exposed to a natural stimulus. The second (and perhaps most

important one) is that neurons should encode correlated structures of the sensory

data they typically encounter. This means that their tuning properties i.e. stim-

ulus features, which modulate their activity, should be predictable from statistics

of the natural sensory input. Over the years numerous experiments delivered

results supporting those predictions.

The importance of the hypothesis for brain sciences can be also explained by

its intellectual descendence and scientific zeitgeist. These can be well illustrated

by the person of Horace Barlow - one of its proponents. Being himself a neuro-

biologist and a great-grandson of Charles Darwin he realized how important it

is to consider anatomy and physiology of an organism not in an isolation, but in

the context of its natural environment. At the same time being a contemporary

of Claude Shannon through lecture of his work he became aware that in order

to function properly any information-processing system should be ”aware” of its
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Figure 2.1: A graphical representation of non-efficient and efficient codes. The
large circle corresponds to the stimulus entropy H(X). Small circles represent
entropies of individual neurons H(Yi). The total gray area (both light and dark)
represents the mutual information between single units and the stimulus. Dark
gray marks redundancies between single neurons. A) A non-efficient code. Re-
dundancies are present, and one unit is not adapted to the stimulus. B) An
efficient code. Neurons overlap with the stimulus and form a non-redundant
representation.

input’s statistics. Those two concepts when combined together by Barlow must

have led to the insight that the nervous system is (at least to a certain extent)

a product of data it processes - its sensory environment. ”Nothing in Biology

Makes Sense Except in the Light of Evolution” says the famous title of Theodo-

sius Dobzhansky’s essay [34] - the efficient coding hypothesis embeds theories of

neuronal coding in the broad framework of evolutionary theory. It does so, by

stressing the importance of the adaptation to the sensory niche.

One should note, however, that the idea of maximizing coding efficiency by

progressive redundancy reduction is not free of theoretical limitations. For in-

stance, when transmitting information over a noisy channel one may on purpose

introduce redundancies in a controlled manner to reassure the quality of the

transmission [29]. The nervous system may be doing that as well, in fact codes

responsible for motion generation are known to be redundant [42]. An other

important critique is that the organism may not need to encode the entire stim-

ulus stream. Perhaps only certain bits carry an important value and should

be encoded by sensory neurons. I discuss this concern further in the following

subsection 2.4.

Even if sensory neurons do not form an optimal, exactly efficient code of the

natural stimulus the hypothesis discussed in this section provides a normative

account of the nervous system. By suggesting a theoretically optimal solution to

the task of information transmission it suggests a research direction and provides
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a benchmark with which biological systems can be compared.

2.3 Sparse Coding

The idea that sensory systems are adapted to natural stimuli has started a sepa-

rate branch of research in theoretical neurobiology - natural scene statistics. The

goal of this field is to explore natural sensory data (sounds, images, etc.) and find

statistical regularities i.e. redundancies, which can be exploited by the brain. A

particularly successful statistical model which directly builds on the efficient cod-

ing hypothesis is known as sparse coding [104]. Learning sparse codes of natural

stimuli has led to substantial developments both in neuroscience and machine

learning. Sparse coding is also one of the fundamental concepts of the present

thesis. In this section I discuss its basic version.

Let xt ∈ RN be the t− th sample of a N−dimensional stimulus. The sparse

coding model assumes that each stimulus vector xt can be represented as a linear

superposition of basis vectors bn ∈ RN in the following way:

x̂t,i =
M∑
n=1

st,nbn,i (2.15)

where t is an index over data samples, and i over data dimensions. Linear

coefficients st = (st,1, . . . , st,M ) form a representation of the data vector xt in the

space spanned by basis vectors 2 b = (b1, . . . , bM ).

In order to handle noisy data an additive, stationary Gaussian noise term can

be explicitly incorporated into the model:

xt,i = x̂t,i + η (2.16)

where η ∼ N (0, σ2). Equation 2.16 defines a likelihood function of the data

p(xt|st, b). Assuming the conditional independence between data dimensions

given basis b and coefficients s it is equivalent to:

p(xt|st, b) =
1(

σ
√

2π
)N N∏

i=1

exp

[
−(xt,i − x̂t,i)2

2σ2

]
(2.17)

As mentioned above, the model forms a new representation (a code) of sensory

data with basis vectors b. Since the sparse coding model is an implementation

of the efficient coding hypothesis the new representation is supposed to be max-

imally efficient in an information theoretic sense. According to equations 2.13,

2.14, this can be achieved when coefficients s are independent i.e. their joint prob-

ability is equal to the product of marginals. This constraint allows to formulate a

2Traditionally basis vectors bn are often referred to as ”basis functions”. I use those terms
interchangeably even though they are discrete and do not span a function space.
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prior distribution over coefficients s. Assuming that marginal distributions p(sn)

are the same for all coefficients, and that they can be written in the exponential

form p(sn) = 1
Z exp (−λS(sn)) the prior over coefficients becomes:

p(st) =

M∏
n=1

p(st,n) =
1

Z
exp

[
−λ

M∑
n=1

S(st,n)

]
(2.18)

Function S(s) determines the shape of the coefficient distribution. Crucially,

the coefficient distribution is typically assumed to be sparse i.e. the majority of

the probability mass is densely allocated around 0. This implies that for a typical

sample the most coefficients have very small absolute values, and only few largely

deviate from 0.

The notion of sparsity and the motivation for use of sparse priors is discussed

in detail in section 2.3.2.

Dimensionality of the sparse representation

An important property of a sparse code is the number M of basis functions b

used to represent N−dimensional data vectors. It is possible that the number of

relevant directions in the data space is different from its dimensionality. In such

cases the number of basis vectors used to encode the data should be therefore

appropriately selected.

Figure 2.2: Dimensionality of the representation. Axes of each plot correspond
to data dimensions. Data points are clustered along directions in the data space.
The number M of those directions determines completeness of representation,
which shall be used. A) undercomplete representation (M < N) B) complete
representation (M = N) C) overcomplete representation (M > N)
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Figure 2.3: A graphical model representing variable dependencies

These situations are depicted on figure 2.2. Depending on the number of

basis vectors the representation can be either undercomplete (M < N), complete

(N = M), or overcomplete (M > N).

It has been argued that natural signals are well matched by overcomplete

representations [105, 81]. Codes with a larger number of dimensions have a

greater robustness in the presence of noise and can be sparser [81] than complete

representations.

The notion of overcompletness has an important biological meaning. It has

been early observed that the dimensionality of sensory representations largely

expands in the nervous system [105]. Number of cortical neurons exceeds the

number of sensory receptors by orders of magnitude (e.g. in the cat the audi-

tory nerve consists of ∼ 104 fibres, while in the auditory cortex there are ∼ 108

neurons). It has been therefore postulated that overcomplete sparse codes ap-

proximate the representational strategy employed by the nervous system [105].

Sparse coding as a generative model

Sparse coding specifies a joint probability distribution over data vectors x and

latent coefficients s. For this reason it can be understood as a generative model

of the sensory input. The dependence between latent coefficients and data is

depicted in figure 2.3. Each N−dimensional data vector depends on M sparse

coefficients. Their joint probability factorizes in the following way3:

p(x, s) = p(s)p(x|s) (2.19)

3One should note that this specific factorization applies for any two random variables - it is
a straightforward consequence of the chain rule for probabilities.
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The joint probability distribution p(s, x) provides a holistic description of a

relationship between data and model coefficients. It allows to generate data sam-

ples which match previously learned structure from the generating distribution

p(x|s). Simultaneously, it enables the inference of the underlying structure given

noisy data samples. This can be done via the recognition distribution p(s|x).

One should note that while coefficients sn are assumed to be independent,

a dependence can be introduced by conditioning on a particular data vector xt.

This property of the model is known as explaining away, and becomes useful in

tasks such as classification or memory retrieval with sparse representations.

A sparse code represents sensory input as a composition of sparse independent

causes. In this perspective, finding a representation of the sensory input is an

active inference process. This corresponds well with the ideas that perception

[103] as well as neuronal coding [83] are of inferential nature - they try to estimate

the environmental causes which gave rise to the stimulus.

Learning and inference

Parameter estimation of a sparse coding model can be separated into two sub-

tasks. The first one is finding an encoding of a data vector xt given basis vectors

b. This process is known as inference. In neural systems modelling it is thought

to correspond to the neuronal encoding of a stimulus which happens over a short

time-scale. The second task is finding a set of basis vectors b given the training

dataset x = (x1, . . . , xT ). It is typically referred to as learning, and is thought

to model the process of receptive-field formation which may happen over longer

time-scales (developmental or evolutionary). Learning and inference technics de-

scribed in this subsection are known together as the sparsenet algorithm and have

been introduced by Olshausen and Field [104, 105].

Inference amounts to estimating a coefficient vector st given data xt and a

vector basis b. According to the Bayes rule the posterior over latent coefficients

is equal to:

p(st|xt, b) ∝ p(xt|st, b)p(st) (2.20)

The likelihood term is defined by equation 2.17 and the coefficient prior by

2.18. The negative log-posterior becomes:

− log p(st|xt, b) ∝
1

2σ2

N∑
i=1

(xt,i − x̂t,i)2 + λ

M∑
n=1

S(st,n, θ) (2.21)

A common approach to finding an appropriate encoding, which I also use in

this thesis, is the maximum a-posteriori (MAP) estimation. It corresponds to

approximating the optimal value of st with the peak of the posterior. This can

be done by performing a gradient decent on the negative log-posterior function

2.21. The gradient over the sparse coefficients is given as:
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∂

∂st,n

[
− log p(st|xt, b)

]
∝ − 1

σ2

N∑
i=1

bn,i(xt,i − x̂t,i) +
∂

∂st,n
λS(st,n) (2.22)

Even though the generative process defined by equation 2.15 is linear in nature

the inference is a non-linear task. Basis vectors bn ”compete” among themselves

during the inference. Those which match the data vector well have high values of

associated coefficients st,n and suppress activations of other basis functions. The

encoding of the observed stimulus emerges from such competitive interactions.

Learning of basis functions b can be achieved by finding a maximum-likelihood

(ML) estimate for each vector bn. This corresponds to minimizing the negative

log-likelihood function, which is defined as:

− log p(xt|st, b) ∝
1

2σ2

N∑
i=1

(xt,i − x̂t,i)2 (2.23)

It can be performed by an iterative stochastic-gradient procedure. Basis vec-

tors are initialized with white noise. Then, for every data vector xt optimal

coefficient values are inferred using gradient descent defined by equation 2.22.

Given a MAP coefficient estimate sMAP
t a gradient step is performed on basis

functions’ elements bn,i according to the following equation:

∂

∂bn,i

[
− log p(xt|sMAP

t , b)
]
∝ − 1

σ2
sMAP
t,n (xt,i − x̂t,i) (2.24)

Those two steps are iterated until convergence. During learning the norm of

basis functions has to be monitored and normalized in order to avoid singular

solutions.

Numerous other learning algorithms for sparse representations have been pro-

posed [81, 71, 75]. Since in the present work I rely mostly on Sparsenet and similar

approaches I do not discuss other algorithms in detail.

2.3.1 Sparse coding and independent component analysis

Another algorithm inspired by the efficient coding hypothesis is known as inde-

pendent component analysis (ICA) [11, 62]. ICA has evolved in parallel to sparse

coding, and can be considered as its special case [102].

In the ICA model data vectors xt are also assumed to be a linear combination

of basis vectors b as defined by equation 2.15. The number of basis functions

is equal to the number of data dimensions - the representation is complete (or

quadratic). Moreover, the noise variance σ2 is assumed to be 0. The data likeli-

hood becomes then a Dirac delta function:

p(xt|st, b) = δ(xt − x̂t) (2.25)
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Linear coefficients s are also assumed to be sparse and independent - see

equation 2.18. Since coefficient values become equivalent to linear projections of

data vectors xt on basis functions bn a matrix notation is being often used:

X = BS (2.26)

where X ∈ RN×T is the data matrix B ∈ RN×N is the matrix of basis

functions (each column corresponds to a separate basis function) and S ∈ RN×T

is the coefficient matrix (each row is a single coefficient). The inference process

is fully linear and can be performed using a filter matrix W = B−1:

WX = S (2.27)

ICA can be therefore understood as a rotation of the data vectors xt into a

new set of coordinates where coefficients s are maximally independent.

Depending on the definition numerous objective functions for learning of the

basis matrix B can be determined. The famous ICA algorithm of Bell and Se-

jnowski [11] basing on ideas of the InfoMax transform introduced by Linsker [82]

uses a gradient over basis vectors b to explicitly maximize the coefficient entropy.

Other approaches attempt to maximize kurtosis or negentropy of coefficient dis-

tributions [62]. In this thesis a maximum-likelihood approach to basis function

learning is used. Given the data matrix X ∈ RN×T the likelihood function of the

model can be defined as:

p(X|W ) =
T∏
t=1

N∏
i=1

p(w>i xt) =
T∏
t=1

N∏
i=1

p(si) (2.28)

where w are filter vectors corresponding to rows of the matrix W . Assuming

the exponential form of the marginals p(st,i) = 1
Z exp (−λS(st,i)) the negative

log-likelihood becomes:

− log p(X|W ) ∝ λ
T∑
t=1

N∑
i=1

S(si) = λ
T∑
t=1

N∑
i=1

S(w>i xt) (2.29)

Filter vectors w, which determine basis functions b, can be learned by gradient

descent in a manner similar to sparse coding.

2.3.2 The notion of sparsity

Information theoretic considerations presented at the beginning of this chapter

allow to conclude that the information transmission is maximized when elements

of the code represent mutually non-redundant features of the stimulus. Formally

this is defined by the product-of-marginals form of the joint distribution 2.18.

An important question, which has not yet been addressed in this thesis is - what
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shall be the functional form of these marginals i.e. their shape? I alluded before

that they are often assumed to be sparse. Here, I discuss this notion in more

detail.

What is sparsity?

A sparse code is a data representation where the majority of coefficients remain

close to 0 when encoding a typical stimulus sample. The sparsity4 of a population

encoding st ∈ RM of a data vector xt ∈ RN can be therefore understood as its

Lp norm (with p ∈ {0, 1}) defined as:

‖st‖p = p

√√√√ M∑
n=1

|xt,n|p (2.30)

For p = 0 this amounts to the total number of non-zero elements (active

neurons) of a vector st. If p = 1 the norm measures total activation of units.

Increasing the sparsity of a representation amounts to finding a code, which can

represent each training data sample with a vector of the smallest norm.

The notion of sparsity can be also considered for individual units sn. It

translates then to rare activations of the n−th code element when encoding all

samples in the training ensemble. This is known as the lifetime sparseness [152].

It means that the distribution p(sn) should be highly concentrated around 0. The

concentration in turn, can be measured by the fourth standardized moment i.e.

kurtosis κ(sn):

κ(sn) =

∫∞
−∞ p(sn)(sn − s̄n)4dsn(∫∞
−∞ p(sn)(sn − s̄n)2dsn

)2 (2.31)

where s̄n denotes the mean which for sparse distributions should be 0. Highly

kurtotic, zero-centred distributions are more sparse - they rarely generate samples

of large absoulte values. Kurtosis has been proposed as a measure of sparsity by

[38]. Notions of population sparseness and lifetime sparseness can be shown to

be equivalent under certain conditions [63].

If, as discussed in the previous section, coefficient marginals are assumed to

have a general form:

p(sn) =
1

Z
exp (−λS(sn)) (2.32)

then the shape of the distribution is defined by the function S(sn). In order

to induce a sparse coefficient distribution, different sparsity-promoting functions

can be used. For instance S(sn) = |sn|
d induces a zero-centered Laplace dis-

tribution of scale defined by the parameter d. Another often used function is

4In the literature one can encounter terms ”sparsity” or ”sparsness”. Here, I use them
interchangeably.

27



Figure 2.4: Two sparse distributions - Laplace (gray solid line) and logistic (gray
dotted line) are contrasted with the Gaussian distribution of equal variance.

S(sn) = log(1 + s2
n) as proposed by [105]. The choice of the sparsity-promoting

function determines the norm of the representation vector st which is going to be

minimized.

Examplary sparse i.e. kurtotic distributions are depicted on figure 2.4 to-

gether with a normal distribution of the same variance. Sparse distributions are

visibly more ”peaked” i.e. concentrated around 0.

Why sparsity ?

A natural question to ask is - what is the advantage of sparse representations?

Why should a typical stimulus sample be represented by only a few active neu-

rons? From the point of view of statistics the primary reason for utilizing sparse

codes is the structure of natural sensory signals. Natural images, videos and

sounds share a curious property - at a small spatiotemporal scale they seem to

be well described as a combination of only a few discrete sensory events [38].

Sparse coding forms a representation which makes this underlying structure ex-

plicit [106, 31].

Let us look more carefully at that notion using natural sounds as an example.

Figure 2.5 A) depicts two log-histograms. The broader one plotted with a black

line is an empirical distribution of air pressure values constituting a 5 second long

recording of a forest environment. The estimated entropy of this distribution is

4.7 bits. When short, 23 millisecond long epochs (513 samples at 22050 sam-

pling rate) of this recording were projected onto a set of 513 gammatone filters

(four exemplary ones are visible on figure 2.5 B), the distribution of resulting

coefficients was much sparser - it is plotted on panel A with a gray line. Even

though the dimensionality of those representations (raw waveform chunks and
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Figure 2.5: Sparse underlying structure of a natural sound. A) A log-histogram
of a raw sound waveform (black line) plotted with a log-histogram of projections
of 23 ms waveform chunks on gammatone filters (gray line). Projections are
visibly more sparse and have more than 1 bit lower entropy. B) Four exemplary
gammatone filters which likely constitute sparse dimensions underlying natural
sounds.

projections) is the same, and they encode the identical information, the sparse

encoding yields lower entropy - 3.6 instead of 4.7 bits. Since the entropy of the

data distribution provides the lower bound on the code length, representations

yielding lower entropies should better approximate the ground-truth data distri-

bution [79]5. For a more detailed discussion comparing codes based on coefficient

entropies please refer to [79, 81].

The above example shows that indeed - natural sounds have a sparse underly-

ing structure which can be approximated by gammatone filters. Natural images

in turn, yield sparse, low-entropic coefficient distributions when encoded with

2−dimensional Gabor filters [31]. Interestingly, features very similar to Gabor

and gammatone filters can be learned from statistics of natural stimuli in an unsu-

pervised way by finding a maximally sparse representation [104, 133]. Existence

of a sparse structure in sensory data has been therefore confirmed in top-down

and bottom-up manners, by observing sparse responses of designed filters and

recovering similar filter shapes when maximizing the sparsity of a representation.

In addition to making the statistical structure of natural signals explicit,

sparse representations seem to have numerous other advantages. It has been sug-

gested that a representation of a high-dimensional stimulus, which uses only a

few active dimensions may be tracing out a smooth and low-dimensional manifold

on which the sensory data live [106, 74]. Due to a small overlap between coef-

5In this case coefficients s are intepreted as codewords
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ficients sparse codes provide a good addressing scheme for associative memories

[153]. Finally, they are energy efficient since (what may seem at first like a triv-

ial statement) sparsely spiking neurons consume less energy. This argument is,

however, quite strong since it has been shown that due to metabolic constraints

sparse neuronal activations in the cortex are not an option - they are a necessity

[76, 77].

2.4 Emergence of Function via Efficient Coding

If, as ideas initiated by Attneave and Barlow suggest, sensory neurons form an

efficient and sparse representation of natural stimuli, one may ask whether their

presumed function can be predicted from the input statistics. This question

(perhaps worded somewhat differently) has been notably asked in the title of

Joseph Atick’s paper ”Could information theory provide an ecological theory of

sensory processing?” [5].

Figure 2.6: Sparse coding of natural stimuli reproduces receptive fields. A) Re-
ceptive fields in the macaque V1 (middle pannel) compared with basis functions
of two sparse coding algorithms (left and right panels). Figure reproduced from
[114]. B) Revcor filters of the auditory nerve of a cat (red lines) are reproduced
by a sparse representation of natural sounds (blue lines). Figure reproduced from
[133].

A milestone step on the way to providing an answer has been made in the years

1996/1997. Olshausen and Field [104] almost in parallel with Bell and Sejnowski

[12] demonstrated that sparse codes and independent components learned from

small patches of natural images yield features strongly resembling receptive fields

of simple cells in the visual cortex (see figure 2.8 A). Over the following decade

Lewicki [78] and Smith and Lewicki [133] provided results of similar importance

for the study of the auditory system. They demonstrated that frequency-localized
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cochlear filters of a cat can be predicted by a sparse code of a natural sound

ensemble (see figure 2.8 B). These observations shed a new light on the notion of

function implemented by sensory systems. One does not have to ask any more

why do auditory nerve fibers ”implement Fourier transform” (as described by

Helmholtz) and why do simple cells perform ”edge detection”. It turns out that

both computations can be unified by a single abstract principle - efficient coding

of naturally encountered stimuli. Perhaps the very same principle can also explain

higher-level computations performed by the brain.

2.4.1 Efficient codes and inference

Figure 2.7: Possible roles of efficient coding. A) It serves to preserve maximal
amount of pre-selected, narrow information stream. B) Redundancy reduction
serves the purpose of finding correlated structures present in the data which
may be useful in inferences about the environment (redundancy exploitation).
Relevant data dimensions are then selected according to the task at hand.

Sensory signals are a reflection of the environment. They are generated or

otherwise influenced by physical objects, and propagate through their medium

(let it be the air or the electromagnetic spectrum), until intercepted by sensory re-

ceptors of an organism. Correlations present in receptor activations are therefore

informative about the state of the environment. It means that encoding redun-

dant activity patterns of the sensory epithelium is vital not only from an abstract,

information-theoretic point of view. It may lead to extraction of coherent, in-

terpretable features, which in turn inform the organism about its surrounding.
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Following the naming convention of Barlow redundancy reduction becomes then

redundancy exploitation.

The above mentioned ideas can be related to a common criticism of the ef-

ficient coding hypothesis. One may argue that the goal of the organism is not

to reconstruct the stimulus as faithfully as possible. It is rather the extraction

of behaviourally relevant information which should guide the design of neuronal

codes. A possible answer is that efficient coding can serve two purposes (both

are illustrated on figure 2.7).

Firstly it can preserve as many bits as possible from a substream of sensory

data pre-selected according to its behavioural relevance (figure 2.7 A). A good

example of such a process comes from the auditory system of a grasshopper. It

has been observed that auditory receptors transmit a higher amount of infor-

mation about conspecific calls than about different types of sound [85]. In this

system the function of auditory neurons has been determined over the evolution-

ary time scale, and neurons maximize information transmission about a narrow,

but relevant aspect of the sensory niche.

The second possible role of efficient coding is more general (figure 2.7 B).

It is possible that redundancy reduction may serve the purpose of discovering

coherent stimulus structures during learning. Their behavioural relevance i.e.

meaning has to be determined by the environmental feedback. Mammals and

animals more developed than a grasshopper perform numerous tasks and need

different sorts of sensory information to achieve them. In such cases redundancy

exploitation becomes a relevant concept. The organism has to use various features

of a stimulus to achieve different goals. Those features can be discovered by

recoding redundant data structures in the process of unsupervised learning. The

function of sensory neurons is then fully determined by the stimulus structure.

The meaning of the information they represent may vary from task to task.

2.4.2 Efficient codes and experimental design

Let us assume that according to the second strategy suggested above neuronal

receptive fields form an efficient representation of ecological stimuli which in

turn determines their function. One may then consider the relationship between

stimulus statistics and experimental parameters, which has been introduced in

the section 1.2 of the introduction.

Figure 2.8 illustrates a schematic ”experiment”. Gray dots represent stimu-

lus samples observed by the organism, and generated by the environment. Two

vectors R1 and R2 form an efficient representation. One may consider them as

receptive fields of two neurons which are adapted to stimulus redundancies. The

mini-population of two units encodes sensory data coordinates along two relevant

dimensions. The physical parameter of interest to the experimenter (for instance

the sound source position) is denoted by φ. Each φ value can be mapped into the
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Figure 2.8: Relationship between redundancies in sensory data, neuronal repre-
sentation and experimental parameters. Gray points represent samples of sensory
data encountered by the organism. Two neurons encode position of stimuli along
directions marked by black vectors R1(s), R2(s). The range of experimental pa-
rameter values φ, traces a curve in the stimulus space s = E(φ). Black circles
mark experimental measurements. Their projections on neuronal representation
give differentiated values.

stimulus space by the function E(φ). Variation of φ traces out a complex, and

perhaps not well understood trajectory in the stimulus space. When the exper-

imenter presents the organism with two different φ values (black circles), both

neurons give a differentiated response defined by projections of two parameter

values onto relevant dimensions R1 and R2 (black dotted lines). Differentiated

response to different stimuli may give an impression that the function of neu-

rons is to represent φ. In general this is not true - they are adapted to stimulus

statistics - not to the experimental parameter.

The use of natural stimuli in understanding neuronal representations is a

subject of debate [122]. In the study of the spatial hearing system for instance,

one can not deny that estimation of ”spatial tuning curves” of auditory neurons

has brought tremendous increase of knowledge. It reduces the complexity of the

study and allows to obtain interpretable results. Variation of a point stimulus

position in a head-centred, polar coordinate system can not, however, reveal the

entire mapping from the stimulus space to the neuronal activity.

In this thesis I propose that mechanisms of binaural sound coding in mammals

can be understood as a manifestation of efficient coding as a structure-learning

strategy (illustrated on figure 2.7 B). I also suggest that experimental observations
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about this system can be explained by a process depicted on figure 2.8. In chapter

5 I demonstrate that sparse codes of natural stereo sounds reproduce important

properties of auditory cortical neurons, which were thought to implement a very

task-specific computation. The following chapter suggests that sparse codes are

also capable of learning auditory invariances from natural sounds. These obser-

vations allow to argue that the function of sensory neurons located away from

the sensory periphery can be explained by the efficient coding hypothesis. This

perspective can clarify a number of experimental observations, and embed them

in a broad theoretical framework.
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Chapter 3

Spatial Hearing

Among many, the world we evolved in has one particular physical property - it

vibrates. Vibrating and otherwise moving objects generate waves of air pres-

sure. They in turn, propagate through the environment, overlapping, interfering

and distorting each other additionally being affected by acoustic reflections and

attenuated by the surrounding matter.

Despite the presence of noise and ambiguity waves of air pressure, or as we

call them sounds carry large amounts of information about vibrating objects.

The nervous system has developed capabilities to infer abstract and complex

properties of the environment solely from two one-dimensional, highly correlated

time series - sounds entering the left and the right ear.

To realize how daunting a task that is one can look at figure 3.1. Tempo-

ral data presented there are meaningless to the visual system and it is almost

impossible to infer the underlying source just by looking. However, after trans-

forming numerical values plotted as lines into displacements of two headphone

loudspeakers one would easily recognize a female voice speaking at the left side of

the listener. One may even recognize Spanish words said with a Mexican accent

and a forest environment.

In this chapter I provide a general overview of the physiology and anatomy

of the mammalian hearing system with a special focus on the main subject of

this thesis - spatial hearing. I review experimental and theoretical studies which

relate the auditory system to the structure of natural stimuli. In the last section

I briefly discuss the notion of functional separation in the auditory system into

spatial and non-spatial channels.
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Figure 3.1: An exemplary stereo sound depicted graphically. Gray color cor-
responds to the left and black to the right ear. Even though numerical data
presented here are the same as in the chunk of the sound wave, the visual system
is not able to infer the exact content of the underlying physical scene.

3.1 Foundations of spatial hearing

The sound wave as such does not carry any information about the position of its

generating source1. The spatial frame of reference used by organisms is therefore

predominantly relative - sounds are localized in an organism-centred system of

coordinates. This is possible due to the sound filtering and differentiation which

occurs after the air-pressure waveform interacts with the head and outer ears of

the listener.

In mammals (on which this review focuses) outer ears (or pinnae) are located

at opposite poles of the head separated by the skull. A sound first reaches the

ear ipsilateral to the generating source, and then after a very short time delay the

contralateral one. This results in a temporal difference between the time of arrival

to each ear called the interaural time difference (ITD). If the generating sound

consists of a single, pure frequency component, or is decomposed into narrowly

tuned frequency channels ITDs correspond to interaural phase differences (IPDs).

ITDs depend on the position of the sound source relative to the organism’s head,

and constitute one of the major sources of spatial information in hearing (spatial

1One should note though that in the natural environment the quality of the sound source
can be very strongly correlated with its position relative to the organism, and in this way carry
indirect spatial information useful to an experienced listener. Hearing an elephant trumpet
would very rarely require the listener to raise her head. After all flying elephants are quite a
rare breed. This observation is closely related to the Pratt effect - see subsection 3.3.2
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cues).

Another source of spatial information originates in the fact that the head acts

as an acoustic filter. Bones, skin and the brain attenuate sounds contralateral

to the listening ear. This attenuation gives rise to a variation in the sound level

- interaural level differences (ILDs). The general relationship between the ILD

and the position of a generating source is quite intuitive - when a sound source

is located on the left hand side of the listener, relative sound intensity in the left

ear is large. It becomes much smaller in the opposite case, when the source is

located at the right hand side.

The role played by interaural level and time differences in the computation of

a sound position by humans has first been discussed by John Strutt - Third Baron

Rayleigh [143] in the beginning of the XX century. He performed calculations

demonstrating that IPDs become a highly ambiguous localization cue when the

sound wavelength is much shorter than the diameter of the listener’s head. For

pure tones of high frequency the IPD value stops corresponding to a single posi-

tion on a circle surrounding the listener. Such sounds must be therefore localized

using another cue - the ILD.

By performing psychoacoustical experiments with tuning forks Lord Rayleigh

verified his theoretical predictions. He concluded that human listeners use IPDs

to localize sounds of low frequency (lower than 1.5 kHz) and ILDs to identify the

position of high frequency tones. Due to the dual nature of spatial information in

binaural sound this concept is known as the duplex theory of sound localization.

It constitutes a fundamental scientific theory explaining how animals can identify

sound position.

Figure 3.2: A sketch of binaural cues i.e. features of sound which result from
interaction of the stimulus with the organism. A) Interaural time differences
B) Interaural level differences C) Spectral cues imposed by the pinnae. Figure
modified from [49]
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In addition to two classes of binaural cues considered by Rayleigh (illustrated

on figure 3.2 A and B) there is a third source of spatial information accessible

to the listener - spectral cues (panel C of the same figure). Mammalian pin-

nae are typically of a complex shape. When entering each pinna sound waves

are reflected multiple times - the form of this reflection strongly depends of the

direction in which the sound propagates. Ear induced sound distortion is well

characterized by linear filters known as head related transfer functions (HRTFs).

HRTFs are typically measured in an anechoic environment where a click sound

is played from a carefully controlled position. Microphones located in the ears

of the listening subject register the sound waveform which is interpreted as a

finite impulse response specific for a particular position. HRTF filtering provides

a position-specific information, which can be recovered monaurally i.e. from a

sound in a single ear channel. While binaural cues are hypothesized to play the

most prominent role in localization of sounds on the azimuthal plane, monaural

spectral cues are considered to be vital for estimation of sound elevation (as de-

picted on figure 3.2 C) [49]. Measurements of human HRTFs strongly support the

duplex theory. They show that low frequency sounds are very weakly attenuated

by the head which can be considered as a low-pass filter. Low attenuation results

in hardly measurable ILDs. Sounds of higher frequencies such as 10 kHz can in

turn generate pronounced ILDs as high as 40 dB [68]. Such pronounced cues can

be easily detected and utilized in spatial hearing tasks.

According to the recently emerging view the separation of low and high fre-

quency sounds into two nonoverlapping classes (localized with ITDs and ILDs)

may not be describing functioning of the nervous system very well [49]. Useful

temporal localization cues are generated also by high frequency sounds and car-

ried in their temporal envelopes (envelope ITDs). Low-frequency sounds very

close to the listener can also generate pronounced ILDs [129] informative about

the source position. In summary, according to the modern understanding duplex

theory describes frequency dependence of time and level cues rather than their

absolute segregation.

3.2 Gross anatomy and physiology of the binaural audi-

tory system

When considering spatial hearing within the framework provided by David Marr,

the duplex theory lies somewhere between computational and algorithmic levels

of analysis. In this section, I provide a crude overview of the implementation

level i.e. of known physiology and anatomy of the binaural hearing system. For

a more detailed information one can refer to the recent review article [49] or the

book [124] on which this section is based.

A cartoon sketch of the ascending auditory pathway is presented on figure
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Figure 3.3: A schematic view of the ascending auditory pathway. Input from
only single cochlea is depicted.

3.3. The inner ear transforms air-borne sounds into the motion of the cochlear

fluid. By vibrating together with the fluid waves the cochlear membrane excites

hair cells which convert mechanical energy into electric signal - action potentials.

Since parts of the basilar membrane have different resonance frequencies this

organ performs ”spectral decomposition” of the sound. The underlying hair cells

are aligned in a tonotopic map following a precise frequency ordering. Separate

auditory nerve fibres projecting from the cochlea to the cochlear nucleus encode

sound energy in different frequency channels. Importantly for binaural hearing

mammalian auditory fibers are capable of representing the fine structure of sounds

lower than 4000 Hz by phase-locking to the stimulus (i.e. eliciting spikes precisely

aligned to waveform peaks). This provides a physiological constraint on the

representation of fine-structure phase and IPDs.

Spatial information is first time processed in the dorsal cochlear nucleus

(DCN). The principal neurons of the DCN are capable of determining notch

frequencies with a high accuracy. It has been concluded that it makes them well

suited for processing monaural, spectral localization cues.

Monaural input converges in the superior olivary complex where time and level
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cues are extracted. ILDs are predominantly computed in the lateral superior olive

(LSO). Neurons in this structure are excited by projections from the ipsilateral

ear and inhibited from the contralateral side. For this reason they are typically

referred to as ”IE” neurons. It seems that their computational task can be

understood as a subtraction of signal power in a narrow frequency channel at one

side of the head from the power perceived by the opposite ear. An interesting

fact about ILD sensitive neurons in the LSO is that in contrast to the majority

of sensory neurons they prefer ipsilateral stimuli not contralateral ones.

Neuronal mechanisms of ILD computation seem to be well understood. In

contrast means by which brainstem neurons extract ITDs are still a matter of

debate. Smallest detectable ITDs are temporal intervals at the order of microsec-

onds - almost three orders of magnitude shorter than the duration of action po-

tentials. Despite that the mammalian nervous system is capable of extracting

and representing them. Even though a solution to this paradox has been pro-

posed [43], mechanisms of submilisecond coding are still a subject of an ongoing

research. According to the traditional view the majority of ITD sensitive neu-

rons is located in the medial superior olive (MSO) (current evidence points to the

existence of ITD detectors also in the LSO [49]). Those cells receive a converg-

ing excitatory binaural input in corresponding frequency channels (EE neurons).

Due to the narrow frequency selectivity they can be characterized in terms of IPD

tuning. A prominent physiological model of ITD computation has been proposed

by Jeffress [65]. He suggested that monaural neurons converge in arrays of delay

lines - each corresponding to a particular ITD value. Such array would form a

labelled line code or a place code where high activity of a single unit represents a

specific ITD and effectively a location of a sound source. Neurons would therefore

be arranged along a spatial gradient into a spatiotopic map. The Jeffreys model

has dominated thinking about sound localization in mammals for a long time.

Recent evidence however, points to the fact that ITDs in the mammalian audi-

tory system are encoded in a different way - by the joint activity of two broadly

tuned channels [88].

Outputs of many brainstem nuclei - LSO, MSO and DCN converge in the

inferior colliculus (IC). Neurons in the IC are sensitive to multiple binaural cues.

Interestingly many IC cells can be characterized with binaural, spectro-temporal

receptive fields [112]. Identified sensitivity to the spectral-temporal composition

of the binaural signal suggests that binaural hearing mechanisms expand beyond

the cue extraction already in the brainstem.

Processed further by the auditory thalamus - medial genniculate nucleus

(MGN), auditory information reaches the auditory cortex - the primary audi-

tory field (A1). The functional role played by this structure in audition, and in

spatial hearing in particular, remains a mystery. Stimulus transformations per-

formed by subcortical structures can apparently account for a localization of a
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point source of sound. However, lesions or silencing of neuronal activity in the

auditory cortex lead to decreased sound localization performance in human and

animal subjects. This apparent contradiction constitutes one of major challenges

in understanding the function of this region.

In a manner similar to SOC spatial tuning of mammalian cortical neurons does

not match the spatiotopic model. Tuning curves are very broad, and single neuron

activity is modulated by sounds located at numerous positions surrounding the

animal. They are characterized by steep slopes close to the midline area [137,

138]. Within each hemisphere, neurons seem to prefer positions close to the

contralateral ear. These observations suggest that the position of a sound source

could be encoded by the joint activity of two ”opponent channels”. Steep slopes at

the midline would according to the theory serve the purpose of precisely encoding

the position of the sound in this behaviorally important region. Another puzzling

finding was that a linear function of the binaural spectrum suffices to predict with

a high accuracy spatial selectivity of auditory cortical neurons [125], even though

sound localization is a nonlinear operation. Taken together, the role of A1 in

(spatial) audition is far from being understood [101].

The monaural ascending auditory pathway has been investigated in experi-

ments guided by theoretical principles of efficient coding. It has been demon-

strated that redundancy between neuronal responses to natural sounds (bird

chirps) decreases between the auditory cortex and IC [26] in the cat. In this

way a direct experimental evidence for the efficient coding hypothesis has been

provided. Studies of auditory cortical responses have shown that cortical neurons

are very sparsely active - i.e. firing rates remain below 1 Hz and less than 5%

of neurons in a population are activated by a typical stimulus [57, 33]. Based on

these results one may risk the statement that notions of sparse and efficient cod-

ing provide an appropriate theoretical framework to understand the functioning

of the auditory system.

3.3 Processing of natural sounds in the auditory system

Historically, auditory neuroscience has been divided into two camps [145]. The

first may be associated with Hermann von Helmholtz - the XIXth century German

polymath. Followers of his tradition use simple and well controlled artificial

stimuli such as pure sinusoids to characterize the neuronal processing of sound.

The origins of the second approach can be traced back to the Austrian ethologist

- Konrad Lorenz. He stressed the importance of behaviourally relevant sounds

and the use of stimuli such as conspecific calls.

Nowadays mostly due to the rapid development of mathematical and com-

putational tools both trends can merge. It becomes possible to understand the

statistical structure of natural sound and test the nervous system using artificial
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stimuli which preserve desired aspects of the natural environment while being

well controllable. In this way hypotheses about adaptation of sensory systems to

the natural environment can be directly tested.

This section provides a brief and concise review of theoretical and experimen-

tal investigations that used natural stimuli to study the auditory system. Firstly

studies of non-spatial hearing are discussed followed by a discussion of research

using spatial sound.

3.3.1 Non-spatial sound

Starting with the most simple characteristics of natural sounds, Rieke et al

demonstrated that auditory neurons in the frog increase information transmission

when the spectrum of the white-noise stimulus is shaped to match the spectrum

of a frog call [116]. In a more recent experiment Hsu and colleagues [58] have

shown similar facilitation effects in the zebra finch auditory system using stimuli

with the power and phase modulation spectrum of a conspecific song. Modula-

tion spectra of natural sounds were shown to display a characteristic statistical

signature. This observation allowed to form quantitative predictions about neural

representations and coding of sounds [131].

Simple statistical models of natural auditory scenes have led to interesting

theoretical predictions and observations. Low-order, marginal statistics of am-

plitude envelopes, for instance, seem to be preserved across frequency channels

as shown by Attias and Schreiner [6]. This means that all locations along the

cochlea may be exposed to (on average) similar stimulation patterns in the natu-

ral environment. Strong evidence for adaptation of the early auditory system to

natural sounds was provided by two complementary studies by Lewicki [78] and

Smith and Lewicki [133]. The authors modelled high order statistics of natural

stimuli by learning sparse representations of short sound chunks. In such a way

they reproduced filter shapes of the cat’s cochlear nerve. This result implies that

the function of the cochlea should not be understood as a frequency decompo-

sition per-se. It has rather evolved to maximize coding efficiency in the natural

auditory environment. Results of Smith and Lewicki were recently extended by

Carlson et al [25] who obtained features resembling spectro-temporal receptive

fields in the cat’s IC by learning sparse codes of speech spectrograms. This con-

stitutes a strong suggestion that neural representations of acoustic stimuli reflect

structures present in the natural environment.

Human perceptual capabilities have also been related to natural sound statis-

tics in a recent study by McDermott and Simoncelli [91]. In a series of psy-

chophysical experiments the authors have shown that the perceived realism and

recognizability of sound ”textures” by human subjects depends on how well the

time-averaged statistics of a stimulus correspond to those of natural sounds.
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3.3.2 Spatial sound

In line with the efficient coding hypothesis, binaural hearing mechanisms have

also been studied in terms of adaptation to natural stimulus statistics. Even

though research in this area has not been very extensive interesting results have

been delivered.

Spitzer and Semple have demonstrated that already in the early stages of the

binaural processing (in the IC) higher firing rates are elicited by neurons stimu-

lated with dynamic IPD sequences rather than static ones [135, 136]. Moreover,

neural responses were more informative about the relative change of the stim-

ulus than its absolute value. Used stimuli were not fully natural, however the

study provided an important step by showing that more ecologically valid IPD

sequences are preferred by the brainstem circuits. Those studies raise questions

whether the function of early binaural neurons in the natural environment is to

only extract instantenous cues.

In an attempt to predict IPD coding strategies from theoretical principles,

Harper and McAlpine [52] have shown that tuning properties of IPD sensitive

neurons in a number of species can be predicted from distributions of this cue

naturally encountered by the organism. This was done by forming a model neu-

ronal representation of maximal sensitivity to the stimulus change as quantified

by Fisher information. Obtained results stand against predictions of the Jeffress

model, and provide one of the key theoretical arguments against its implementa-

tion in the mammalian brainstem.

Two recent experimental studies revealed a rapid adaptation of binaural neu-

rons and perceptual mechanisms to changing cue statistics. These research did

not utilize natural stimuli as such, however they provided evidence supporting

adaptation of neuronal and perceptual mechanisms to the stimulus statistics.

Dahmen and colleagues [30] stimulated human and animal subjects with non-

stationary ILD sequences. They collected electrophysiological and psychophysi-

cal evidence in favor of an adaptation to the stimulus distribution. After a brief

exposition to an adapting stimulus shapes of tuning curves of ILD coding neu-

rons as well as human psychophysical curves were shifting towards the side of

the adapter. Maier et al [86] in turn, have shown that neural tuning curves in

the guinea pig and human performance in a localization task can be adapted to

varying ITD distributions. Both - neural representation and human performance

were, however, constrained to represent midline locations with the highest accu-

racy. One has to note that Maier et al. provide an alternative interpretation of

the results obtained by Dahmen et al. suggesting that they may be explained by

an adaptation to the monaural sound level and not ILDs per se.

A stunning relationship between the frequency of a sound and its position

in the natural environment has been recently shown by Parise et al [108]. By

analysing a dataset of recordings performed by a freely moving human subject
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the authors have demonstrated that sounds originating from high locations sys-

tematically have higher frequencies. This stimulus property of not fully under-

stood origins has been further shown to be incorporated as a perceptual prior

and speculated to be reflected in the HRTF structure. It has been previously

known that the perceived elevation of pure tones is almost entirely determined

by their frequency, not actual position (the phenomenon known as the Pratt ef-

fect [111, 118]). These results and observations are of a particular importance

for the subject of the present thesis. They show that the spatial position and the

sound quality are not independent in the natural environment.

3.4 Functional sensory representations of spatial sound -

separation of ”what” and ”where”?

An ongoing debate in the field is whether the auditory system processes sensory

information in two functionally separate channels - spatially invariant ”what” and

identity invariant ”where” [100, 67]. This would be a mechanism analogous to

the long postulated separation between ventral and dorsal streams in the visual

system [148].

Anatomical evidence in favour of a clear dissociation between spatial and non-

spatial representations has been delivered by Romanski et al [120]. In their study

two separate pathways have been traced from rostral and caudal regions of the

auditory cortex. The authors concluded that identified pathways constitute the

anatomical basis of ”what” and ”where” streams. These results have been further

supported by a physiological study of Lomber and Malhotra [84]. By cooling

down the posterior auditory field in the cat’s brain they observed behavioural

deficits in a sound localization task. Cooling of anterior areas lead to impaired

discrimination ability. These observations led the authors to conclude that those

regions are functionally segregated, and that spatial information is processed

exclusively by the posterior auditory cortex.

There exists plenty of experimental data which complicate this interpretation.

Ventral prefrontal cortex (vPFC) has been identified by Romanski and Goldman-

Rakic as the final stage of the identity processing stream (”what”) [119]. Cohen et

al, however, have shown that vPFC neurons in a monkey are more selective to the

sound location than identity (the type of a monkey call) [28]. Moreover, Bizley

et al [15] demonstrated that neurons in multiple regions of the ferret auditory

cortex are sensitive to the location of a sound source as well as its identity-specific

features (pitch and timbre). Observation that the majority of cortical neurons

seems to be sensitive rather than selective to the sound position has triggered a

discussion, whether clearly separated ”what” and ”where” streams are a useful

concept in understanding the function of the auditory system [14]. These doubts

may be strenghtened by considering perceptual biases such as the Pratt effect
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described in the previous section.

In the remaining parts of this thesis I will sketch a theoretical perspective

on the functional separation of spatial and non-spatial auditory information. I

will also demonstrate, how ideas of adaptation to natural stimulus statistics and

efficient coding can provide a computational account of the sensitivity patterns

found in physiological measurements.
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Chapter 4

Statistical Characterization of

Natural Binaural Sounds

4.1 Overview

Prior to understanding higher-level representations employed by the auditory

system in spatial hearing tasks it is crucial to know simple characteristics of

the sensory input. Low-order statistics of natural stimuli are relatively easy to

describe and analyse. Despite this simplicity, they may provide important infor-

mation, which elucidates functioning of the early sensory systems [130]. In spatial

hearing, the low-order stimulus analysis amounts to describing distributions of

binaural cues marginalized over relatively long time periods. In result, one should

be able to (at least partially) predict input to early cue coding neurons processed

when the organism explores real acoustic environments.

Binaural sound statistics determine also the complexity of the sound local-

ization task. Natural sounds are typically generated by multiple independent

sources, scattered in different configurations at both sides of the head. In such

cases, binaural cues do not correspond to a position of a single object - its identifi-

cation has to rely on algorithms more complicated than those useful in a simple,

laboratory setting. One could assess to which extent this is the case in real

auditory scenes, by quantifying the degree of dependence of sounds in each ear.

This chapter addresses the points raised above. Firstly it characterizes marginal

statistics of binaural cues encountered in natural hearing conditions, which to my

best knowledge, has not been done previously. Secondly, it analyses the redun-

dance of monaural waveforms and in this way estimates the difficulty of a sound

localization task in real environments. To achieve those goals three real-world

auditory scenes of different acoustic and spatial characteristics were recorded. In

the next step binaural cues - IPDs and ILDs were extracted and their marginal
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distributions were analysed. Using Independent Component Analysis, it has been

demonstrated that in real-world auditory scenes, monaural waveforms are mutu-

ally much less interdependent than in a simple, point-source case. Overall, this

chapter demonstrates that understanding the function of early binaural neurons

in the brainstem can not fully rely on simple, artificial stimuli. It provides a first

step towards understanding functioning of the auditory system during spatial

hearing in ecological conditions.

4.2 Methods

4.2.1 Recorded scenes

The main goal of research described in this chapter was to analyse cue distribu-

tions in different auditory environments. To this end, three auditory scenes of

different spatial configuration and acoustic properties were recorded. Each of the

recordings lasted 12 minutes.

1. Nocturnal nature - the recording subject sat in a randomly selected po-

sition in the garden during summer evening. During the recording the

subject was keeping his head still, looking ahead, with his chin parallel

to the ground. The dominating background sound were grasshopper calls.

Other acoustic events included sounds of a distant storm and a few cars

passing by on a near-by road. The spatial configuration of this scene did

not change much in time - the scene was almost static.

2. Forest walk - this recording was performed by a subject freely moving in

the wooded area. The second speaker was present, engaged in a free conver-

sation with the recording subject. In addition to speech, this scene included

environmental sounds such as flowing water, cracks of broken sticks, leave

crunching, wind etc. Binaural signal was affected not only by the spatial

scene configuration, but also by head and body motion patterns of the

recording subject.

3. City center - the recording subject sat in a tourist area of an old part

of town, fixating the head as in the previous case. During the recording

many moving and static human speakers were present. Contrasted with the

previous example, the spatial configuration of the scene varied continuously.

Two of the analysed auditory scenes (nocturnal nature and city center) were

recorded by a non-moving subject, therefore sound statistics were unaffected by

listener’s motion patterns and self generated sounds. In the third scene (forest

walk) the subject was moving freely and speaking sparsely. Scene recordings

are publicly available at the following URL: http://figshare.com/articles/

Statistics_of_Natural_Binaural_Sounds_Supplementary_Material/1157161
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Figure 4.1: Binaural microphones Soundman OKM-II. A) Both microphones B)
One of the microphones placed at the entrance to the ear channel of the recording
subject.

4.2.2 Binaural recordings

Recordings were performed using the Soundman OKM-II binaural microphones

which were placed in the left and the right ear channels of the recording subject

(see figure 4.1). Soudman DR2 recorder was used to simultaneously record sound

in both channels in an uncompressed wave format at 44100 Hz sampling rate.

The circumference of the recording subject’s head was equal to 60 cm.

4.2.3 Frequency filtering and cue extraction

Prior to analysis, raw recordings were down-sampled to 22050 Hz sampling rate.

The filtering and cue extraction pipeline is schematically depicted in figure 4.2

To obtain a spectral decomposition of the signal, sound waveforms from each

ear were transformed using a filterbank of 64 linear gammatone filters. Filter cen-

ter frequencies were linearly spaced between 200 and 3000 Hz for IPD analysis

and 200 and 10000 Hz for ILD analysis. Biological cochlear filters are spaced log-

arithimcally. Here however, a linear spacing was utilized. This resulted in a more

uniform coverage of the frequency range than in the case of a biologically plau-

sible filterbank. Within the limits of the analysis performed here, results should

not be significantly different when using different filterbanks for preprocessing.

A Hilbert transform of each frequency channel was performed. In result, in-

stantaneous phase φL,R(ω, t) and amplitude AL,R(ω, t) were extracted, separating

level and time information. Instantaneous binaural cue values were computed in

corresponding frequency channels ω from both ears according to the following
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Figure 4.2: Preprocessing and cue extraction pipeline. A) Preprocessing scheme.
Raw sounds in each ear were transformed using a cochleotopic filterbank. In the
next step the Hilbert transform was computed to separate amplitude from phase.
Finally IPDs and ILDs were extracted. B) Filter response spectra of 16 out of
64 filters used to extract interaural level differences. C) Filter response spectra
of 16 out of 64 filters used to extract interaural phase differences.

equations:

ILD(ω, t) = 10× log10

AL(ω, t)

AR(ω, t)
(4.1)

IPD(ω, t) = φL(ω, t)− φR(ω, t) (4.2)

IPDs with absolute value exceeding Π were wrapped to a [−Π,Π] interval. Time

series of IPD and ILD cues obtained in this way in each frequency channel were

subjected to further analysis.

4.2.4 Computation of the ”maximal” IPD value

In each frequency channel ω, the maximal IPD value constrained by the head size

(IPDω,max) was computed in the following way. The head shape was assumed
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to be spherical. Given this assumption, the time period required by the sound

wave to travel the distance between the ears is equal to:

ITD =
Rhead
vsnd

(Θ + sin(Θ)) (4.3)

where Rhead is the head radius, vsnd the speed of sound and Θ the angular position

of the sound source measured in radians from the midline. The ITD is maximized

for sounds located directly oposite to one of the ears, deviating from the midline

by Θ = π
2 . ITDmax becomes

ITDmax =
Rhead
vsnd

(
π

2
+ 1) (4.4)

The maximal IPD was computed separately in each frequency channel ω

IPDω,max = 2πωITDmax (4.5)

The above calculations assume a spherical head shape, which is a major simpli-

fication. It was, however, satisfactory for the sake of the current analysis.

4.2.5 Independent component analysis of binaural waveforms

To analyze mutual dependence of monaural waveforms Independent Component

Analysis of short recording intervals was performed. The maximum-likelihood

ICA variant described in section 2.3.1 was utilized.

Prior to ICA learning, the recordings were downsampled to 14700 Hz sampling

rate. A training dataset was created by randomly drawing 100000 intervals each

128 samples long (corresponding to 8.7 ms). The sampling rate and the length

of the time interval were equal to those used in [78].

After learning, we rejected spectrally non-localized independent components

as they typically reflect noise, not data structures [133]. All basis functions for

which the sum of two spectral maxima in each ear constituted less than 15% total

power were removed. This resulted in 0, 41 and 5 components rejected from the

nocturnal, forest and city scenes respectively.

4.2.6 Generation of artificial data

Two artificial datasets corresponding to extreme cases of binaural redundance

were generated using sounds from each recorded scene. Binaural recordings were

transformed to a single channel by averaging sound in both ears. Point-source

datasets were created by drawing random intervals of the mono recording and

convolving them with Head Related Transfer Functions (HRTFs) corresponding

to one of the 24 positions (15 degree spacing) on a circle surrounding the head.

Human HRTFs were taken from the publicly available LISTEN database [151].

Maximally independent datasets were created by independently sampling two
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epochs of sound and treating each of them as an input to one of the ears. Each

dataset consisted of 1e5 samples of binaural sound, each 8.7 ms long. Recorded

and simulated datasets had the same Fourier spectra, but a very different depen-

dence structure.

4.3 Results

4.3.1 Recorded scenes

In this chapter three 12 minute recordings of different auditory scenes - nocturnal

nature, forest walk and city center were analyzed (the analysis pipeline is depicted

on figure 4.2). The scenes were selected as representative examples of a broad

range of possible acoustic environments. In each scene multiple sound sources

positioned at a diverse set of locations were present. Sound types and spatial

configuration of sources however, varied from scene to scene. In the nocturnal

nature recording, the recording subject was static, and the scene was dominated

by grasshopper calls (which do not move while generating sound). This recording

was an example of an environment, where many non-moving sources are present,

and their joint activity results in an ambient sound. The forest walk scene was

much less stationary - the subject was freely moving in a wooded area while

talking to another person. The scene included speech, ambient environmental

sound sources (wind, leaves, stream) as well as transient ones (wood cracks, steps,

etc.). This case was used as an example of a scene, where binaural information

is affected by the motion and speech of the listening subject. In the third scene

- city center - the subject was again listening passively, and the sensory input

was rapidly changing due to the presence and the constant motion of multiple

human speakers. This recording exemplified very dynamic auditory scenes with

numerous moving sources.

Auditory environments chosen for recording were different from each other.

We attempted to obtain representative samples of three classes of auditory scenes

categorized by spatial configurations - static sources (nocturnal nature), moving

sources (city center), and moving subject (forest walk). A statistical variation

among examples analyzed here should therefore capture variability across numer-

ous other cases.

Scene selection in this study did not include all possible cases. For instance

no recording was performed in an enclosed, highly reverberant environment. Ad-

ditionally all recordings were done in similar weather conditions, which may have

narrowed the range of stimulus properties. The nocturnal nature and city center

scenes consisted of constantly active sources - no periods of silence were present,

which happens in natural hearing conditions. Despite those limitations current

data should be heterogeneous enough to draw general conclusions.
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While auditory scenes were selected as a representation of diverse environ-

ments, recordings of each scene were performed in an unbiased way. Position

of the subject was chosen at random in the two static recordings, and his mo-

tion was not constrained or pre-designed while walking. In this way, samples

of a typical sensory input were collected. By refraining from recording in care-

fully controlled settings, where some feature (for instance loudness) in each ear

would be the same, the selection bias has been reduced. Natural auditory scenes

are rarely spatially symmetric and stimuli analyzed here provide examples of

what one typically hears. Understanding the structure of unbiased rather than

fine-tuned stimuli should give better insights into the functioning of the nervous

system in natural conditions [107].

4.3.2 Sound spectra

Frequency spectra of recorded sounds are displayed on figure 4.3. Strong dif-

ferences in spectrum across all recorded auditory scenes was present. In two of

them - the forest walk scene and the city center scene, frequency spectrum had

an exponential (power-law) shape, which is a characteristic signature of natural

sounds [149]. Since the nocturnal nature scene was dominated by the grasshopper

sounds, its spectrum had two dominant peaks around 7 and 10 kHz.

Figure 4.3: Frequency spectra of binaural recordings.In the forest walk and the
city center scenes spectra of sounds in the left and in the right ear (black and gray
lines respectively) were approximately the same. In the nocturnal nature scene,
a sound source was constantly present on the right side of the head, therefore
more power was present in high frequencies in the right ear.

Sounds in both ears contained similar amount of energy in lower frequencies

(below 4 kHz) - which is reflected by a good overlap of monaural spectra on
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the plots. In higher frequencies though, the spectral power was not equally

distributed in both ears. This difference is most strongly visible in the spectrum

of the nocturnal nature scene. There, due to a persistent presence of a sound

source (a grasshopper) closer to the right ear, corresponding frequencies were

amplified with respect to the contralateral ear. Since the spatial configuration of

the scene was static, this effect was not balanced by being averaged out in time.

Monaural spectra of the forest walk scene overlapped to a much higher degree.

A small notch in the left ear spectrum is visible around 6 kHz. The city center

scene, has almost identical monaural spectra. This is a reflection of its rapidly

changing spatial configuration - sound sources of similar quality (mostly human

speakers) were present in all positions during the time of the recording.

4.3.3 Interaural level difference statistics

An example joint amplitude distribution in the left and the right ear is depicted

on figure 4.4 A. It is not easily described by any parametric probability density

function (pdf), however monaural amplitudes reveal a strong linear correlation.

Correlation coefficient can be therefore used as a simple measure of interaural

redundancy by indicating how similar the amplitude signal in both ears is, at a

particular frequency channel. Interaural amplitude correlations for all recorded

scenes are plotted as a function of frequency on figure 4.4 C. A general trend

across the scenes is that correlations among low frequency channels (below 1

kHz) are strong (larger than 0.5) and decay with increasing frequency. Such

trend is expected due to the filtering properties of the head, which attenuates

low frequencies much less than higher ones. The spatial structure of the scene

also finds reflection in binaural correlation - for instance, a peak is visible in the

nocturnal nature scene at 7 kHz. This is due to a presence of a spatially fixed

source generating a sound at this frequency (see figure 4.3). The most dynamic

scene - city center - reveals, as expected, lowest correlations across most of the

spectrum.

Interaural level differences ILD were computed separately in each frequency

channel. Figure 4.4 B displays an example ILD distribution (black line) to-

gether with a best fitting Gaussian (blue dotted line) and logistic distribution

(red dashed line). Logistic distributions provided the best fit to ILD distribu-

tions across all frequencies and recorded scenes, as confirmed by the KS-test (data

not shown). ILD distribution at frequency ω was therefore defined as

p(ILDω|µω, σω) =
exp(− ILDω−µω

σω
)

σω(1 + exp(− ILDω−µω
σω

))2
(4.6)

where µω and σω are frequency specific mean and scale parameters of the logistic

pdf respectively. Variance of the logistic distribution is fully determined by the

scale parameter.
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Figure 4.4: Binaural amplitude statistics. A) An exemplary joint distribution of
monaural amplitudes at 1245 Hz. Exemplary data were taken from the nocturnal
nature recording. B) An ILD distribution of the same data, plottedtoghether with
a Gaussian and a logistic fit (blue and red dotted lines respectively) C) Interaural
amplitude correlations across frequency channels
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Figure 4.5: Interaural level difference distributions. A) Histograms plotted as
a function of frequency - a strong homogeneity of distributions is visible across
recorded scenes and frequency channels. B) The scale parameter σω of fitted
logistic distributions plotted as a function of frequency C) The location parameter
µω plotted as a function of frequency
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Empirical ILD distributions are plotted on figure 4.5 A. As can be immediately

observed, they preserve similar shape in all frequency channels and auditory

scenes regardless of their type. Scale (σω) and mean (or location - µω) parameters

of fitted distributions are plotted as a function of frequency on figures 4.5 B and

C respectively. The mean of all distributions is very close to 0 dB in most cases.

In two non-static scenes i.e. forest walk and city center deviations from 0 are

very small. Marginal ILD distributions of the spatially non-changing scene -

nocturnal nature - were slightly shifted away from zero for frequencies generated

by a sound source of a fixed position. The difference, however was weak. The

scale parameter behaved differently than the mean. In all auditory scenes it

grew monotonically with the increasing frequency. The increase was quite rapid

for frequencies below 1 kHz - from 1.5 to 2. For higher frequencies the change

was much smaller and in the 1 − 11 kHz interval σ did not exceed the value of

2.5. What may be a surprising observation is the relatively small change in ILD

distribution, when comparing high and low frequencies. It is known that level

differences become much more pronounced in high frequency channels [68], and

one could expect a strong difference with a frequency increase. At least partial

explanation can be made, when one observes a close relationship between Fourier

spectra of binaural sounds and means of ILD distributions. In a typical, natural

setting sound sources on the left side of the head are qualitatively (spectrally)

similar to those on the other side, therefore spectral power in the same frequency

bands remains similar in both ears. Average ILDs deviate from 0 if a sound source

was present at a fixed position during the averaged time period. Increase in the

ILD variance (defined by the scale parameter σ) with increasing frequency, can

be explained by the filtering properties of the head. While for lower frequencies a

range of possible ILDs is low, since large spatial displacements generate weak ILD

changes, in higher frequency regimes ILDs become more sensitive to the sound

source position hence their variability grows. On the other hand, objects on both

sides of the head reveal similar motion patterns and, in this way, reduce the ILD

variability, which may account for the small rate of change.

Observed ILD distributions revealed very small variation across different fre-

quencies. The variability was much weaker than what can be predicted from

known head filtering properties. Additionally, ILD distributions were quite ho-

mogenous across different auditory scenes. This means that neuronal codes for

ILDs can optimally represent this cue in very different acoustic environment with-

out necessity of a strong adaptation.

4.3.4 Interaural phase difference statistics

Marginal distribution of a univariate, monaural phase variable over a long time

period is uniform, since it periodically assumes all values on a unit circle. An

interesting structure appears in a joint distribution of monaural phases (an ex-
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Figure 4.6: Binaural phase statistics A) An exemplary joint probability distribu-
tion of monaural phases at 289 Hz. Data were taken from the nocturnal nature
scene. B) An empirical IPD distribution of the same data (black line) plotted
with a fitted von-Mises distribution (blue dashed line)

ample is plotted on figure 4.6 A). Monaural phases reveal dependence in their

difference i.e. they become conditionally independent given the IPD value. Their

joint probability is therefore determined by the probability of the IPD [22] :

p(φL, φR) ∝ p(φL − φR) (4.7)

where φL and φR are instantaneous phase values in the left and the right ear

respectively.

To obtain a parametric description, IPD histograms were fitted with the von

Mises distribution as visible in figure 4.6 B (additional structure was present in

IPDs from the forest walk scene - see the following subsection). A distribution of

an interaural phase difference in the frequency channel ω (IPDω = φL,ω −φR,ω),

was then given by:

p(IPDω|κω, µω) =
1

2πI0(κ)
eκ cos(IPDω−µω) (4.8)

where µω and κω are frequency specific mean and concentration parameters and

I0 is the modified Bessel function of order 0. In such case, the concentration

parameter κ controls mutual dependence of monaural phases [23]. For large κω
values φL,ω and φR,ω are strongly dependent and the dependence vanishes for

κ = 0.

Figure 4.7 A depicts IPD histograms in all scenes depending on the frequency

channel. Thick black lines mark IPDω,max - the ”maximal IPD” value i.e. the
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Figure 4.7: IPD distributions. A) Log-histograms plotted as a function of fre-
quency. Black lines mark the ”maximal” IPD limit. B) The concentration pa-
rameter κω of fitted von-Mises distributions plotted as a function of frequency
C) The position parameter µω plotted as a function of frequency
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phase shift corresponding to a time interval required for a sound to travel the

entire interaural distance equal to the head diameter (for details see the Materi-

als and Methods section). At low frequencies (below 1 kHz), histograms had a

triangular shape. This is a common tendency in IPD distributions, visible across

all auditory scenes. Additionally, due to phase wrapping, for frequencies where

π ≤ |IPDmax| ≤ 2π the probability mass is shifted away from the center of the

unit circle towards the −π and π values, which is visible as blue, circular regions.

This trend is not present in the forest walk scene, where a clear peak at 0 radians

is visible for almost all frequencies. Two panels below i.e. figures 4.7 B and C

display plots of κ and µ parameters of von Mises distributions as a function of

frequency. The concentration parameter κ decreased in all three scenes from a

value close to 1.5 (strong concentration) to below 0.5 in the interval between 200

Hz and 500 Hz. This seemed to be a robust property in all environments. After-

wards, small κ rebounds were visible. For auditory scenes recorded by a static

subject i.e. nocturnal nature and city center rebounds occur at frequencies, where

IPDmax corresponds to π multiplicities (this is again an effect of phase wrap-

ping). The κ value is higher for a more static scene - nocturnal nature - reflecting

a lower IPD variance. For frequencies above 2 kHz, concentration converges to

0 in all three scenes. This means that IPD distributions become uniform and

monaural phases mutually independent. The frequency dependence of the posi-

tion parameter µ is visible on figure 4.7 C. Again, division may be made between

statically and dynamically recorded scenes. For the latter one, IPD distributions

were centered at the 0 value with an exception at 700 Hz. For two former ones,

distribution peaks were roughly aligned along the IPDmax as long as it did not

exceed −π or π value. One has to note, that for distributions close to uniform

(κ→ 0), position of the peak becomes an ill defined and arbitrary parameter.
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Figure 4.8: Proportion of IPDs exceeding the ”maximal IPD” threshold plotted

as a function of frequency. In each auditory environment a substantial amount

(up to 45% in the 400 Hz channel of the nocturnal scene) of low-frequency IPDs

exceeded the limit imposed by the size of the head. While such IPDs can carry

relevant information, they can not be used to identify sound source position

without additional transformations.

Thick black lines on figure 4.7 A mark the ”maximal” IPD value (IPDmax),

constrained by the head size. A single, point sound source in an anechoic en-

vironment would never generate an IPD exceeding IPDmax. In natural hear-

ing conditions however, such IPDs occur due to the presence of two (or more)

sound sources at both sides of the head or due to acoustic reflections [49]. The

presence of IPDs exceeding the IPDmax limit is visible on figure 4.7 as a prob-

ability mass lying outside of the black lines. Figure 4.8 displays a proportion

of IPDs larger than the one defined by the head size plotted against frequency.

Lines corresponding to three recorded auditory environments lay in parallel to

each other, displaying almost the same trend up to a vertical shift. The highest

proportion of IPDs exceeding the ”maximal” value was present in the noctur-

nal nature scene. This was most probably caused by a largest number of very

similar sound sources (grasshoppers) at each side of head. They generated non-

synchronized and strongly overlapping waveforms. Phase information in each ear

resulted therefore from acoustic summation of multiple sources, hence instanta-

neous IPD was not directly related to a single source position and often exceeded

the IPDmax value. Surprisingly, IPDs in the most dynamic scene - city center -

did not exceed the IPDmax limit as often. This may be due to a smaller number

of sound sources present and may indicate that the proportion of ”forbidden”

IPDs is a signature of a numerosity of sound sources present in the scene. For

nocturnal nature and city center scenes the proportion peaked at 400 Hz achiev-

ing values of 0.45 and 0.35 respectively. For a forest walk scene, the peak at 400

Hz did not exceed the value of 0.31 at 200 Hz. All proportion curves converged
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to 0 at 734 Hz frequency, where IPDmax = π.

The percentage of IPDs larger than the value constrained by the head size

is another property of auditory scenes, which can not be predicted from head

filtering properties or from physics of sound. Our data suggest that since this

proportion can be large (up to 45%), many naturally encountered IPDs do not

correspond to single sound sources. This in turn implies that they can not be

utilized to identify the sound position in the simplest way suggested by the duplex

theory.

IPDs of self-generated sounds

As already mentioned before, IPD distributions at most of frequency channels in

the forest walk scene revealed an additional property, namely a clear, sharp peak

at 0 radians. This feature was not present in two other scenes. As an example,

IPD distribution at 561 Hz is depicted on figure 4.9 A. The histogram has a

sharp peak close to 0, which implies presence of many equal monaural phase

values. Zero IPDs can be generated either by sources located at the midline

(directly in front or directly in the back) or self-produced sounds such as speech,

breathing or loud footsteps.

Figure 4.9: IPD distributions in an auditory scene including self-generated speech.
A) An exemplary IPD distribution in the forest walk scene. In addition to a broad
”background” component a peak centered at 0 radians is visible. Dashed lines
mark components of a fitted von-Mises mixture distribution. B) Results of a
sample classification using the fitted mixture model. Intervals were assigned by
the algorithm to mixture components of the same color plotted on panel A. Blue
intervals include utterances generated by the recording subject.

As visible on figure 4.9 two components contributed to the structure of the
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marginal IPD distribution - the sharp ”speech component” and the broad ”back-

ground”. IPD distributions of the forest walk scene were well suited to be mod-

elled by a mixture model. This means that their pdf could be represented as a

linear combination of two von Mises distributions in the following way

p(IPDω|κω, µω) =

2∑
i=1

p(Ci)p(IPDω|κω,i, µω,i) (4.9)

where κω ∈ R2 and µω ∈ R2 are parameter vectors, Ci ∈ {1, 2} are class labels,

p(Ci) are prior probabilities of a class membership and p(IPDω|κω,i, µω,i) are

von Mises distributions defined by equation 4.8. A fitted mixture of von Mises

distributions is also visible in figure 4.9 A, where dashed lines are mixture com-

ponents and the continuous black line is the marginal distribution. It is clearly

visible that a two-component mixture fits the data much better than a plain von

Mises distribution. There is also an additional advantage of fitting such a mix-

ture model, namely it allows to perform classification problem and assign each

IPD sample (and therefore each associated sound sample) to one of two classes

defined by mixture components. Since prior over class labels is assumed to be

uniform, this procedure is equivalent to finding a maximum-likelihood estimate

Ĉ of C

Ĉ = arg max
C

p(IPDω|C) (4.10)

In this way, a separation of self generated sounds from background can be per-

formed using information from a single frequency channel (if no other sound

source is present at the midline). Exemplary results of self-generated speech sep-

aration are displayed in figure 4.9 B. A two-second binaural sound chunk included

two self-spoken words with a background consisting of a flowing stream. Each

sample was classified basing on an associated IPD value at 561 Hz. Samples be-

longing to the second, sharp component are coloured blue and background ones

are red. It can be observed that the algorithm has successfully separated spoken

words from the environmental noise.

IPDs are usually considered as cues generated by external sound sources. Our

data demonstrate that self-generated sounds such as speech or footsteps, often

constitute a dominant component of a natural acoustic scene. They also possess

a characteristic statistical signature, which reflects itself in IPD distributions.

4.3.5 Independent components of binaural waveforms

In previous sections statistics of precomputed stimulus features - IPDs and ILDs

were analyzed. In this way low-order properties of the natural input to binaural

circuits in the auditory system were characterized. However these results do not

allow to draw strong conclusions about mutual dependence of binaural waveforms.

This is an important property of the stimulus, since it is informative about the
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difficulty of the sound localization task in natural environments. If sounds in

each ear are highly dependent - it is very likely they are generated by the same

source, which can be simply localized using binaural cues. If, however, sound in

the left ear is independent from the one in the right ear - this means that each of

them is dominated by a different source. In such a case, instantaneous cue values

can not be directly mapped to a spatial position, and sound localization becomes

a complex inference process.

This section attempts to estimate the difficulty of sound localization in natural

auditory scenes by analyzing mutual dependence of monaural sounds in each

scene. In order to do so, Independent Component Analysis (ICA) - a statistical

model which optimizes a general-purpose objective - coding efficiency [12] was

employed.

In the ICA model, short (8.7 ms) epochs of binaural sounds were represented

by a linear superposition of basis functions (or independent components - ICs)

multiplied by linear coefficients s (see figure 4.10 A). Linear coefficients were

assumed to be independent and sparse i.e. close to 0 for most of data samples

in the training dataset. Basis functions learned by ICA can be interpreted as

patterns of correlated inter- and intra-aural variability present in a dataset.

Figure 4.10 B depicts exemplary basis functions learned from each recording.

Each feature consists of two parts, representing signal in the left and in the right

ear (black and red colours respectively). Importantly, monaural parts of almost

all trained basis functions were well localized in frequency i.e. their Fourier spec-

tra had a prominent peak, in agreement with results presented in [78, 133, 1]

(few non-localized features were excluded from the analysis - see Methods 4.2).

Features trained on different recordings have characteristic shapes determined

by the spectrotemporal composition of auditory scenes. On one hand, the city

center scene is modelled by time extended and frequency-localized basis functions

(capturing mostly the harmonics of human speech), while on the other the rep-

resentation of the forest walk scene included temporally localized, instantaneous

features (induced by transient sounds like wood cracks etc). Spectrotemporal

characteristics of learned basis functions (depicted on figure 2 in the supplemen-

tary material) constitute a characteristic property of each auditory scene [1, 78].

Here however they are not analyzed in detail, since this is not the main focus of

the current study.

In order to measure how strongly information from each ear contributed to

features encoded by each of the independent components, the peak power ratio

(PPR) was computed as follows:

PPR = 10 log10(
Amax,L
Amax,R

) (4.11)

where Amax,L, Amax,R are maximal spectrum values of left and right ear parts of

each IC respectively. A large positive PPR value implies a dominance of a left
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Figure 4.10: Independent components of natural binaural sounds. A) An ex-
planation of the ICA model. Each epoch of binaural sound (left hand side of
the equation) is represented by a linear combination of basis functions (or inde-
pendent components). Coefficients si are assumed to be sparse and their joint
distribution is equal to the product of marginals. B) Exemplary ICA basis func-
tions from each recorded scene. Nocturnal nature and city center scenes consisted
mostly of harmonic sounds and are mostly represented by ICs resembling Fourier
bases. The forest walk scene included multiple transient sounds, which gave rise
to wavelet-like features.

ear sound, while when the PPR is negative the right ear dominates. Values close

to 0 imply a balanced power in each ear. This index is conceptually similar to

the binocularity index used to quantify the ocular dominance of real and model

visual receptive fields [63, 60].

Figure 4.11 depicts binaural properties of learned independent components.

Each circle represents a single IC. Its vertical and horizontal coordinates are

monaural peak frequencies and its color encodes the PPR value. Features which

lie along the diagonal can be considered as a representation of ”classical” ILDs,

since they encoded a feature of the same frequency in each ear and differed only

in level. ICs lying away from the diagonal coupled information from different

frequency channels in both ears.

Pronounced differences among IC representations of the three auditory scenes

are visible on figure 4.11. Majority (161) of ICs learned from the nocturnal nature

scene cluster closely to the diagonal and encode the same frequency in each ear.

The basis function set trained on the mostly dynamic scene (city center) separated
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Figure 4.11: Binaural composition of independent components. Each circle cor-
responds to a single IC. Horizontal and vertical coordinates are spectral maxima
of the left and the right ear parts respectively. Colors encode the peak power
ratio. Each pannel depicts one of the recorded scenes.

into three clear subpopulations. Two of them (including 140 features in total)

were monaural. Monaural basis functions were dominated mostly by a single

ear, and the contralateral part was of a very low frequency, close to a flat line

(a DC component). The binaural subpopulation contained 111 basis functions

perfectly aligned with the diagonal. Such separation suggests that waveforms

in both ears were highly independent and modelled by a large separate sets of

monaural events. ICA trained on the forest walk scene also yielded a set of basis

functions, separable into two populations. Here, the highest number of features

- 165 lied off the diagonal and coupled separate frequency channels in each ear.

A clear division into two monaural subsets was apparent - almost no IC was

characterized by a PPR close to 0.

As data displayed in figure 4.11 suggest, there is a relationship between inter-

aural redundance and PPR values. In dynamic scenes, where monaural waveforms

are generated mostly by independent causes, stereo sounds are best represented

by ICs of large absolute PPR values (dominated by a single ear). In order to

get a better understanding of this effect, for each recorded scene, two artificial

datasets of opposite properties were generated. The first dataset consisted of sin-

gle, point sources presented in anechoic conditions with zero background noise. It

was created by convolving chunks of a recording with human head related transfer

functions (HRTFs) from the LISTEN database [151]. This dataset constituted a

specific case, where sounds in each ear were maximally dependent given the head

filter. In the second dataset the binaural signal was created by drawing two inde-

pendent sound intervals and treating each of them as an input to a separate ear.
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Figure 4.12: Independent components of simulated data. A) Cartoon illustrations
of the generation process of the maximally dependent (top) and the maximally
independent (bottom) datasets. B) Exemplary ICs trained on simulated data
(point source data - top row, independent ears data - bottom row). If binaural
sounds had the same underlying cause, vectors corresponding to each ear captured
the signal structure. In the independent ear setting, one of the monaural parts
of every IC was always flat.

The interaural dependence was therefore minimized and emulated a situation, in

which sounds in each ear originate from separate sources. A cartoon illustration

of those two simulations is depicted in figure 4.12 A.

Both - the point source as well as the independent ears dataset were extreme,

opposite settings, which do not occur naturally. While in the first one, binaural

cues could be directly mapped to a source position, in the second they were

spurious and carried no spatial information. Recordings of natural scenes should

lay in the space spanned by those two.

ICA was performed on each artificial dataset. Exemplary basis functions

learned using sounds from the forest scene are depicted on figure 4.12 B. Top

and bottom rows present ICs trained on point source and independent ears data

respectively. Low frequency basis functions representing maximally dependent

data (first row) had a very similar value of the spectral peak in each ear, and some

of them were shifted in time (encoding an ITD). The power difference increased

with frequency growth, due to the head attenuation. ICs encoding independent

sounds in each ear, were almost completely monaural i.e. one of the single-ear

parts was flat and equal to zero.
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In the next step of the analysis, histograms of the PPR value for each learned

IC dictionary were computed. They are depicted in figure 4.13. A clear, repetitive

structure is visible in PPR distributions of ICs trained on artificial datasets.

Histograms of point source data (first column) have three peaks - first one at

0 dB and two shorter ones, symmetrically located on either side. The middle

peak, located at 0 dB corresponds to low-frequency features, which were weakly

attenuated by the HRTF, and carried similar power in each ear. High frequency

ICs, where sound in one ear was strongly suppressed by the head can account

for the two symmetric peaks located between ±10 − 15 dB. A very different

structure is visible in peak ratio histograms of ICs trained on datasets where

monaural sounds were independent (middle column). There, two modes were

present at extreme PPR values, close to ±20 dB. Basis functions learned from

those data were dominated by a single ear, while signal in the opposite ear was

equivalent to noise fluctuations, giving rise to large absolute PPR values.

Histograms of binaural dominance of natural scene ICs are presented in the

third column of figure 4.13. As expected, they fell in between extremes established

by artificial datasets. Both dynamic scenes (recorded in the forest and in the city

center) were characterized by PPR distributions highly similar to those obtained

from independent ears data. Corresponding histograms consisted of two sharply

separated peaks, located away from the 0 dB point. The distance between the

peaks was, however, not as large as for the maximally independent dataset, which

implied existence of some binaural dependencies. Importantly, the peak at 0 dB

visible in maximally dependent datasets was absent in natural scenes. Some

binaural features emerged from natural data, however in proportion to monaural

ICs their amount was low. This means that monaural sounds were much less

redundant than in the simplistic, simulated case. The nocturnal scene, where

multiple static sources were recorded by a non-moving subject gave rise to a

different PPR distribution. While the 0 dB maximum was absent as well, the

positive and negative peaks were not very sharply separated. Additionally, a clear

bias towards the right ear (negative PPRs) was visible. This can be accounted

by the fact that this recording was performed in a static environment with a non-

moving sound source present close to the right ear. Despite the almost complete

lack of motion, even this scene was very different from the simulated point-source

one.

The above analysis points to the fact that in a typical auditory environment,

sounds in each ear are much stronger dominated by independent acoustic events

that can be predicted from considerations of solitary point sources. In such

conditions sound localization requires a sophisticated computational strategy and

becomes itself a scene-analysis task.
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Figure 4.13: Distributions of peak power ratios of independent components
trained on simulated and natural sounds. Columns correspond to datasets (point
source, independent ears, natural scene) and rows to recorded environments (noc-
turnal nature, forest walk, city center). Simulated data gave rise to stereotypical
and repetitive PPR distributions. Natural scenes, while being a compromise
between simulated environments, were more similar to the independent ear data.

4.4 Discussion

Binaural cues are usually studied in a relationship to the angular position of

the generating stimulus [40, 39, 55]. In probabilistic terms this corresponds to

modelling a conditional probability distribution of a cue, given a sound position.

Analysis of this relationship in natural environments is a very hard task, since

a full knowledge about the spatial configuration of the scene (i.e. position and

trajectory of every object) is required in addition to the recorded sound. Research

discussed in this section approaches binaural hearing from a different perspective

- it focuses on marginal distributions of naturally encountered binaural sounds.

As a representation of the real sensory world three auditory scenes were

recorded and analyzed. They varied in terms of spatial configuration as well
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as sound quality. This diversity increased the likelihood that any other auditory

scene typically encountered by a human listener would resemble one of those

recorded in the present study. Selected scenes were not free from limitations.

Inspection of sound spectra as well as cue statistics revealed slight biases towards

the right ear in nocturnal and forest scenes, which may not be the case in all

realistic conditions. Moreover, one could invision analyzing a larger amount of

recordings performed also in interior, reverberant environments, which are often

encountered by humans. Such analysis should allow to draw stronger conclusions

about general properties of natural binaural sounds. Despite their differences

and limitations, analyzed scenes revealed common features such as the shape of

ILD distributions for instance. If all analyzed cases share some statistical prop-

erty, one may conclude that it should not change strongly in different hearing

conditions.

4.4.1 Binaural cue distributions in natural auditory scenes

Our current understanding of how the nervous system may localize sound sources

was primarily derived from considerations of solitary, point sources of pure fre-

quency sound in noiseless and non-reverberant listening conditions. In such case,

knowledge of head filtering properties and analysis based on physics of sound

suffices to predict the range of possible binaural cues and their relationship to

the position of a generating source.

When considering natural environments, the analytical approach very quickly

becomes intractable. In a typical auditory scene, a number of objects unknown

to the organism generates interfering sound waves affected by motion and re-

verberation. Additionally, the number of sources at each side of the head is

different. Under such conditions, binaural cues become highly stochastic, and as

such should be characterized in statistical terms. In this work low-order statis-

tics of naturally encountered binaural cues were characterized. In many aspects,

empirical distributions of natural stimuli deviated from reductionist, analytical

predictions.

Interaural level differences

The human head strongly attenuates high frequency tones, acting as a low-pass

filter [16]. For this reason, intensity differences between the ears do not carry

much information about the position of a low-frequency sound. An ILD becomes

informative about the location of a point-source, when the tone frequency ex-

ceeds 4 kHz [68]. Based on those observations, one could expect that naturally

encountered ILDs are also strongly frequency dependent. This was however, not

the case. Empirical ILD distributions were strikingly homogenous across almost

entire measured frequency spectrum. Distribution at each frequency was approx-
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imately logistic and centered at 0 dB. The ILD invariance to a frequency channel

is not predictable by the HRTF analysis (although it has been demonstrated be-

fore that sound sources proximal to the listener can generate pronounced ILDs

also below 1.5 kHz [20, 129]). Weak frequency dependence of natural ILD dis-

tributions implies that binaural circuits computing and encoding this cue are

exposed to similar patterns of stimulation across large parts of the cochleotopic

axis. This allows to make a prediction that similarly tuned neurons encoding

both high and low frequency ILDs should be present in the early auditory sys-

tem. ILD sensitive cells characterized by low best frequencies have been found in

the Lateral Superior Olive (LSO) of the cat [146]. Their presence may constitute

a manifestation of an adaptation of the binaural auditory system to natural ILD

statistics.

A neuron maximizes its coding efficiency (defined by the amount of the stim-

ulus information it conveys), if its tuning curve is equivalent to the cumulative

distribution function (CDF) of the naturally encountered stimulus [13]. Since

natural ILD distributions are logistic, one can speculate that ILD tuning curves

of neurons in the early auditory system should be well approximated by a CDF

of this distribution i.e. the logistic function.

In addition to the frequency invariance, ILDs revealed only a small variability

across recorded auditory scenes. Despite strong differences between spatial con-

figurations of each scene, ILD distribution parameters fluctuated very weakly. In

the nocturnal nature scene, centers of some ILD distributions were slightly shifted

away from 0 dB, but their shapes were the same. This observation suggests that

a very similar tuning curve suffices to efficiently convey the ILD information in

various listening conditions. One may conclude that ILD coding neurons do not

have to strongly adapt their tuning properties, when an auditory scene changes

from one to another. This does not exclude the possibility that adaptation on

time scales shorter than analyzed here may still occur. Experimental evidence

of a rapid adaptation to fast changes of a cue distribution has been delivered for

ILDs [30] (similar effects for ITDs have also been demonstrated in [86]).

Interaural phase differences

In anechoic environments, point sources of sound generate interaural time dis-

parities constrained by the head size of the listener - no IPD value should exceed

the frequency dependent, physiological threshold. In more complex listening sit-

uations larger values can appear, either due to a sound reflection or to a presence

of two (or more) desynchronized sound sources [49]. Even though large IPDs can

not be directly mapped to a source position, they still may be of high value to

the organism. Sound reflections generate reproducible cues and carry information

about the spatial properties of the scene [46]. If a large IPD did not arise as a

result of a reflection, it means that at least two sound sources contribute to the
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stimulus at the same frequency. In the latter case, IPDs become a strong source

separation cue.

The amount of IPDs larger than the head-imposed threshold is another prop-

erty of an auditory scene, which can not be derived by the analysis of the head

filtering - it has to be estimated from empirical measurements. Present results

demonstrate that in low frequency channels large proportions of IPDs exceed the

”maximal” value. This was true for to up to 45% of cues at around 500 Hz. It

means that a large amount of potentially useful signal falls outside of the range

predicted by analysis of point sources in echo-free conditions. IPD coding cir-

cuits are often exposed to cue values exceeding the threshold when the organism

explores the natural environment. In order to retain this information, the au-

ditory system should be adapted to encode IPDs larger than the physiological

limit. Interestingly, this notion converges with experimental data. In many mam-

malian species, tuning curve peaks of IPD sensitive neurons are located outside

of the head size constrained range [49]. Moreover, the observed proportion of

large IPDs decreased with the frequency increase (since the maximal IPD limit

increases with frequency). This observation agrees with the experimental data

showing that neurons characterized by the low best frequency are predominantly

tuned to IPDs lying outside of the head limit [89, 17, 50, 73]. Based on the above

considerations, one can conjecture that tuning to large phase disparities could be

also understood as a form of adaptation to the natural distribution of this cue.

The natural auditory stimulus consists not only of external sounds generated

by environmental sources, but also of self-generated sounds such as speech. We

have found that speech alters the IPD distribution by increasing the number of

disparities equal to 0 radians. Distribution structure different than in scenes

where no self-speech was present implies that binaural stimuli perceived by hu-

mans and other vocalizing animals are strongly affected by self generated sounds.

This in turn influences activity of cue-coding neurons, since they have to represent

IPDs close to 0 more often. Prior to localizing a source using binaural cues, it has

to be determined, whether it is an external source or is it a self-generated one.

To a limited extent this can be perfomed using instantenous, single channel IPD

values as has been demonstrated here by using a simple mixture model to sep-

arate speech from background sounds. The proposed model suggests a possible

abstract algorithm, which could be implemented by the nervous system to differ-

entiate between self generated sounds and sounds of the environment. This is a

behaviorally relevant task which has to be routinely performed by many animals.

One should note that the separation of acoustic sources using binaural cues is

a well-known paradigm of computational scene analysis and substantial research

has been devoted to it in other contexts (see [18] for an exemplary review).
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4.4.2 Binaural hearing in complex auditory environments

Interaural cues can be directly mapped to a stimulus position only if no other

sources of sound overlap with the signal of interest. A natural question to ask is

- how often does this happen in the natural environment? This is equivalent to

asking - how useful are instantaneous, one-dimensional cues to localize typical,

real world sources?

Since a direct estimation of a number of auditory objects in real environments

is technically very difficult, present work approached this problem indirectly.

By performing Independent Component Analysis, redundant patterns of natural

binaural stimulus were learned. If signals in each ear originated typically from

the same source - their dependence was maximized and independent components

captured a signal structure in both ears. However, if sounds in each ear were

dominated by independent sources, they were best represented by monaural basis

functions, where the signal power in one ear was greatly exceeding power in

the other one. In order to obtain a frame of reference, the same analysis using

simulated datasets was performed. One of them consisted solely of solitary point-

sources. Monaural sounds were therefore maximally dependent given the head

filter, and sound localization could have been easily performed using simple cues.

In the second dataset, sound waves in each ear were completely independent, and

binaural cues carried no spatial information.

Basis functions trained on natural auditory scenes had a very different bin-

aural composition than those trained on simulated point sources. In two out of

three environments analyzed here, two equinumerous, clearly separated subsets

of independent components emerged (in the third one the separation was not so

prominent). Each of them was dominated by the signal in only one of the ears.

This structure was rather reminiscent of basis functions trained on the artificial,

maximally independent data.

These results allow to conclude that in the real-world hearing conditions bin-

aural sound is rarely generated by a single object. Actually, sounds in each ear

seem to be dominated by independent environmental causes. In such settings,

an inversion of a binaural cue to a sound source position becomes an ill-posed

problem. This is because multiple scene configurations can give rise to the same

cue value (for instance an ILD equal to 0 can be generated by a single source

located at the midline, or two identical sources symmetricaly located on both

sides of the head). A mere extraction of the instantenous cue (as performed by

the brainstem nuclei MSO and LSO) is not equivalent to the identification of the

sound position. Computation of binaural cues is only a beginning of a complex

inference process, whose purpose is to estimate the spatial configuration of an

auditory scene [80].

The ICA analysis has yielded a large amount of monaural and a smaller num-

ber of binaural features. One can interpret them as model neuronal receptive
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fields [78, 133, 25], and ask which role could neurons of such response charac-

teristics play. One possible answer is that while binaural neurons may subserve

localization tasks, monaural ones could be used for the purpose of the ”better

ear listening” i.e. encoding ipsilateral sound sources. On the other hand also

monaural sound features similar to ones described here can be utilized in further

stages of the auditory processing to recover spatial information.

4.5 Conclusions

Properties of naturally encountered binaural sounds deviate from predictions for-

mulated in limited, experimental settings. Many aspects of cue distributions such

as an ILD frequency invariance, or a proportion of IPDs larger than the ”phys-

iological” head-imposed limit can not be predicted from the analysis of simple

stimuli. This is an example showing that even low-order properties of the natural

sensory input are hard to be predicted from analytical, physics-based considera-

tions.

An often repeated statement is that the function of MSO and LSO - binaural

comparators located in the brainstem is to localize sound sources [49]. While

those structures most surely compute interaural time and level differences, the

ICA based analysis presented here has demonstrated that under natural condi-

tions the extraction of a cue does not immediately correspond to an estimation of

the source position. The function played by substructures of the olivary complex

in spatial hearing may be more transformative i.e. to preprocess the signal and

extract cues, which subserve further scene-analysis processing.

The first point I argue for in this thesis states that without analyzing the

structure of a natural sensory input processed by neural circuits it is nearly

impossible to explain algorithms they implement and the function they play in

sensory computations. Results presented in this chapter seem to confirm that

this statement holds in the case of binaural hearing.
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Chapter 5

Sparse Representation of Natural

Stereo Sounds Reproduces

Neuronal Codes in the Auditory

Cortex

5.1 Overview

When considering the notion of function in the nervous system, the auditory cor-

tex provides a particularly mysterious example. Despite its obvious importance,

the precise role played by this area in hearing remains unclear. Before reaching

the cortex, raw sounds undergo numerous transformations in the brainstem and

the thalamus. The subcortical processing seems to be more substantial than in

other senses and constitutes a specific property of the auditory system. What

are the computations performed by the cortex on the output generated by lower

auditory regions is a question far from being answered.

One of the issues making functional characterization of the auditory cortex a

conceptually difficult task, is an apparent lack of specificity. Spiking activity of

cortical auditory neurons is modulated by multiple sound features such as pitch,

timbre and spatial location [15, 53]. Responses invariant to any of those aspects

seem to be rare. This interdependence is especially puzzling in the context of

extracting spatial information. Despite efforts to identify ”what” and ”where”

streams in the auditory system (e.g. [120, 84]), no clear signature of a sharp

separation has been found [100, 28].

Neurons reveal sensitivity to sound position in most parts of the mammalian

auditory cortex [14]. Their spatial tuning is quite broad - neural firing can be
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modulated by sounds located on the entire azimuthal plane. While activity of

single units does not carry information sufficient to accurately localize sounds,

larger numbers of neurons seem to form a population code for sound location

[137, 93, 139, 155]. These observations stand against initial expectations of finding

a topographic cortical map of the auditory space, where neighboring units would

encode presence of a sound source at proximal positions in the area surrounding

the animal [92].

From a theoretical perspective one question seems to be particularly impor-

tant - is there any general principle behind functioning of the auditory cortex, or

does it carry out computations which are purely task- or modality-specific and

are therefore not performed in other parts of the nervous system? A growing

body of evidence seems to point to efficient coding as an abstract computational

mechanism implemented by the auditory system. To date however, the con-

nection between natural stimulus statistics and auditory spatial receptive fields

remains unexplained. It is therefore unclear if spatial computations performed

by the auditory cortex are unique to this brain area or whether they can be also

predicted in a principled way from a broader theoretical perspective.

Work described in this chapter attempts to connect spatial computations car-

ried by the auditory cortex with statistics of the natural stimulus. Here, a hierar-

chical model of stereo sounds recorded in a real auditory environment is proposed.

Based on principles of sparse coding the model learns the spectrotemporal and in-

teraural structure of the stimulus. In the next step, it is demonstrated that when

probed with spatially localized sounds, higher level units reveal spatial tuning

which very well matches spatial tuning of neurons in the mammalian auditory

cortex. Additionally, the learned code forms an interdependent representation of

spatial information and spectrotemporal quality of a sound. Activity of higher

units is therefore modulated by sound’s position and identity, as observed in the

auditory system.

Results I describe here suggest that the function of the auditory cortex is to

reduce redundancy of the stimulus representation preprocessed by the brainstem.

Representation obtained in this way can be hard to be described in terms of

selectivity for abstract features of sound such as pitch, timbre or location. At

the same time, they may facilitate tasks performed by higher brain areas such as

sound localization

5.2 Methods and Models

5.2.1 Overview of the hierarchical model

In this chapter a hierarchical statistical model of binaural sounds, which captures

binaural and spectrotemporal structure present in natural stimuli is proposed.

The architecture of the model is shown in figure 5.1. It consists of the input layer
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and two hidden layers. The input to the model were N samples long epochs of

binaural sound: from the left ear - xL and from the right ear - xR. The role

of the first layer was to extract and separate phase and amplitude information

from each ear by encoding them in an efficient manner. Monaural sounds were

transformed into phase (φL, φR) and amplitude (aL, aR) vectors. This layer can

be thought of as a statistical analogy to cochlear filtering. Phase vectors were

further modified by computing Interaural Phase Differences (IPDs) - a major

sound localization cue [49].

Figure 5.1: The graphical model representing variable dependencies. The lowest
layer represents sound epochs perceived by the left and the right ear xL and xR.
They are decomposed by a sparse coding algorithm into phase and amplitude
vectors φL, φR and aL, aR. Phases are further subtracted from each other in
order to obtain an IPD vector ∆φ. The second layer encodes jointly monaural
amplitudes and IPDs. Auxiliary variables (phase offset and the scaling factor w)
are depicted in gray.

The second layer of the model learned a joint sparse representation of monau-

ral amplitudes (aL, aR) and phase differences (∆φ). Level (amplitude) and tem-

poral (phase) information from each ear was jointly encoded by a population of

M units. Each of them was therefore capturing higher-order spectrotemporal

patterns of sound in each ear. Additionally by combining monaural information

into single units higher level representation achieved spatial tuning not present

in the first layer. The second hidden layer was constructed as a model of cor-

tical auditory neurons, which receive converging monaural input. An additional

assumption was that they jointly operate on phases and amplitudes - two kinds

of information, which is known to be important for spatial hearing.
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5.2.2 First layer - sparse, complex-valued representations of natural

sounds

As demonstrated in previous work, filtering properties of the auditory nerve can

be explained by sparse coding models of natural sounds [78]. There, short epochs

of natural sounds are modelled as a linear combination of real-valued basis func-

tions multiplied by sparse (i.e. of highly curtotic marginal distributions), inde-

pendent coefficients. Adapted to sets of natural sound chunks, basis functions

become localized in time and/or frequency matching properties of cochlear filters.

While being capable of capturing interesting properties of the data, real val-

ued representations are not well suited for modelling binaural sounds. This is

because binaural hearing mechanisms utilize interaural level and time differences

(ILDs and ITDs respectively). In pure frequency channels, differences in time

correspond to phase displacements known as interaural phase differences (IPDs).

Therefore a desired representation should both be adapted to the data (i.e. non-

redundant) and separate amplitude from phase (where phase is understood as a

temporal shift smaller than the oscillatory cycle of a particular frequency).

The present work addresses this twofold constraints with the complex-valued

sparse coding. Each data vector x ∈ RN is represented as:

xt =

N∑
i=1

R{z∗iAi,t}+ η (5.1)

where zi ∈ C are complex coefficients, ∗ denotes a complex conjugation, Ai ∈ CT

are complex basis functions and η ∼ N (0, σ) is additive Gaussian noise. Com-

plex coefficients in Euler’s form become zi = aie
jφi (where j =

√
−1) therefore

equation (5.1) can be rewritten to explicitly represent phase φ and amplitude a

as separate variables:

xt =

N∑
i=1

ai(cosφiA
R
i,t + sinφiA

I
i,t) + η (5.2)

Real and imaginary parts AR
i and AI

i of basis functions {Ai}Ni=1 span a sub-

space within which the position of a data sample is determined by amplitude

ai and phase φi. Depending on number of basis functions N (each of them is

formed by a pair of vectors), the representation can be complete (N/2 = T ) or

overcomplete (N/2 > T ).

In a probabilistic formulation, equations (5.1) (5.2) can be understood as a

likelihood model of the data, given coefficients z and basis functions A:

p(x|z,A) =
1(

σ
√

2π
)T T∏

t=1

e−
(xt−x̂t)

2

2σ2 (5.3)
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where x̂t =
∑N

i=1 R{z∗iAi,t}. A prior over complex coefficients applied here as-

sumes independence between subspaces and promotes sparse solutions i.e. solu-

tions with most amplitudes close to 0:

p(z) =
1

Z

N∏
i=1

e−λS(ai) (5.4)

where Z is a normalizing constant. Function S(ai) promotes sparsity by pe-

nalizing large amplitude values (the above equation has the same form as the

factorial coefficient prior 2.18). Here, a Cauchy prior on amplitudes is assumed

i.e. S(ai) = log(1 + a2
i ). One should note however that amplitudes are always

non-negative and that in general the Cauchy distribution is defined over the en-

tire real domain. The model attempts to form a data representation keeping

complex amplitudes maximally independent across subspaces, while still allow-

ing dependence between coordinates zR, zI which determine position within each

subspace. Inference of coefficients z which represent data vector x in the basis A

is performed by minimizing the following energy function

E1(z, x,A) ∝ 1

2σ2

T∑
t=1

(x̂t − xt)2 + λ
N∑
i=1

S(ai) (5.5)

which corresponds to the negative log-posterior p(z|x,A). This model was intro-

duced in [24] and used to learn motion and form invariances from short chunks of

natural movies. Assuming N = T/2 and σ = 0, it is equivalent to 2-dimensional

Independent Subspace Analysis(ISA) [61].

When trained on natural image patches, real and imaginary parts of an over-

whelming majority of basis functions A form pairs of Gabor-like filters, which

have the same frequency, position, scale and orientation (see figure 5.2). The

only differing factor is phase - real and imaginary vectors are typically in a

quadrature-phase relationship (shifted by π
2 ). By extension, one may expect

that the same model trained on natural sounds should form a set of frequency

localized phase-invariant subspaces, where imaginary vector is equal to the real

one shifted a quarter of a cycle in time. Somewhat surprisingly such represen-

tation does not emerge, and learned subspaces capture different data aspects -

bandwidth, frequency or time invariance [150, 96] as depicted on figure 5.3.
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Figure 5.2: Complex basis functions trained on natural image patches. With

one exception, they are formed by pairs of quadrature phase vectors. Other

parameters such as scale, frequency, location and orientation remain the same.

They are therefore invariant to spatial shifts.

Natural sounds possess strong cross-frequency correlations [144] and other

highly non-local features. Reflecting this structure, sparse, complex codes of

natural acoustic stimuli capture frequency and bandwidth invariances. Only a

small fraction is phase-shift (or time) invariant [150]. Figure 5.3 depicts four

examples of complex basis functions learned by from natural, speech sounds.

In addition to temporal plots in Cartesian (first row) and polar (second row)

coordinates each basis function is also depicted in the frequency domain (third

row). Real (AR
i - black lines) and imaginary (AI

i - gray lines) parts of basis

functions do not resemble each other and are not temporally localized, capturing

the non-local structure of speech sounds.

Figure 5.3: Complex basis functions trained on speech sounds. Representations

in cartesian and polar coordinates are depicted in the first and second row re-

spectively. The third row depicts Fourier spectra of real and imaginary parts. As

visible, they do not capture phase invariance.

Phase variable within such subspaces does not correspond to the temporal

shift. Therefore sound representations learned with the basic version of the
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complex-valued sparse coding are not suitable for modeling spatial hearing, where

interaural phase difference is imposed by time delay. In two following subsections

I describe alternative solutions to finding a non-redundant data representation,

which preserves desired property of phase-invariance.

Phase and amplitude continuity priors

In order to learn from the statistics of the data a representation that preserves

a desired property such as phase invariance, one could select a parametric form

of basis functions and adapt the parameter set [147]. This method has been

applied before to audio data by adapting a gammatone dictionary [156]. Despite

many advantages of this solution, there exists a possibility, that the parametric

form of dictionary elements is not flexible enough to efficiently span the data

space. To alleviate this problem in this section I propose to learn a sparse and

complex representation of natural sounds with the phase-invariance promoting

priors. Proposed priors induce temporal continuity, i.e. slowness [41, 154] of both

phase and amplitude, which turns out to be a correct assumption for learning

phase-invariant features.

The sparse coding model described in the previous subsection, does not con-

strain the basis functions in any way. They are allowed to vary freely during the

learning process. As visible on figure 5.3, an unconstrained adaptation to natu-

ral sound corpus yields complex basis functions invariant to numerous stimulus

aspects such as frequency or time shifts, not necessarily phase.

Learning a structured dictionary requires therefore placing priors over basis

functions, which favour solutions of desired properties such as phase-invariance.

Real and imaginary parts of a phase-shift invariant basis function, have equal,

unimodal frequency spectra and both span the same temporal interval. Addi-

tionally, the imaginary part should be shifted in time a quarter of the cycle with

respect to the real one.

Before proposing a prior promoting such solutions, it should reminded that

each temporal basis function Ai,t can be represented in polar coordinates in the

following way:

Ai,t = aAi,t

(
cosφAi,t + j sinφAi,t

)
(5.6)

In such representation variables aAi,t and φAi,t denote instantaneous phase and

amplitude respectively. Angular frequency can be defined as a temporal derivative

of instantaneous phase. If phase dynamics are highly variable and non-monotonic

over time, real and imaginary components of this signal have non-identical spectra

and/or their frequencies change in time (see figure 5.3, second and third rows).

On the other hand, by enforcing phase φAi,t to change smoothly and monotonically,

one should obtain real and imaginary parts with matching frequency spectra. In
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the limiting case, when phase is a linear function of time, real and imaginary

parts oscillate in the same frequency and are in a quadrature phase relationship.

Furthermore, vectors which span a phase-shift invariant subspace should have the

same temporal support, implying that the complex amplitude should also vary

slowly in time.

In order to learn a phase-shift invariant representation of natural sounds, the

present section proposes a prior over basis functions of the following form:

p(Ai) = pφ(Ai)pa(Ai) =
1

Z
e−(γSφ(Ai)+βSa(Ai)) (5.7)

Function Sa(Ai) introduces the penalty proportional to the variance of ampli-

tude’s temporal derivative:

Sa(Ai) =
T∑
t>1

(
∆aAi,t

)2
(5.8)

where ∆aAi,t = aAi,t − aAi,t−1. It promotes basis functions with a slowly-varying

envelope, highly correlated between consecutive time steps. Phase prior Sφ is

defined by function Sφ(Ai) of the following form:

Sφ(Ai) = −
T∑
t>1

sgn
(

∆φi,t

)(
∆φi,t

)2
(5.9)

where

∆φφi,t = φAi,t − φAi,t−1 (5.10)

and sgn denotes the sign function. Similarly to Sa(Ai) it promotes temporal

slowness of phase. The additional factor −sgn(∆φi,t) enforces φi,t to be larger

than φi,t−1. In this way, it prevents phase from changing direction and causes it

to be a non-increasing function of time. One could also enforce this by bounding

the phase derivative from above: ∆φi,t < Θ. This method would however require

the hand tuning of the Θ parameter. The posterior over basis functions given a

data sample x and its representation s becomes:

p(A|x, z) ∝ p(x|A, z)p(A) (5.11)

where the likelihood model p(x|A, z) is defined by equation (5.3). Taken

together, prior p(Ai) biases the learning process towards temporally localized

basis functions with real and imaginary parts of the same instantaneous frequency.

Exemplary complex features learned with introduced priors are depicted on

figure 5.4. Compared with unconstrained subspaces from figure 5.3 , their ampli-

tudes are smooth, and their phases change monotonically. Moreover, frequency

spectra of AR
i and AI

i align much better. Such bases form a phase invariant

representation of the data.
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Figure 5.4: Exemplary complex basis functions trained on speech sounds with

phase and amplitude continuity priors. Representations in cartesian and polar

coordinates are depicted in the first and second row respectively. The third row

depicts Fourier spectra of real and imaginary parts.

However, due to the statistics of the sound ensemble their spectra become

much broader and non-localized. Instantaneous phase is a monotonic function

of time, however its temporal derivative is not constant. This manifests as an

increase of frequency, which positively correlates with amplitude. The tradeoff be-

tween prior and likelihood terms yields basis functions of not easily interpretable

structure.

Sparse code extended with Hilbert transform

As described in sections above, unconstrained complex sparse coding leads to

emergence of features, which are predominantly not phase invariant. On the

other hand, dictionaries learned with continuity promoting priors loose frequency

precision, which makes them difficult to interpret and compare with cochlear

filters.

This section describes a different, ”semi-supervised” approach to learn an

appropriate signal representation. Firstly a real-valued sparse code was trained

on chunks of natural sound (see section Sparse Coding). Learned basis functions

were well localized in time or frequency and tiled the time-frequency plane in

a uniform and non-overlapping manner (figure 5.5 B). They were taken as real

vectors A< of complex basis functions A. In the second step, imaginary parts

were created by performing the Hilbert transform of real vectors. The Hilbert

transform of a time varying signal y(t) is defined as follows:

H(y(t)) =
1

π
p.v.

∫ ∞
−∞

y(τ)

t− τ
dτ (5.12)

Where p.v. stands for Cauchy principal value. In such a way every real vector A<i
was paired with its Hilbert transform A=i = H(A<i ) i.e. a vector which complex

Fourier’s coefficients are all shifted by π
4 in phase. The obtained dictionary is
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adapted to the stimulus ensemble, hence provides a non-redundant data repre-

sentation yet it makes phase clearly interpretable as a temporal displacement.

5.2.3 Second layer - intermediate level representation of binaural

sound

In an approach to model the cochlear coding of sound, monaural sound epochs

xL and xR were encoded independently using the same dictionary of complex

basis functions A described in the previous section. Signal from both ears con-

verged in the second hidden layer, which role was to form a joint, higher-order

representation of the entire stimulus processed by the auditory system.

The celebrated Duplex Theory of spatial hearing specifies two kinds of cues

used to solve the sound-localization task: Interaural Level and Time (or Phase)

differences [143]. While IPDs are supposed to be mostly used in localizing low-

frequency sounds, ILDs are a cue, which (at least in the laboratory conditions)

becomes useful to identify the position of high frequency sources. Phase and level

cues are known to be computed in Lateral and Medial Superior Olive (LSO and

MSO respectively) - separated anatomical regions in the brainstem [49]. How-

ever, an assumption made here was that neurons in the auditory cortex receive

converging input from subcortical structures. This would enable them to form

their spatial sensitivity using both fine structure phase and amplitude informa-

tion. One can take also the inverse perspective: a single object (a ”cause”) in the

environment generates level and phase cues at the same time. Its identification

has therefore to rely on observing dependencies between those features of the

stimulus.

The second layer formed a joint representation of monaural amplitudes and

interaural phase differences. However, not all IPDs were modelled in that stage.

Humans stop to utilize fine structure IPDs in higher frequency regimes (roughly

above 1.3 kHz), since this cue becomes ambiguous [49]. Additionally, cues above

around 700 Hz become ambiguous (a single cue value does not correspond to a

unique source position). For those reasons and in order to reduce the number of

data dimensions, 20 out of 128 IPD values were selected. The selection criteria

were the following: (i) an associated basis function should have the peak of the

Fourier spectrum below 0.75 kHz (which provided the upper frequency bound),

and (ii) it should have at least one full cycle (which provided the lower bound).

All basis function fulfilling these criteria were non-localized in time (they spanned

entire 16 ms interval). In result, the second layer of the model was jointly encod-

ing T = 128 log-amplitude values from each ear and P = 20 phase differences.

Monaural log-amplitude vectors aL, aR ∈ RT where concatenated into a single

vector a ∈ R2×T , and encoded using a dictionary of amplitude basis functions B.

Representation of IPDs (∆φ) was formed using a separate feature dictionary ξ.

Both - phase and amplitude basis functions (B and ξ), were coupled by associated
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sparse coefficients si. The overall generative model of phases and amplitudes was

defined in the following way:

a =
M∑
i=1

siBi + η (5.13)

∆φ = |w|
M∑
i=1

siξi + ε (5.14)

The amplitude noise was assumed to be gaussian (η ∼ N (0, σ2)) with σ2 variance.

Since phase is a circular variable its noise ε was modelled by the von Mises with

concentration parameter κ.

The second layer was encoding two different physical quantities - phases,

which are circular values, and log-amplitudes, which are real numbers. The goal

was to form a joint representation of both parameters and learn their dependen-

cies from the data. A simple, linear sparse coding model could be in principle

used to achieve this task. However, if a single set of sparse coefficients si was

used to model both quantities, scaling problems could arise, namely a coefficient

value which explains well the amplitude vector may be too large or too small to

explain the concomitant IPD vector. For this reason an additional phase multi-

plier w was introduced. It enters equation 5.13 as a scaling factor, which gives

the model additional flexibility required to learn joint probability distribution

of amplitudes and IPDs. Figure 5.1 depicts it in gray as an auxiliary variable.

In this way, amplitude values and phase differences were modelled by variables

sharing a common, sparse support (coefficients s), with a sufficient flexibility.

Seeking analogies between the higher-level representation and auditory neu-

rons, coefficients s can be interpreted as neuronal activity (e.g. firing rate) and

pairs of basis functions Bi, ξi as receptive fields. An i− th second-layer unit was

activated (si 6= 0) whenever a pattern of IPDs represented by the basis function

ξi or a pattern of amplitudes represented by Bi was present in its receptive field.

The likelihood of amplitudes and phase differences defined by the second layer

was given by:

p(a,∆φ|s, w,B, ξ) =
1(

σ2

√
2π
)2×T 2×T∏

n=1

e
− (a(n)−â(n))2

2σ22
1

(2πI0(κ))P

P∏
m=1

eκ cos(∆φm−∆̂φm)

(5.15)

where â =
∑M

i=1 siBi, ∆̂φ = |w|
∑M

i=1 siξi, and I0 is the modified Bessel

function of order 0. The joint distribution of coefficients s was assumed to be

equal to the product of marginals:

p(s) =
1

Z

M∏
i=1

e−λ2S(si) (5.16)
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where λ2 is a sparsity controlling parameter. A Cauchy distribution was assumed

as a prior over marginal coefficients (i.e. S(si) = log(1+s2
i )). To prevent degener-

ate solutions, where sparse coefficients s are very small and the scaling coefficient

w grows unbounded, a prior p(w) constraining it from above and from below was

placed. A generalized Gaussian distribution of the following form was used:

p(w) =
β

2αΓ( 1
β )
e
−
(
|w−µ|
α

)β
(5.17)

Γ denotes tha gamma function, α, β and µ denote the scale, shape and location

parameters respectively. When the shape parameter β is set to a large value (here

β = 8), the distribution approximates a uniform distribution. Varying the scale

parameter α changes the upper and the lower limit of the interval.

Taken together the negative log-posterior over the second layer coefficients

was defined by the energy function:

E2(s, w,B, ξ) ∝ 1

σ2
2

2×T∑
n=1

(an − ân)2 + κ
P∑

m=1

cos(∆φm − ∆̂φm)

+ λ2

M∑
i=1

S(si) + λw

(
|w − µ|
α

)β (5.18)

the λw coefficient was introduced to control the strength of the prior on the scaling

coefficient w. Similarly as in the first model layer, learning of basis functions and

inference of coefficients was performed using gradient descent (see Appendix).

The total number M of basis function pairs was set to 256.

5.2.4 Simulation details and analysis methods

Sound data

Altogether 75000 epochs of binaural sound randomly drawn from a 60 second-long

excerpt from the forest walk recording described in chapter 4 were used to train

the model. Each of them was T = 128 samples long, which corresponded to 16

ms. Both layers were trained separately. Before training the first layer, Principal

Component Analysis was performed and 18 out of 128 principal components were

rejected, which corresponded to low pass filtering the data. Left and right ear

sound epochs were shuffled together to create a 150000 sample training dataset

for the first layer. The first layer sparsity coefficient λ was set to 0.2. Noise

variance λ2 was equal to 2. The sparse coding algorithm converged after 200000

iterations.

A complex-valued dictionary was created by extending the real valued one

with Hilbert-transformed basis functions. Amplitude and phase vectors a and φ

were inferred for each sample using 20 gradient steps. Amplitude vectors were
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concatenated and transformed with a logarithmic function, and IPD vectors ∆φ

were computed by substracting left ear phase vectors φL from right ear ones φR.

The second layer was trained by performing 250000 gradient updates on basis

functions B and ξ. The amplitude sparsity coefficient λ2 was set to 1. The λw
parameter was set to 0.01 and the noise variance λ2

2 as well as the von Mises

concentration parameter κ were set to 2.

Test recordings used to map the spatial tuning of second-layer units was

performed in an anechoic chamber at the Department of Biology, University of

Leipzig. The same recording subject was seated in the middle of the chamber. A

female speaker walked in a constant pace following a circular path surrounding the

recording subject. While walking she was counting out loud. This was repeated

four times. The second test recording was performed in a similar fashion, however

instead of speaking the walking person was rubbing two pieces of carton against

each other, generating a broad-band sound. To estimate conditional distribution

of sparse coefficients given the position and identity of the sound, test recordings

were divided into 18 intervals, each corresponding to the same position on a circle.

All recordings were registered in an uncompressed wave format at 44100 Hz

sampling rate. Prior to training the model, sounds were downsampled to 8000

Hz. Test recordings are available in the supplementary material.

Computation of modulation spectra of second-layer basis functions

Spectrograms of amplitude basis functions Bi were computed by combining spec-

trograms of real, first layer basis functions A<n , linearly weighted by a correspond-

ing weight exp(Bi,n). First layer spectrograms were computed using T = 29 win-

dows, each 16 samples (0.002 second) long, with a 12 sample overlap. Altogether,

F = 128 logarithmically-spaced frequencies were sampled. A two-dimensional

Fourier transform of each spectrogram was computed using the Matlab built-in

function fft2. The amplitude spectrum of obtained transform is called the Mod-

ulation Transfer Function (MTF) of each second layer feature [131]. The center

of mass i.e. the point (CfS,i, C
t
S,i) of each monaural part (S ∈ {L,R}) of basis

functions Bi was computed in the following way:

CtSi =
∑
t

t
∑
f

MTF (BS,i) (5.19)

CfSi =
∑
f

f
∑
t

MTF (BS,i) (5.20)

where t and f are time and frequency respectively.

Estimation of spatial tuning curves

To estimate conditional distribution of sparse coefficients given the position and

identity of the sound, test recordings of a sound source (either speech, or rubbed
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paper) moving around the recording subject were used. Each source circum-

vented the recording person 4 times resulting in 4 recordings. Each of them was

divided into 18 intervals. Intervals corresponding to the same area on the circle

were pooled together across all recordings. For each out of 18 sound positions

3000 random sound chunks were drawn and encoded by the model. Position-

conditional ensembles were then used to compute conditional histograms. Con-

ditional mean vectors µi,θ were computed by averaging all values of coefficient

si at position θ. Mean vectors were mapped to a [0, 1] interval by adding the

absolute value of a minimal entry and dividing it by the value of the maximum.

For plotting purposes of figure 5.13, endings of tuning curves were connected if

values at −180◦ and 180◦ were not equal.

Decoding of stimulus position

The decoding analysis was performed using K second-layer sparse coefficients s

averaged over D of samples. The response vectors d ∈ RK were therefore formed

as:

d =
1

D

D∑
i=1

s{1,...,K} (5.21)

. Such averaging procedure can be interpreted as an analogy to computation of

firing rates in real neurons.

The marginal distribution of response coefficients d over all 18 sound positions

θ ∈ {−180◦,−160◦, . . . , 160◦, 180◦} was equal to:

p(d) =
∑
θ

p(d|θ)p(θ) (5.22)

where each conditional p(d|θ) was aK-dimensional Gaussian distribution with

class specific mean vector µθ and covariance matrix Cθ:

p(d|θ) = N (µθ, Cθ) (5.23)

The prior over class labels p(θ) was uniformly distributed i.e. p(θi) = 1
18 for

each i.

The decoding procedure iterated over all class labels and returned the one,

which maximized the likelihood of the observed data vector. Out of the entire

dataset, 80% was used to train the model and remaining 20% to test and estimate

the confusion matrix.

Confusion matrix M was a joint histogram of a decoded and true sound

position θ̂ and θ. After normalization, it was an estimate of a joint probability

mass function p(θ̂, θ). Mutual information was estimated from each confusion

matrix as:
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MI(θ̂ θ) =
∑
θ̂

∑
θ

p(θ̂, θ) log2

(
p(θ̂, θ)

p(θ̂)p(θ)

)
(5.24)

5.3 Results

5.3.1 Properties of the first layer representation

Figure 5.5: First layer basis. A) Exemplary real (black) and imaginary (gray)
vectors. B) Isoprobability contours of Wigner-Ville distributions associated with
each real vector. Time - frequency plane is tiled uniformly with a weak overlap.
Gray-filled oval corresponds to the framed basis function on panel A.

The model was trained using T = 128 samples long chunks of sound sam-

pled at 8 kHz, which corresponds to 16 ms time. The complete representation

of 128 real basis functions was trained, and each of them was paired with its

Hilbert transform, resulting in the total number of 256 basis vectors. Selected

basis functions are displayed on figure 5.5 A. Real vectors are plotted in black

together with associated imaginary ones plotted in gray. Panel B of the same

figure displays isoprobability contours of Wigner-Ville distributions associated

with the 256 basis functions. This form of representation localizes each temporal

feature on a time-frequency plane [1] (one should note that real and imaginary

vectors within each pair are represented by the same contour on that plot). A

clear separation into two classes is visible. Low frequency (below 1 kHz) basis

function are non-localized in time (they span the entire 16 ms interval), while in

higher frequency region their temporal precision increases. An interesting band-

width reversal is visible around 3 kHz, where temporal accuracy is traded against
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frequency precision. Interestingly, a sharp separation into frequency and time lo-

calized basis functions, which emerged in this study was not clearly visible in

other studies which performed sparse coding of sound [78, 1]. Time-frequency

properties observed here reflect the statistical structure of the recorded auditory

scene, which mostly consisted of non-harmonic environmental sounds sparsely

interspersed with human speech.

Figure 5.6: Intra and interaural pairwise distributions of phases and amplitudes.
First row panels depict exemplary pairwise log-amplitude distributions. Sample
phase distributions are depicted in the second row. Panels in the left column
display joint coefficient distributions of the same basis function (BF1) in different
ears. The right column depicts distributions of coefficients associated with two
different basis functions (BF1 and BF2) within the left ear channel. Visible
interaural dependencies are stronger than intraural ones.

Figure 5.6 depicts exemplary, pairwise distributions of first layer coefficients

ai and φi. Amplitudes (ai) (first row) were transformed with a logarithm func-

tion. This transformation spreads positive values concentrated close to zero more

broadly along the real line. Additionally, it has been demonstrated in a study

of natural image statistics that logarithm linearizes correlations between sparse

amplitudes [24]. This effect was also visible here. Amplitudes of the basis func-
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tion 1 (plotted below the histograms on figure 5.6) in each ear (upper-left panel)

revealed a pronounced linear dependency - Pearson’s correlation was equal to

0.48. Correlation of two different basis functions (number 1 and 2) in the same

ear (upper-right panel) was weaker (ρ = 0.36), but a strong linear relationship

was still visible. The strong interaural correlation can be explained by the fil-

tering properties of the head, which only weakly attenuates low frequencies. For

this reason, interaural amplitude correlation decreased with increasing central

frequency of the associated basis function.

An exemplary joint distribution of phases in the same ear is depicted on

the lower-right panel of figure 5.6. As can be seen, intra-aural phase values

are typically very weakly dependent. This is not the case for binaural phase

relationship. A typical distribution of binaural phase is visible on the lower-

left panel of figure 5.6. Phases of the same basis function in each ear reveal

dependence in their difference. This means that the joint probability of monaural

phases depends solely on the IPD:

p(φi,L, φi,R) ∝ p(∆φi) (5.25)

where ∆φi = φi,L−φi,R is the IPD. This property is a straightforward consequence

of physics of sound - sounds arrive to each ear with a varying delay giving a

rise to positive and negative phase shifts. From the point of view of statistics,

this means that monaural phases become conditionally independent given their

difference and a phase offset φi,O:

φi,L ⊥ φi,R|∆φi, φi,O (5.26)

The phase offset φi,O is the absolute phase value - indicating the time from

the beginning of the oscillatory cycle. It therefore satisfies the following property:

φi,L = φi,O +
∆φi

2
(5.27)

φi,R = φi,O −
∆φi

2
(5.28)

This particular statistical property allows to understand IPDs not as an ad-

hoc computed feature, but as an inherent property of a probability distribution

underlying the data. It is reflected in the structure of the graphical model (see

figure 5.1). Since the phase offset φi,O does not carry spatial information, for

the purposes of current study it is treated as an auxiliary variable and therefore

marked in gray.

5.3.2 Properties of the second layer representation

The second layer learned cooccuring phase and amplitude patterns forming a

sparse, combinatorial code of the first layer output. Figure 5.7 displays 10 repre-
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sentative examples of basis function pairs ξi and Bi, which encoded amplitudes

and IPDs respectively.

Figure 5.7: Higher-layer basis functions. A) Explanation of the visualization
of second layer basis functions. Top two panels depict the binaural amplitude
basis function Bi. Spectrotemporal information in each ear is represented using
isoprobability contours of Wigner-Ville distributions of first-layer basis functions
(see figure 5.5). Colors correspond to the log-amplitude weight. The bottom panel
represents the IPD basis function ξi. Each gray bar represents one of 20 selected
low-layer basis functions. Here almost all values are positive (the bars point
upwards), which corresponds to the right-ear precedence. B)-J) Basis functions
ordered vertically by spectral modulation and horizontally by the dominating
side.

Each amplitude basis function consisted of two monaural parts correspond-

ing to the left and the right ear. First-layer, temporal features were visualized

using contours of Wigner-Ville distribution and colored according to the rela-

tive weight. Entries of IPD basis functions were values (marked by gray bars)

modelling interaural phase disparities in each of selected 25 frequency channels.

The subset of 9 basis functions depicted on subpanels B-J constitutes a good

representation of the entire dictionary. Their vertical ordering corresponds to

spectrotemporal properties of Bi basis functions. Amplitude features displayed

in the first row (B, E, H) reveal pronounced spectral modulation, while the last

row (D, G, J) are features which are strongly temporaly modulated. Columns

are ordered according to the ear each basis function pair preferred. Left column

(B, C, D) are left-sided basis functions. Higher amplitude values are visible in

the left ear parts (although differences are rather subtle), while associated IPD

features are all negative. IPDs smaller than 0 imply, that the encoded waveform

was delayed in the right ear, hence the sound source was closer to the left ear.
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The last column (H, I, J) depicts more right-sided basis functions. Features

displayed in the middle column (E, F, G) weight binaural amplitudes equally,

however entries of associated phase vectors are either mostly negative or mostly

positive.

As figure 5.7 shows, higher level representation learned spectrotemporal prop-

erties of the auditory scene, which was reflected in shapes of amplitude basis func-

tions Bi. Binaural relations were captured by relative weighting of amplitudes in

both ears and the shape of the IPD basis function.

Figure 5.8: Spectrotemporal properties of the representation. A) Centers of mass
of monaural modulation spectra. B) Centers of mass of temporal modulation
in monaural parts of Bi basis functions plotted C) Centers of mass of spectral
modulation in monaural parts of Bi basis functions plotted. Letters correspond
to panels on figure 5.7.

To get a more detailed understanding of the spectrotemporal features cap-

tured by the representation, analysis of modulation spectra was performed. A

modulation spectrum is a 2D Fourier transform of the spectrotemporal represen-

tation of a signal. It is known that modulation spectra of natural sounds posses

specific structure [131]. Here, modulation spectrum was computed separately for

monaural parts of amplitude basis functions Bi (see Methods). In the next step

a center of mass of each of the modulation spectra was computed. Centers of

mass are represented by single points on figure 5.8 A).

A clear tradeoff between spectral and temporal modulation was visible. Ba-

sis functions which were strongly temporally modulated revealed simultaneously

weak temporal modulation (and vice versa). It was visible as a ”triangular” shape

of the point distribution on figure 5.8 A). This seems to be a robust property of

natural sounds [131] and was shown to be captured by sparse coding models

[25, 35]. Interestingly, spectrotemporal receptive fields of auditory neurons share

this property [94, 58].
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Average temporal modulation in the left ear is plotted against the right ear on

panel B). Generally, a linear trend was present - temporal variation of monaural

parts was correlated. The amplitude modulation of basis functions B varied

between 0 and 40 Hz.

Spectral amplitude modulation revealed a different interaural dependency

pattern. It was slightly negatively correlated, which is visible on figure5.8 C).

If a left ear part was strongly modulated, the modulation in the right ear was

weaker. This property can be explained by the head filtering characteristics.

Head acts as a low-pass filter and attenuates higher frequencies. Therefore fine

spectral information above 1.5 kHz was typically more pronounced in a single

ear. This may be considered as an example of how stimulus statistics are deter-

mined not only by the environmental properties, but also by the anatomy of the

organism. Majority of basis functions revealed the spectral modulation smaller

than 0.4 cycle per octave, with only a single one exceeding this value.

In the following analysis step, the goal was to analyze how similar were monau-

ral spectrotemporal patterns encoded by each second-layer unit. To this end

binaural similarity index (BSI) of each amplitude basis functions [94] was com-

puted. The BSI is a correlation coefficient between the left and the right parts of

a binaural, spectrotemporal feature. If the BSI was close to 0, the corresponding

unit was representing different spectrotemporal patterns in each ear, while values

close to 1 implied their high similarity. BSIs are plotted on figure 5.9 A).

Clearly, overwhelming majority of basis functions revealed high interaural

similarity (BSI > 0.8, see the histogram at the inset). BSI of only one ba-

sis function was slightly below 0. If information encoded by amplitude basis

functions in each ear would be independent, the BSI distribution should peak

at 0. This observation allows one to state that most of the second-layer units

captured the same ”cause” underlying the stimulus i.e. a binaurally redundant

spectrotemporal pattern. While the BSI index measures similarity of encoded

monaural sound features, it is not informative about the side-preference of each

unit. To asess whether amplitude basis functions were biased more towards the

left or towards the right ear, another statistic - a binaural amplitude dominance

(BAD) was computed. The amplitude dominance was defined in the following

way:

BAD(Bi) = log

(
‖ exp(Bi,L)‖
‖ exp(Bi,R)‖

)
(5.29)

where Bi,L = Bi,(1,...,T ), Bi,R = Bi,(T+1,...,2×T ) are left and rigth ear parts of an

amplitude basis function Bi. Each of them was pointwise exponentiated to map

the entries from real log-amplitude values to the positive amplitude domain. The

BAD index value larger than 0 means that the left-ear amplitude vector had a

larger norm i.e. it dominated the input to the particular unit. Balanced units

had a BAD value close to 0 while right-ear dominance was indicated by negative

values. Two histograms of dominance scores are displayed on panel B) of figure
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Figure 5.9: Binaural properties of the representation. A) Binaural Similarity In-
dex of amplitude basis functions Bi. The BSI is a correlation coefficient between
left and right ear subvectors. The inset depicte the BSI histogram. B) Distribu-
tion of binaural amplitude dominance. Values above 0 imply domination of the
left, and below 0 of the right ear. Histograms of BAD values of amplitude basis
functions associated with negative IPD basis functions are colored gray and those
associated with positive ξi values are colored black. C) Distribution of averages
of normalized ξi basis functions.

5.9. The black one is an empirical distribution of BAD values of amplitude ba-

sis functions associated with IPD features of a negative average value (left-side

preferring). The gray one in turn, corresponds to amplitude features matched

with right-side biased phase basis functions. Both distributions are roughly sym-

metric with their modes located quite close to 0. Such bimodal distribution of

the amplitude dominance score implies that amplitude basis functions could be

divided into two opposite populations - each preferring input from a different ear.

Moreover, amplitude and phase information modelled by basis functions Bi and

ξi was dependent - amplitude features dominated by information from one ear

were associated with IPD features biased towards the same ear.

While amplitude representation encoded the quality of the sound together

with binaural differences, the IPD dictionary was representing solely spatial as-

pects of the stimulus i.e. the temporal difference between the ears. In almost all

cases, single entries of each of the phase difference basis functions ξi had all the

same sign. Negative phase differences corresponded to the left-side bias (it meant

that the soundwave arrived first to the left-ear generating a smaller phase value)

and positive to the right-side one. These two properties allowed to asess the spa-

tial preference of IPD basis functions simply by computing the average of their

entries. The histogram of averages of vectors ξi (normalized to have the maximal

absolute value of 1) is depicted on figure 5.9 C). A clear bimodality is visible
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in the distribution. The positive peak corresponds to right-sided basis functions

and the negative one to the left-sided subpopulation. Almost no balanced fea-

tures (close to 0) were present in the dictionary. This dichotomy is visible also in

figure 5.7 - binaurally balanced amplitude basis functions (middle column) were

associated with phase vectors biased towards either side. This result may be re-

lated to a previous study, which have shown that a representation of natural IPD

distribution designed to maximize stimulus discriminability (Fisher information)

has also a form of two distinct channels [52]. Each of the channels preferred IPDs

of an opposite sign.

5.3.3 Broad spatial tuning of high-level units

The second layer of the model learned a distributed representation of sound

features accesible to neurons in the auditory cortex. Assuming that the cortical

auditory code indeed develops driven by principles of efficiency and sparsity,

one can interpret second layer basis functions as neuronal receptive fields and

sparse coefficients s as a measure of neuronal activity (e.g. firing rates). The

model can be then probed using spatial auditory stimuli. If it indeed provides an

approximation to real neuronal computations, its responses should be comparable

with spatial tuning properties of the auditory cortex.

In order to verify whether this was true, a test recording was performed. As

a test sound - the hiss of two pieces of paper rubbed against each other was

used. It was a broadband signal, reminiscent of white noise used in physiological

experiments, yet possessing a natural structure. A recording was performed in

an echo-free chamber, where a person walked around the recording subject while

rubbing two pieces of paper. The recording was divided into 18 windows, each

corresponding to a 20 degree part of a full circle. The number of windows was

selected to match experimental parameters in [137, 139]. From each window

3000 sound epochs were drawn and each of them was encoded using the model.

Computing histograms of coefficients s at each angular position θ, provided an

estimate of conditional distributions p(si|θ). Panel A) on figure 5.10 displays a

conditional histogram of coefficient s corresponding to the basis function pair

depicted on figure 5.7 A).

Distributions of sparse coefficients revealed a strong dependence on the po-

sition of the sound source. As visible on the figure, the conditional mean of the

distribution p(si|θ) traced by the red line varied in a pronounced way across all

positions. Since mean was the only moment, which revealed such strong depen-

dence, and by analogy to averaged firing rates of neurons measured in physiologi-

cal studies, average responses at each position were further studied to understand

spatial sensitivity of basis functions. Mean vectors µi,θ were constructed for each

second-layer unit by taking its average response at the sound source position θ.

Each mean vector was shifted and scaled such that its minimum value was equal
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Figure 5.10: Spatial tuning curves of second-layer units. A) A conditional dis-
tribution of the coefficient si corresponding to basis functions Bi, ξi depicted on
figure 5.7 A. The red line depicts the average value conditioned on sound position.
B) Experimentally measured spatial tuning curves measured in the A1 area of a
cat. The left panel depicts contra- and the right panel ipsi- laterally tuned units.
Figure modified from [137] C) All position-modulated tuning curves belonging
to each of the two clusters. Thin gray lines are single tuning curves, while thick
black lines depict cluster averages.

to 0 and the maximal one to 1. Such transformation allowed for comparison to

experimentally measured spatial tuning curves of auditory neurons, and for this

reason scaled vectors µi will be referred to as model tuning curves in the remain-

der of the thesis. In order to identify spatial tuning preferences, the population

of model tuning curves was grouped into two clusters using k-means algorithm.

Obtained clusters consisted of 118 and 138 similar vectors. Tuning curves be-

longing to both clusters and revealing a strong correlation (|ρ| > 0.75). with

the sound position are plotted on figure 5.10 C) as gray lines. Cluster centroids

(averages of all tuning curves belonging to a cluster) are plotted in black. Second

layer units were tuned broadly - most of them were modulated by sound located

at all positions surrounding the subject’s head. A clear spatial preference is vis-

ible - members of cluster 1 were most highly activated (on average) by sounds

localized close to the left ear (θ ≈ −90◦), while cluster 2 consisted of units tuned

to the right ear (θ ≈ 90◦). Very similar tuning properties of auditory neurons

were identified in the cat’s auditory cortex [137]. Data from this study is plot-

ted for comparison in the subfigure B) of figure 5.10. Neuronal recordings were

performed in the right hemisphere and two panels depict two subpopulations of
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Figure 5.11: Distribution of tuning curve centroids and maximal slope positions
in the model and experimental data. A) Histograms of positions of tuning curve
centroids (gray) and maximal slopes towards the midline (black) measured ex-
perimentally in the auditory cortical areas from the cat. Figure modified from
[137]. B) Distribution of the same features computed for model tuning curves
belonging to each cluster.

neurons. The larger contra- and the smaller ipsi-lateral one. It is important to

note, that the notion of ipsi, and contra laterality is not meaningful in the pro-

posed model, therefore one should compare shapes of the model and experimental

tuning curves, not the numerosity of units in each population or cluster.

Two major features of cortical auditory neurons responsive to sound position

were observed experimentally: (i) tuning curve peaks were localized mostly at

extremely lateral positions (opposite to each ear) and (ii) slopes of tuning curves

were steepest close to the auditory midline. Both properties are visible in model

tuning curves on figure 5.10. However, in order to perform a more direct com-

parison between the model and experimental data, analysis analogous to the one

described in [137] was performed. Firstly tuning curve centroids were computed.

A centroid was defined as an average position, where the unit activation was equal

to 0.75 or larger (see Methods). In the following step, position of a maximal slope

towards midline was identified for each unit. This means that for units tuned to

the left hemifield (cluster 1) the position of the minimal slope value was taken,

while the position of the maximal one was taken for units tuned to the right

hemifield (cluster 2). In this way, a position of maximal sensitivity to changes

of the sound location were identified. Distributions of model centroids and max-

imal slope positions are depicted on figure 5.11 B). Centroids were distributed

close to lateral positions, opposite in each cluster (−90◦ cluster 1, +90◦ cluster

2). Distribution peaks were located at positions close to each ear. No uniform
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tiling of the space by centroid values was present. At the same time, maximal

slope values were tightly packed around the midline - peaks of their distributions

were located precisely at, or very close to 0 degrees. This means that while the

maximal response was on average triggered by lateral stimuli, the largest changes

were triggered by sounds located close to the midline. Both properties were in

good agreement with the experimental data reported in [137]. Figure 5.11 A)

depicts on three panels centroid and slopes distributions measured in three dif-

ferent regions of cat’s auditory cortex - Primary Auditory Field (A1), Posterior

Auditory Field (PAF) and Dorsal Zone (DZ). A close resemblance between the

model and physiological data was present.

5.3.4 Population coding of sound source position

It has been argued that while single neurons in the auditory cortex provide coarse

spatial information, their populations form a distributed code for sound localiza-

tion [139, 93, 93, 137]. Here, a decoding analysis was performed to verify whether

similar statement can be made about the proposed model.

A gaussian mixture model (GMM) was utilized as a decoder. The GMM

modelled the marginal distribution of sparse coefficients as a linear combination

of 18 gaussian components, each corresponding to a particular position of a sound

source (i.e. the θ value). In the first part of the decoding analysis, single coeffi-

cients were used to identify the sound position. The GMM was fitted using the

training dataset consisting of coefficient values si and associated position labels

θ. In the testing stage, position estimates θ̂ were estimated (decoded) using un-

labeled coefficients from the test dataset. For each of the coefficients, a confusion

matrix was computed. A confusion matrix is a two-dimensional histogram of θ

and θ̂ and can be understood as an estimate of the joint probability distribution

of these two variables. Using a confusion matrix, an estimate of mutual informa-

tion i.e. the number of bits shared between the position estimate θ̂ and its actual

value θ was obtained. Figure 5.12 B depicts histograms of information carried by

each coefficient si about the sound source position, estimated as described above.

A general observation is that single coefficients carried a very small amount of in-

formation about the sound location. The histogram peaks at a value close to 0.1

bits. Only few units coded approximately 1 bit of positional information. Even

1 bit, however, suffices merely to identify a hemifield, not mentioning the precise

sound position. As can be predicted from the broad shapes of the tuning curves,

single second-layer units carried a little amount of spatial information. A similar

result was obtained for neurons in different areas of the cats auditory cortex [92].

Figure 5.12 A) depicts histograms of the information amount about the sound

position encoded by spike count of neurons in A1 and PAF regions (figure repro-

duced from [138]). Spike count (which essentially corresponds to a firing rate) is

a feature of a neuronal response most directly corresponding to coefficients s in
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Figure 5.12: Population decoding analysis A) A histogram of mutual informa-
tion carried by firing rates of single neurons about the position of a sound source
estimated from confusion matrix. Figure reproduced from [138] B) Histograms
of position-specific information carried by second layer sparse coefficients s. The
diamond symbols in panels A and B mark distribution medians. C) Mutual infor-
mation plotted as a function of the number of units used to decode the position.
Colors of lines correspond to data averaged over different number of samples. The
scale ends at 4.17 bits, which is the amount of information required to perform
errorless decoding (log2(18) = 4.17) D) Exemplary population confusion matrices
for 1 and 16 samples.

the model described here. Maximal peaks of all histograms were close to 0.1 bits,

followed by a long, decaying tail. Medians of mutual information distributions

(marked by diamond symbols on panels A and B of figure 5.12) estimated from

neuronal data and the sparse coefficients aligned well, close to 0.2 bits. Overall,

a strong similarity between physiological measurements and the behavior of the

model was visible.

While single neurons do not carry much spatial information, the joint pop-

ulation activity was sufficient to decode the sound position [137, 93, 139, 138].

Therefore in the second step of the decoding analysis, multiple coefficients s were

used to train and test the GMM decoder. Results of the population decoding are

plotted on figure 5.12 C). The decoder was trained with a progressively larger

number of second-layer units (from 1 to 256) and the mutual information was

estimated from obtained confusion matrices. Each line on the plot depicts the

number of bits as a function of the number of units used to perform decoding.

Line colors correspond to the number of samples over which the average activ-
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ity was computed. Broadly speaking, larger populations of second-layer units

allowed for a more precise position decoding. As in the case of single units, av-

erages over larger amounts of samples were also more informative - population

activity averaged over 32 samples saturated amount of bits required to perform

errorless decoding (4.17). Two confusion matrices obtained from raw population

activity and an average over 16 samples are displayed on subfigure 5.12 D). In

the former case, the decoder was misclassifying mostly sound positions within

each hemifield. Averaging over 16 sound samples yielded an almost diagonal (er-

rorless) confusion matrix. The decoding analysis allowed to draw the conclusion

that while single units carried very little spatial information, their population

encoded source location accurately, consistently with experimental data.

5.3.5 Interdependent encoding of sound position and identity

Second layer units achieved spatial tuning by assigning different weights to am-

plitudes in each ear, and to IPD values in different frequency channels. At the

same time they encoded spectrotemporal features of sound, as depicted on figure

5.7. Their activity should therefore be modulated by both - sound position as

well as its quality. Such comodulation is a prominent feature of the majority of

cortical auditory neurons [15, 14]. In order to verify whether this was true, model

spatial tuning curves were estimated with a second sound source, very different

from a hiss created by rubbing paper - human speech. Frequency spectra of both

test stimuli are depicted on figure 5.13 D).

Test sounds distributed their energy over non-overlapping parts of the fre-

quency spectrum. While speech consisted mostly of harmonic peaks below 1.5

kHz, the paper sound was much more broadband and its energy was uniformely

distributed between 1.5 and 4 kHz. Panels A)-C) of figure 5.13 depict three

amplitude/IPD basis function pairs together with their spatial tuning curves es-

timated using different sounds. The spatial preference of depicted units (left

or right hemifield) was predictable from their binaural composition. Each of

them, however, was activated stronger by a stimulus, which spectrum matched

better amplitude basis functions. Basis functions visible on panels A) and C)

had a lot of energy accumulated in higher frequencies, therefore the paper sound

activated them stronger (on average). Basis function B) was spectrally better

corresponding to speech sounds, therefore speech was a preferred class of stimuli.

This observation means that tuning curves i.e. position-conditional means µi,θ
should be understood not as averages of coefficient ensembles conditioned only

on the sound position θ but also on spectral properties of the sound. The second-

layer representation encoded two aspects of the auditory stimulus - position and

identity interdependently.
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Figure 5.13: Comodulation of unit responses by sound position and identity.
A)-C) Three exemplary second layer basis functions plotted with spatial tuning
curves obtained using two different sounds - female speech (gray) and paper noise
(black). D) Frequency spectra of both test sounds.

5.4 Discussion

Previously proposed statistical models of natural acoustic stimuli focused pre-

dominantly on monaural sounds [78, 133, 25, 1, 140, 3]. Studies modelling binau-

ral stimuli constrained to a limited representation - either IPDs [52] or spectro-

grams [97]. In contrast, the assumption behind the present work was that spatial

sensitivity of cortical neurons is formed by fusing different cues. Therefore, in

order to understand the role played by the auditory cortex in spatial hearing, the

entire natural input processed by the auditory system was analyzed.

To this end, a novel probabilistic model of natural stereo sounds has been

proposed. The model is based on principles of sparse, efficient coding - its task

was to learn progressively less redundant representations of natural signal. It

consisted of two hidden layers, each of them could be interpreted as an anal-

ogy to different stages of sound processing in the nervous system. The purpose

of the first layer was to form a sparse, non-redundant representation of natural

sound in each ear. By analogy to the cochlea, the encoding was supposed to

extract and separate temporal information i.e. phase from the amplitude of the

signal. In order to do so, a dictionary of complex-valued basis functions was

adapted to short sound epochs. On top of the first model layer, which encoded

sound in each ear independently, the second layer was trained. Its goal was to

encode jointly amplitude and phase - two kinds of information crucial for sound
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localization, which may be fused together in higher stages of the auditory sys-

tem. The higher-order representation captured spectrotemporal composition of

the signal, by learning amplitude patterns of the first layer output as well as in-

teraural disparities present in form of interaural phase and amplitude differences.

It is important to stress that the model was learned in a fully unsupervised set-

ting - at no point information about positions of sounds sources or the spatial

configuration of the environment was accessible. Yet, when tested with a set

of spatial sounds, activity of second layer units revealed strong dependence on

sound position. Tuning curves describing relation between the sound position

and model activity were in good correspondence with experimentally measured

spatial tuning properties of cortical auditory neurons.

The data used for comparisons originated from studies of cat’s auditory cortex

([137, 138]). Since statistics of the binaural signal are affected by the geometry

of ears and the head of the organisms, one could argue that model trained on

binaural recordings performed by a human, should not be compared with cats

physiology. As long as detailed features of neuronal tuning to a sound position

may vary across those species, tuning patterns highly similar to those of a cat have

been observed in the auditory cortex of primates [155, 95]. Overall, the cortical

representation of sound position seems to be highly similar across mammals [49].

5.4.1 A sparse representation of natural binaural sounds forms

a panoramic population code for sound location

In mammals, the location of a sound is encoded by two populations of broadly

tuned, spatially non-specific units [49]. This finding stood against initial ex-

pectations of finding a ”labelled-line code” i.e. a topographic map of neurons

narrowly tuned to small areas of space. The ”spatiotopic map” was expected to

be observed by analogy to the tonotopic structure of the cortex as well as high

localisation accuracy of humans and animals. Instead, it has been found that au-

ditory cortical neurons within each hemisphere are predominantly tuned to far,

contralateral positions. Peaks of observed tuning curves did not tile the audi-

tory space uniformly, rather they were clustered around the two lateral positions.

A prominent observed feature of cortical representation of sound location were

slopes of the tuning curves. Regardless of the position of the tuning curve peak,

slopes were steepest close to the interaural midline - the area where behavioral

localisation acuity is highest [49]. From described observations, two prominent

conclusions were drawn. Firstly, that the slope of tuning curves, not the dis-

tribution of their peaks determines spatial acuity [137, 49, 21, 45]. Secondly

that sound position is encoded by distributed patterns of population activity, not

single neurons [93, 137, 139]. It has been argued that these properties are a man-

ifestation of a coding mechanism which evolved to specifically meet the demand

of binaural hearing tasks [137, 49]. Here it is shown that crucial properties of
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cortical spatial tuning emerge in an unsupervised learning model, which learns

a sparse representation of natural binaural sounds. The objective of the model

was to code the stimulus efficiently (i.e. with a minimal redundancy within lim-

its of applied transformations), while minimizing unit activity. Properties of the

learned representation are therefore a reflection of stimulus statistics, not of any

task-specific coding strategy (required for instance to localize sounds with the

highest accuracy at the midline).

The position of the sound-generating object is a latent variable for the audi-

tory system. It means that its value is not explicitly present in the raw stimulus -

it has to be estimated. This estimation, (or inference) is a complex and non-trivial

task in the real acoustic environment, where sounds reaching ear membranes are a

reflection of intricate auditory scenes. Sensory neurons perform transformations

of those sound waveforms in an attempt to reconstruct the spatial configuration

of the scene. Therefore, in an attempt to understand cortical representation of

space, it may be helpful to think what is the statistical structure of the naturally

encountered binaural stimulus that the auditory system operates on. Sounds

reaching ear membranes consist information about their generating sources, spa-

tial configuration of the scene, position motion of the organism and the geometry

of its head and outer ears.

Results obtained here, suggest that shapes of the model spatial tuning curves

constitute a reflection of regularities imposed on the sensory data by the filtering

properties of the head. At lateral positions (directly next to the left or the

right ear) there is no acoustic attenuation by the skull, hence sounds are loudest

and least delayed. This in turn, elicits strongest response in units preferring

that particular side. When the sound is at a contralateral position, response is

much weaker, due to the maximal head attenuation and largest delay. The curve

connecting those two extrema is steepest in the transition area - at the midline.

Since the auditory environment was uniformly sampled at both sides of the head,

model units were clustered into two roughly equal subpopulations, basing on the

shapes of their tuning curves. Clusters were symmetric with respect to each other

- one tuned to to the left and the other to the right hemifield. This groupping

is reminiscent of the ”opponent-channel” representation of the auditory space,

which has been postulated before [137, 49]. Present results provide a theoretical

interpretation of this tuning pattern. They suggest that neuronal population

which forms a sparse, efficient representation of natural stimuli would reveal two

broadly tuned channels, when probed with sounds located at different position.

5.4.2 Interdependent coding of spatial information and other features

of the sound

There is an ongoing debate about presence (or lack of thereof) of two-separate

”what” and ”where” streams in the auditory cortex [100]. The streams would
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separate spatial information from other sound features, which determine its iden-

tity. An important prediction formed by this dual-stream hypothesis is that there

should exist neurons selective to sound position and invariant to other aspects in

the auditory cortex. While some evidence has been found supporting this notion

[120, 84] it seems that at least in vast parts of the auditory cortex neural activity

can be modulated by multiple features of sound such as pitch, timbre and location

[15]. Neurons are sensitive to sound position (i.e. changing position affects their

firing patterns), but not selective nor invariant to it. The majority of studies

analyzing spatial sensitivity in the auditory cortex uses a single class of sound

and the source position is the only varying parameter. Therefore, despite initial

efforts, the influence jointly exerted by sound quality and position on neuronal

activity is not yet well understood.

The statistical model proposed here suggests that no dissociation of spatial

and non-spatial information is necessary to either reconstruct the sound source

or identify its position. The learned second-layer representation carries both

kinds of information - about the sound quality (contained in the spectrotemporal

structure of basis functions) and about spatial aspects (contained in the binaural

amplitude weighting and IPD vectors). The learned code forms a ”what is where”

representation of the stimulus i.e. those two aspects are represented interdepen-

dently. A manifestation of this fact is visible in different scaling of spatial tuning

curves, when probed with two different sound sources. Such comodulation of neu-

ronal activity by sound position and quality has been observed experimentally

[15], which may suggest that recorded neurons form a sparse, efficient represen-

tation of binaural sound. An advantage of an interdependent ”what is where”

representation is the absence of the ”feature binding problem”, which has to be

solved if spatial information is processed independently. After separating loca-

tion of a source from its identity in the auditory cortex, they would have to be

fused at higher processing stages. A code similar to the one described here does

not create such a problem.

5.5 Conclusion

Results presented in this chapter are strongly related to understanding function

of sensory representations in the natural environment.

Firstly, they suggest that the spatial tuning of cortical auditory neurons is a

result of an adaptation to natural stimuli. From this point of view modulation

of spiking activity by changing the stimulus position is not a manifestation of a

computation, which is specifically designed to extract spatial information. It is

rather a reflection of a change in the structure of incoming stimulus. The function

of neurons in A1 and surrounding areas may be therefore to form an efficient

representation of incoming stimuli, rather than making any physical properties
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of the environment (such as a source location) explicit.

Secondly, activity of model units as well as of cortical auditory neurons is

largely non-specific to high-level properties of sound. Despite this fact, informa-

tion they carry still allows to compute the position of the source and reconstruct

its spectrotemporal structure. This constitutes a strong suggestion that sensory

representations do not have to encode a single stimulus parameter exclusively, and

be invariant to all other aspects. It is often expected that within the auditory

systems different, non-overlapping neuronal populations exclusively encode prop-

erties such as pitch, timbre and location. As demonstrated here, this must not

be the case. The function of sensory representations may be to encode stimulus

structure as such, without separating aspects pre-defined by the human observer.
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Chapter 6

Efficient Coding Can Lead to

Formation of Auditory Invariances

6.1 Overview

The previous chapter has focused mostly on the postdictive approach i.e. it at-

tempted to explain known properties of the auditory system as a form of adapta-

tion to natural stimulus statistics. Contents of this chapter are of a more predic-

tive nature. Here I attempt to verify, whether applying the principles of efficient

coding can lead to formation of long-postulated invariant auditory representa-

tions (the ”what” and ”where” pathways). Until now no conclusive experimental

evidence in support of such separation has been delivered.

As originally proposed by [10], the efficient coding hypothesis suggests that

sensory systems adapt to the statistical structure of the natural environment

in order to maximize the amount of conveyed information. However, having a

sole representation of the stimulus is not enough for the organism to interact

with the environment. In order to perform actions, the nervous system has to

extract relevant information from the raw sensory data and then segregate it

according to its functional meaning, determined by the task at hand. For example

the auditory system must extract position invariant information regardless of

sound quality, separating ”what” and ”where” information. In a more recent

paper [9] Barlow proposed that behaviorally relevant stimulus features (i.e. ones

supporting informed decisions) may be learned by redundancy reduction. In other

words, functional segregation of neurons can be achieved by efficient coding of

sensory inputs. The evidence in support of this notion is still sparse.

Among different sensory mechanisms, spatial hearing provides a good exam-

ple for the extraction and separation of behaviorally vital information from the

107



sensory signal. Even though temporal differences on the order of microseconds

are of a substantial importance for sound localization, binaural neurons in the

higher areas of the auditory pathway can be characterized with Spectrotemporal

Receptive Fields (STRFS), which have much more coarse temporal resolution

(ms) [44]. Despite such loss of temporal accuracy, many of those neurons re-

veal sharp spatial selectivity [125] encoding the position of the sound source in

space. What is the neural computation underlying this process remains an open

question.

In this chapter I use spatial hearing as an example of a sensory task, to show

how information of different meaning (”what” and ”where”) can be clearly sepa-

rated. The work described here provides computational evidence that redundancy

reduction can lead to the separation of spatial information from the representa-

tion of the sound spectrogram. This means that formation of the neural auditory

space representation can be achieved without the need of any task-specific com-

putations but solely by applying the general principle of redundancy reduction. It

is demonstrated that Independent Component Analysis (ICA) - a linear efficient

coding transform trained on a dataset of spectrograms of simulated as well as nat-

ural binaural speech sounds, extracts sound position invariant features separating

them from the representation of the sound position itself. Learned structures can

be understood as model spatial and spectrotemporal receptive fields of auditory

neurons which encode different kinds of behaviorally relevant information.

6.2 Methods

High order statistics of natural auditory signal were studied by performing Inde-

pendent Component Analysis (ICA) on a time-frequency representation of bin-

aural sounds.

As a proxy for natural sounds, speech was used in the present study. Speech

comprises a rich variety of acoustic structures and has been successfully used

to learn statistical models predicting properties of the auditory system [133, 25,

69]. Additionally, it has been suggested that speech may have evolved to match

existing neural representations, which are optimizing information transmission of

environmental sounds [133].

Spatial sounds were obtained in two ways. Firstly, the efficient coding algo-

rithm was trained using simulated naturalistic binaural sounds. Simulation gave

the advantage of labelling each sound with its spatial position. Secondly a natural

auditory scene was recorded with binaural microphones. The signal obtained in

this way was less controlled, however it contained more complex and fully natural

spatial information. Training datasets were obtained by drawing 70000 random

intervals 216 ms long from each dataset separately. The data generation process

together with its interpretation is displayed on figure 6.1.
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Figure 6.1: Data generation process. (A) Interpretation of consecutive stages of
data generation. The acoustic environment is either simulated (B) or recorded
with binaural microphones (C). Further stages of the processing include frequency
decomposition and transformation with a logarithmic nonlinearity, which emu-
lates cochlear filtering (D) Positions of HRTFs around the head are marked with
circles

109



6.2.1 Simulated sounds

As a corpus of natural sounds, data from the International Phonetic Association

Handbook [4] were used. The database contains speech sounds of a narrative told

by male and female speakers in 29 languages. All sounds were downsampled to

16000 Hz from their original sampling rate and bandpass filtered between 200 and

6000 Hz. The training dataset was created by drawing random intervals of 216

ms from the speech corpus data. Spatial sounds were simulated by convolving

sampled speech chunks with human Head Related Transfer Functions (HRTFs).

HRTF fully describe the sound distortion due to the filtering by the pinnae and

therefore contain entire spatial information available to the organism. Given an

angular sound source position θ, HRTF is defined by a pair of linear filters:

HRTF (θ) = {hL,θ(t), hR,θ(t)} (6.1)

where L,R subscrpits denote left and right ear respectively, and t denotes time

sample. One should note that in the temporal domain, HRTFs are often called

Head Related Impulse Response (HRIR). A set of HRTFs was taken from the

LISTEN database [151]. The database contains human HRTFs recorded for 187

positions in the three-dimensional space surrounding the subject’s head. HRTFs

from a single random subject were selected and further limited to positions lying

on the azimuthal plane with 15 degree spacing (24 positions in total). Monaural

stimulus vectors xE(t) (E ∈ {R,L} denotes the ear) were created by drawing

random chunks g(t) of speech sounds and convolving them with HRTF (θ) cor-

responding to an azimuthal position θ, which was also randomly drawn:

xE(t) = (g ∗ hE)(t) =

∫ ∞
−∞

hE(τ)g(t− τ)dτ (6.2)

where ∗ denotes the convolution operator. In this data, spatial and identity

information constitute independent factors.

6.2.2 Natural sounds

In order to obtain a dataset of natural binaural sounds a complex auditory scene

was recorded using binaural microphones. The recording consisted of three people

(two males and one female) engaged in a conversation while moving freely in an

echo-free chamber. Such an environment without reflections and echoes reduced

the number of factors modifying sound waveforms. One of the male speakers was

recording the audio signal with Soundman OKM-II binaural microphones placed

in the ear channels. In total 20 minutes were recorded and included moving

and stationary, often overlapping sound sources. To test the spatial sensitivity

of learned features a recording with a single male speaker was performed. He

walked around the head of the recording subject with a constant speed following

a circular trajectory while reading a book out loud, twice in the clockwise and

twice anti-clockwise direction. The length of the testing dataset was 54s.
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6.2.3 Simulated cochlear preprocessing

Before reaching the auditory cortex, where spatial receptive fields (SRFs) were

observed [125], sound waveforms undergo a substantial processing. Since the

modelling focus of the present study was beyond the auditory periphery, the

data were preprocessed to roughly emulate the cochlear filtering (see the scheme

on fig 6.1).

Short Time Fourier Transform (STFT) was performed on each sound interval

included in the training dataset. Each chunk was divided into 25 overlapping

windows each 16 ms long. STFT spanned 256 frequency channels logarithmi-

cally spaced between 200 and 4000 Hz (decomposition into arbitrary, non-linearly

spaced frequency channels was computed using the Goertzel algorithm). Loga-

rithmic frequency spacing was observed in the mammalian cochlea and seems to

be a robust property across species [47, 134]. The spectral power of the resulting

spectrograms was transformed with a logarithmic function which emulates the

cochlear compressive nonlinearity [117].

Stimuli were 216 ms long in order to match the temporal extent of cortical neu-

rons’ STRFs, which were characterized by spatial receptive fields [125]. Besides

emulating the cochlear transformation of the air pressure waveform, such spec-

trograms were reminiscent of the sound representation most effective in mapping

spectrotemporal receptive fields in the songbird midbrain [44]. A very similar

representation was used in a recent sparse coding study [25].

Spectrograms of left and right ears were concatenated. Such data represen-

tation attempts to simulate the input to higher binaural neurons, which oper-

ate on spectrotemporal information, simultaneously fed from monaural channels

[125, 112, 94]. In principle, we could first train ICA on monaural spectrograms

and then model their codependencies. In such way, however, the algorithm could

not explicitly model binaural correlations. Additionally, this would require appli-

cation of a hierarchical model, which lies outside of the scope of this study. Our

approach resembles ICA studies, which focused on modelling of visual binocular

receptive fields [56, 60]. There, the input to binocular neurons in the visual cortex

was modelled by concatenating image patches from the left and the right eye.

The efficient coding algorithm was run on the resulting time-frequency rep-

resentation of the binaural waveforms. After preprocessing the dimensionality of

data vectors was equal to 2× (25× 256) = 12800. Both training datasets: simu-

lated and natural one consisted of 70000 samples. Prior to the ICA learning, the

data dimensionality was reduced with Principal Component Analysis (PCA) to

324 dimensions, preserving more than 99% of total variance in both cases. Due

to memory issues (allocation of a very large covariance matrix) a probabilistic

PCA implementation was used [121].
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6.2.4 Independent component analysis of spectrograms

To learn a non-redundant representation of binaural spectrograms the Indepen-

dent Component Analysis was performed on preprocessed sound spectrograms.

Using notation similar to chapter 2, each binaural spectrogram frame xt ∈ RN

was modelled as a linear combination of N basis functions a ∈ RN :

x̂t,i =

N∑
n=1

st,nan,i (6.3)

For learning, the maximum-likelihood ICA variant described in section 2.3.1

was utilized.

6.2.5 Analysis of learned basis functions

Similarity between left and right ear parts of learned basis functions was assessed

using the Binaural Similarity Index (BSI), as proposed in [94]. The BSI is simply

Pearson’s correlation coefficient between left and right ear parts of each basis

function. BSI equal to −1 means that absolute values at every frequency and

time position are equal and have the opposite sign, while BSI equal to 1 means

that the basis function represents the same information in both ears

Dictionary of binaural basis functions learned from natural data was classi-

fied according to the modulation spectra of their left ear parts. A modulation

spectrum is a two-dimensional Fourier transform of a spectrogram. It is infor-

mative about spectral and temporal modulation of learned features and it has

been applied to study properties of natural sounds [131] and real [94] as well as

modelled [123] receptive fields in the auditory system.

Spatial sensitivity of basis functions learned from natural data was further

quantified by means of Fisher information. Fisher information is a measure of how

accurate one can estimate a hidden parameter θ from an observable s knowing

a conditional probability distribution p(s|θ) [19]. Here, θ corresponds to the

angular position of the auditory stimulus and s to one of the sparse coefficients.

Assuming a deterministic mapping s(θ) = f(θ) = µθ distorted with a zero-mean

stationary Gaussian noise, one obtains:

p(s|θ) = N (s|µθ, σ) (6.4)

. For simplicity σ was assumed to be equal to 1. Fisher information I(θ) then

becomes [19]:

I(θ) = (
d

dθ
f(θ))2 (6.5)

Mean values µθ were estimated by averaging coefficient activations over four trials

during which the speaker walked around the head of the subject. Each activa-

tion time course was additionally smoothed with a 20 samples long rectangular

window.
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6.3 Results

Besides the properties of the sound source itself, natural sounds reaching the ear

membrane are also shaped by head-related filtering. The spectrotemporal struc-

ture imposed by the filter depends on the spatial configuration of objects. By

performing redundancy reduction the auditory system could, in principle, sepa-

rate those two sources of variability in the data and extract spatial information.

One should observe that transformations performed by the cochlea can strongly

facilitate this task. The stimulus xE (where E ∈ L,R indicates the left or the

right ear) is an air pressure waveform g(t) convoluted with an HRTF (or a com-

bination of HRTFs) hE,θ(t), as defined by equation 6.2. The basilar membrane

performs frequency decomposition, emulated here by the Fourier transform:

F(x, ω) =

∫ ∞
−∞

xE(t) exp(−2πiωt)dt = Axω(cosφxE,ω + i sinφxE,ω) (6.6)

where ω denotes frequency, AxE,ω amplitude and φxE,ω phase. By the convolution

theorem [66], convolution in the temporal domain is equivalent to a pointwise

product in the frequency domain, i.e.

F((g ∗ hE), ω) =

∫ ∞
−∞

g(t) exp(−2πiωt)dt

∫ ∞
−∞

hE(t) exp(−2πiωt)dt =

= Agω(cosφgω + i sinφgω)AhE,ω(cosφhE,ω + i sinφhE,ω)

Additionally, the basilar membrane applies a compressive nonlinearity [117] which

this study approximates by transforming the spectral power with a logarithmic

function. Since the logarithm of the product is equal to the sum of logarithms,

the spectral amplitude of the stimulus AxE,ω = AhE,ωA
g
ω can be decomposed into

the sum:

log(AhE,ωA
g
ω) = log(AhE,ω) + log(Agω) (6.7)

. This means that the spectrotemporal representation of the signal generated by

the cochlea is a sum of the raw sound and HRTF features. One should note, how-

ever, that the above analysis applies to an infinite window Fourier transform, and

the data used in this study was generated by performing a Short Time Fourier

Transform (STFT) with a 16 ms long, overlapping windows. Fourier coefficients

were mixed between neighboring windows due to their overlap. For point-source,

stationary sounds this effect did not influence the log(AhE,ω) term of the equation

6.7, since HRTFs were shorter than the STFT window, hence hear-related filtering

was temporally constant. For a dynamic scene, where neighboring STFT win-

dows contained different spatial information, the additive separability of sound

and HRTF features (as described by equation 6.7) may have been distorted.

Taken together, a linear redundancy reducing transform such as ICA provides a

reasonable approach to separate information about object positions from the raw
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sound. In an ideal case, ICA trained on stimulus spectrograms Axω could separate

representation of HRTF (AhE,ω) and stimulus (AgE,ω) amplitudes into two distinct

basis functions sets [51]. The difficulty of the separation task depends on the

temporal variability of the spatial information which reflects configuration of the

environment (i.e. number of sources, their motion patterns and positions). The

current study considers two cases of different complexity: (a) simulated dataset

consisting of short periods of speech displayed from single positions and (b) a

binaural recording of a natural scene with freely moving human speakers.

6.3.1 Simulated sounds

The research goal of the present chapter was to identify high-order statistics of

natural sounds informative about positions of the sound source. Association of

a sound waveform with its spatial position requires detailed knowledge about

source localization i.e. each sound should be labelled with spatial coordinates of

its source. For this reason binaural sounds studied in this section were simulated,

using speech sounds and human HRTFs. Naturalistic data created in this way

resembled binaural input from the natural environment, while making position

labelling of sources available.

From the simulated dataset, after reducing data dimensionality with PCA (see

section 6.2.3), 324 ICA basis functions were learned. A subset of 100 features is

depicted in fig 6.2. It is clearly visible that the learned basis can be divided into

two separate subpopulations by the similarity between their left and right ear

parts, which is quantified by the Binaural Similarity Index (BSI) (see Materials

and Methods). Sorted values of the BSI are displayed on fig 6.6A as black circles.

The majority of basis functions (314) exceed the 0.9 threshold and only 10 fall

below it. Out of those 8 reveal strong negative interaural correlation and only 2

are close to 0. Basis functions with the BSI below 0.9, were separated from the

rest and all ten of them are depicted on fig 6.2A. Since they represent different

information in each ear they are going to be called ”binaural” through the rest

of the chapter. This is in contrast to ”monaural” basis functions which encode

similar sound features in both ears (see fig 6.2(B))

The binaural sub-dictionary captures signal variability present due to the

head-related filtering. Even though the training dataset included sounds dis-

played from 24 positions, hence 24 different HRTFs were used, only 10 binaural

basis functions emerged from the ICA. Out of those, almost all are temporally

stable i.e. do not reveal any temporal modulation (except for 2 - positions 5 and

6 on fig 6.2 A). The dominance of temporally constant features was expected,

since training sounds were displayed from fixed positions and were convoluted

with filters, which did not change in time. Temporally stable basis functions

weight spectral power across frequency channels, mostly with opposite sign in

both ears (as reflected by negative values of the BSI). Surprisingly, despite the
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Figure 6.2: ICA basis functions trained on simulated sounds (A) Binaural basis
functions agi . Left and right ear parts are dissimilar. (B) Monaural basis func-
tions aki . Left and right ear parts are highly similar. (C) Explanation of the
representation. Each stimulus can be decomposed into a linear combination of
monaural basis functions (multiplied by their coefficients sci ) and binaural ones
multiplied by coefficients sgi .
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lack of moving sounds in the training dataset, two temporally modulated basis

functions were also learned by the model. They represent envelope comodulation

in high frequencies with an interaural phase shift of π radians.

A representative subset of 90 monaural basis functions is depicted on fig 6.2B.

Their left and right ear parts are exactly the same and encode a variety of speech

features. Regularities such as harmonic stacks, on- and offsets or formants are

visible. Captured monaural patterns essentially reproduce results from a recent

study by [25] which shows that efficient coding of speech spectrograms learns

features similar to STRFs in the Inferior Colliculus. Monaural basis functions

are, however, not a focus of the present study and are not going to be discussed

in detail.

A separation of the learned dictionary into two subpopulations of binaural

and monaural basis functions (ag and ak respectively) allows to represent every

sound spectrogram in the training dataset as a linear combination of two isolated

factors i.e. representations of speech and HRTF structures (see fig 6.2 (C)).

Taking this fact into account, equation 6.3 can be rewritten as:

x̂t,i =

G∑
n=1

sgt,na
g
n,i +

K∑
m=1

skt,ma
k
n,i (6.8)

This notation explicitly decomposes the basis into G spatial basis functions ag

and K non-spatial basis functions ak.

Emergence of model spatial receptive fields

Marginal coefficient histograms conformed rather well to the logistic distribution

assumed by the ICA model, although binaural coefficients were typically more

sparse (see figure 6.3). In order to understand how informative learned features

are about position of sound sources, conditional distributions of the linear co-

efficients were studied. Histograms conditioned on a location of a sound source

reveal whether any spatial information is encoded by learned basis functions.

Fig 6.3 (A)-(F) displays 6 basis functions and corresponding conditional his-

tograms. The horizontal axis of each conditional histogram corresponds to the

angular position of the sound source (from 0 to 345 degrees). A vertical cross-

section is a normalized histogram of the coefficient values for all sounds displayed

in the training dataset from a particular position (around 2900 samples on aver-

age).

Three representative monaural basis functions are depicted on fig 6.3 (D)-

(F). It is immediately visible that conditional distributions of their coefficients are

stationary across spatial positions. The zero-centered logistic pdf with a constant

scale parameter (parameters equal to those of the marginal pdf) is preserved

across all positions. This implies that coefficients of monaural basis functions

are independent from the sound source location. Monaural bases encode speech
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Figure 6.3: Spatial sensitivity of basis functions. (A)-(F) Spectrotemporal basis
functions and associated conditional histograms of linear coefficients s. Solid
red lines mark means and dashed lines limits of plus/minus standard deviation.
(G)-(H) Example pairwise dependencies between monaural and binaural basis
functions respectively. Each point is one sound and grayscale corresponds to its
spatial position

features and since all speech structures were displayed from all positions in the

training data, their activations do not carry spatial information. This property

is characteristic for all basis functions with BSI greater than 0.9.

Coefficients of binaural basis functions reveal a very different dependency

structure (see fig 6.3 (A)-(C)). Their variance at each spatial position is very

low, however, variability across positions is much higher. Activations of binaural

features remain close to zero at most angular positions regardless of the sound

identity. At few preferred positions they reveal pronounced peaks in activation

(positive or negative) reflected by strong shifts in the mean value. This highly

non-stationary structure of conditional pdfs is informative about the sound posi-

tion, while remains almost invariant to the sound’s identity (which is reflected by

the small standard deviation). Basis function depicted on fig 6.3 A responds with

a strong positive activation to sounds originating at 270 degrees (i.e. directly in

front of the right ear) and with a strong negative activation to sounds originating

from the directly opposite location - at 90 degrees (i.e. in front of the left ear).

Sounds at positions deviating +/ − 15 degrees from peaks also modulate basis

activations, although activations are weaker. Similar spatial selectivity pattern
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is revealed by the basis function on fig 6.3 C, which however responds positively

to sounds at 60 and negatively to sounds at 315 degrees. The spectrotemporal

feature on fig 6.3 B encodes spatial information of a particularly high behavioral

relevance. Its activity significantly deviates from zero, only when sounds are

placed behind the head in the interval between 165 and 210 degrees. This region

is not visually accessible, therefore position or motion of objects in that area has

to be inferred basing on auditory information only. It may appear that condi-

tional histograms are symmetric around the 180 degree point. However, positive

and negative peaks of coefficient histograms do not have exactly equal absolute

values.

It is important to notice here that each spectrotemporal feature captured by

binaural basis functions is an indirect representation of the sound position in the

surrounding environment. Therefore if ICA basis functions can be interpreted

as STRFs of binaural neurons, the corresponding conditional histograms consti-

tute a theoretical analogy of their spatial receptive fields (SRFs) informing the

organism about the position of the sound source within the head-centered frame

of reference.

Decoding of the sound position

As described in the previous subsection, linear coefficients of binaural basis func-

tions are informative about the location of the sound source. Spatial selectivity

of single basis functions is however not specific enough to reliably localize sounds.

Pairwise coefficient activations of two exemplary basis functions are depicted on

fig 6.3 G. Each point represents a single sound and its color corresponds to the

source’s angular position. Strong clustering of same-colored points is strongly

visible. They form at least 6 highly separable clusters. This, in turn, shows that

the joint distribution of those two coefficients contains more information about

the source position than one dimensional conditional pdfs. This is in contrast to

fig 6.3 H depicting co-activations of two monaural basis functions. There, points

of all colors are strongly mixed, creating a ”salt and pepper” pattern, where no

clear separation between source positions is visible.

To test, whether reliable decoding of sound position from activations of bin-

aural basis functions is possible, this work employs the Gaussian Mixture Model

(GMM). The GMM models the marginal distribution of latent coefficients sg used

for the position decoding as a linear combination of Gaussian distributions, such

that:

p(sg) =

24∑
k=1

p(sg|Ck)p(Ck) (6.9)

p(sg|Ck) = N (sg|µk, Dk) (6.10)
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Figure 6.4: Position decoding model.(A) - A graphical model representing vari-
able dependencies. (B) - Decoders performance plotted against the number of
used basis functions. Vertical dashed line separates binaural basis functions from
monaural ones.

where Ck is a position label (C1 = 0 deg, C24 = 345 deg) and µk, Dk denote a

position specific mean vector and covariance matrix respectively. The structure

of dependencies among random variables is presented in a graphical form in fig

6.4 (A). Since the prior on position labels p(Ck) is assumed to be uniform, the

decoding procedure can be recast as a maximum-likelihood estimation:

Ĉ = arg max
k

p(sg|Ck) (6.11)

where Ĉ is the decoded position. The resulting procedure iterates over all position

labels and returns the one which maximizes the probability of an observed data

sample.

The decoding performance relies on the selected subset of basis functions used

for this task. To test whether binaural features contribute stronger to the po-

sition decoding than monaural ones, all basis functions were sorted according

to their BSI. Then, the GMM was trained using incrementally larger number of

latent coefficients, starting from a single one corresponding to the basis function

with the highly negative BSI and ending using the entire basis function set. In

every step, for the GMM training 70% of the data were used, while remaining

30% were used for cross-validation. The average decoder performance is plotted

against the number of used features on figure 6.4 B. Binaural features are sep-
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arated from the monaural ones with a dashed vertical line. A straightforward

observation is that binaural basis functions almost saturate the decoding accu-

racy. Indeed it reaches the level of 97.9%. Adding remaining 314 monaural basis

functions increases the performance to 99.7% which is only 1.8 percentage point.

Interestingly, temporally modulated binaural basis functions number 5 and 6 did

not contribute to the decoding quality, which is visible as a short plateau on

the plot. Saturation of the decoder’s performance by binaural basis function ac-

tivations entails that almost entire spatial information present in the sound is

separated from other kinds of information by the ICA model and represented by

binaural basis functions. Relating this observation to the nervous system, this

means, that the spatial position of natural sound sources can be decoded from

the joint activity of a relatively small subpopulation of binaural neurons.

6.3.2 Natural sounds

The previous section described results for simulated sounds. While simulated

sounds have the advantage of giving a full control over source positions they

are only a very crude approximation to the binaural stimuli occurring in the

real natural environment. This section describes results obtained using binaural

recordings of a real-world auditory scene, consisting of three speakers moving

freely in an echo-free environment.

Binaurality of learned basis functions was again quantified with the BSI.

Sorted BSI values are plotted on fig 6.6 A as gray triangles. A strong differ-

ence is visible, when compared with values of the dictionary trained on simulated

data (black circles). Firstly, 64 natural basis functions lay below the 0.9 threshold

- many more compared to only 10 simulated ones. Secondly, natural BSIs vary

more smoothly, and are more uniformly distributed between −1 and 0.9 (see the

histogram displayed in the inset).

Similarly to the previous case, the learned dictionary was divided into two

sub-dictionaries - binaural ones - below and monaural ones - above the 0.9 BSI

threshold. The sub-dictionary consisting of binaural basis functions is displayed

on fig 6.5 A and fig 6.5 B displays 40 exemplary monaural basis functions. While

no qualitative difference is visible between monaural features when compared

with results from the previous section (fig 6.2 B), the binaural sub-dictionaries

differ strongly. Basis functions trained using natural data, reveal much richer

variety of shapes including temporally modulated ones along patterns of strong

spectral modulation.

Properties of the learned representation

This subsection presents properties of binaural basis functions trained with the

natural binaural data. They were studied in more detail than the dictionary
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Figure 6.5: Basis functions learned using natural data. (A) - Binaural basis
functions (60 out of 64) (B) - Monaural basis functions (40 out of 250)
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Figure 6.6: Properties of basis functions learned using natural data. (A) - BSI
values of natural and simulated bases. (B) - Peak values of binaural bases. (C)-
Centers of mass of modulation spectra (D) - Exemplary basis functions belonging
to groups I, II and III (E) - Temporal cross-correlation plotted against its peak
value. Color marks the BSI (F) - A histogram of temporal shifts maximizing the
cross correlation

learned from simulated data since its structure is more complex and may reflect

better the properties of binaural neurons. One should note that in neural systems

modelling, neural receptive fields correspond better to ICA filters (rows w of

matrix W in equation 6.8). Basis functions, however, constitute optimal stimuli

i.e. given basis function ai as input the only non-zero coefficient is going to be

si. Additionally, basis functions are a low-passed version of filters [63], and are

more appropriate for plotting, since they represent actual parts of stimulus. For

those reasons, this study focuses on basis function statistics.

The binaural dissimilarity of learned features was assessed with two mea-

sures. The BSI provides a continuous value quantifying how well the left ear part

matches the right ear part. It however does not take into account the dominance

of one ear over another. The dominance can be measured by comparing monaural

peaks i.e. points of the maximal absolute value of left and right ear parts. Both

measures were used by Miller and colleagues [94] to describe receptive fields of

binaural neurons in the auditory thalamus and cortex. Monaural peaks (mea-
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sured in standard deviation of the basis function dimensions) are compared on fig

6.6 (B). Crosses mark basis functions with the positive and diamonds with the

negative BSI. Symbol sizes correspond to the absolute BSI value. Basis functions

cluster along the diagonals (marked with dashed lines) which means that left and

right ear peaks have similar absolute values and no clear dominance of a single

ear is present. Interestingly, while roughly the same number of basis functions

lays in upper right and both lower quadrants, only 4 lay in the upper left one,

corresponding to basis functions with a negative peak in the left ear and positive

in the right ear. Unfortunately, direct comparison of the analysis on fig 6.6 (B)

with figure 9 in [94] is not possible, due to the arbitrariness of the sign in the

ICA model (coefficients can have positive and negative values, flipping the sign

of the basis function). Additionally the notion of ipsi- and contra- laterality is

meaningless for ICA basis functions.

Shapes of basis functions belonging to the binaural sub-dictionary were stud-

ied by analyzing modulation spectra of their left-ear parts. Even though functions

were binaural, classification according to only the single ear part was sufficient to

identify subgroups with interesting binaural properties. Centers of mass of mod-

ulation spectra (for computation details see Materials and Methods) are plotted

as circles on fig 6.6 (C). Circle color corresponds to the BSI value. Left parts of

binaural features display a tradeoff between spectral and temporal modulation.

This complies with the general trend of natural sound statistics [131]. Dictionary

elements were divided into three distinctive groups according to their modula-

tion properties (marked with Roman numerals I, II, III and separated with dotted

lines on fig 6.6 (C)). The first group consisted of weakly modulated features with

spectral modulation below 0.3 cycles/octave and temporal modulation below 4

Hz. Majority of basis functions belonging to this group had high BSI, close to

0.9. Three representative members of the first group are displayed on fig 6.6 (D)

in the first row. Since their spectrotemporal modulation is weak, they capture

constant patterns, similar in both ears, up to the sign. The second group consists

of basis functions revealing strong spectral modulation - above 0.3 cycles/octave.

Three exemplary members are visible in the second row of fig 6.6 (D). Basis

functions belonging to the second group resemble majority of ones learned from

simulated data. They weight spectral power across frequency channels constantly

over time. In contrast to simulated basis functions, their BSIs are mostly close

to 0, indicating that channel weights do not necessarily have opposite sign be-

tween ears. Additionally, as visible in two out of three displayed examples, low

frequencies below 1kHz are also weighted.

The third group includes highly temporally modulated features. Their tempo-

ral modulation exceeds 4 Hz, while the spectral one stays below 0.3 cycles/octave.

Out of 15 members of this group, only one has a positive BSI value - the rest

remains close to −1. This implies that when their monaural parts are aligned
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Figure 6.7: Normalized histograms of activation-position correlations

with each other - corresponding dimensions have a similar absolute value and an

opposite sign. Three exemplary members of the third group are depicted in the

last row of fig 6.6 (D). They are qualitatively similar to two temporal basis func-

tions learned from the simulated data (they represent an envelope comodulation

across multiple frequency channels with a π phase difference).

The temporal differences between monaural parts of basis functions were fur-

ther studied using cross-correlation functions (ccf). Maximal values of the nor-

malized ccf are plotted against maximizing temporal shifts on fig 6.6 (E). As in

the fig 6.6 (C) - the color of circles represents the BSI value. The histogram of

temporal shifts is depicted on fig 6.6 (F). Cross-correlation of 30 binaural fea-

tures with a positive BSI, is maximized at 0 temporal shift. In this case, BSI

and the peak of cross-correlation have the same value. This is a property of basis

functions with a weak temporal modulation, which constitute a major part of the

binaural sub-dictionary. Features revealing temporal modulation have a negative

BSI value (dark colors) and a non-zero temporal difference, which spanned the

range between −0.2 to 0.2 seconds.

Spatial sensitivity of binaural basis functions

In contrast to the simulated dataset, binaural recordings were not labelled with

sound source positions. Furthermore, learned features may represent dynamic

aspects of the object motion, therefore conditional histograms (constructed as in

the previous section) would not be meaningful.
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In order to verify whether binaural basis functions reveal tuning to spatial

position of sound sources and invariance to their identity, a test recording was

performed. One of the male speakers read a book out loud, while walking around

the head of the recording subject, following a circular trajectory in a constant

pace. This was repeated twice in the anticlockwise and twice in the clockwise

direction. In such a way, the angular position of the speaker was made easy to

estimate at each time point. The recording was divided into 216 ms overlapping

intervals, and each interval was encoded using the learned dictionary. A general

trend in the spatial sensitivity of basis functions was measured by computing

correlation between estimated speaker’s position and time courses of linear co-

efficients in the following way. Firstly, activation time courses were standarized

to have mean equal to 0 and variance equal to 1. In the next step, time inter-

vals where the coefficient’s absolute value exceeded 1 were extracted. This was

done, since highly sensitive coefficients remained close to 0 most of the time, and

correlated with the speaker’s position only in a narrow part of the space (i.e.

their receptive field). Elements of the binaural sub-dictionary correlated stronger

with the estimated position than elements of the monaural one. Normalized

histograms of linear correlations between the position of the sound source and

sparse coefficients are presented on fig 6.7. Monaural basis functions correlate

much weaker with the sound position, which is reflected in the strong histogram

peak around 0. Binaural coefficients in turn, reveal strong correlations of the

absolute value of 0.8 in extreme cases. Linear correlation is however not a perfect

way to assess relationship between sparse coefficients and the source position,

since spatial selectivity of basis function may be limited to a narrow spatial area

(as in fig 6.8 A and B). This results in correlations of low absolute values, even

though spatial sensitivity of a basis function may be quite high. To show spa-

tial selectivity of learned features, their activations were plotted. Resulting time

courses of basis function activations are displayed as black continuous lines on

fig 6.8. Gray dashed lines mark approximated angular position of the speaker at

every time point.

Subfigures (F)-(J) display activations of 5 representative monaural basis func-

tions. As expected, their activity correlates very weakly with the speaker’s tra-

jectory. Monaural basis functions encode features of speech and are invariant to

the position of the speaker. In contrary, activations of binaural basis functions

visible on subfigures (A)-(E), reveal strong dependence on subjects position and

direction of motion. Basis function A remains non-activated for most of posi-

tions and deviates from zero when the speaker is crossing the area behind the

head of the recording subject. The slope of activation time courses is informative

about the direction of speaker’s motion. Similar, however noisier, spatial tuning

is revealed by the basis function D. Basis function B displays broader spatial

sensitivity, and its activation varies smoothly along the circle surrounding the
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Figure 6.8: Activation time course of basis functions learned using natural
data.An audio-video version is available in the supplementary material. Subfig-
ures (A)-(E) depict binaural basis functions with their activation time courses,
while subfigures (F)-(J) monaural ones. Black continuous lines mark standard-
ized activation values, gray dashed lines mark speaker’s angular position.

subject’s head. Spatial information represented by the spectrally modulated ba-

sis functions C and E does not have such a clear interpretation, however they

display pronounced covariation with sound source’s position (feature C for in-

stance is strongly positively activated, when the speaker crosses directly opposite

to the left ear).

Spatial sensitivity of basis functions can be further quantified using Fisher

information (for computation details please see Materials and Methods). Figure

6.9 shows Fisher information estimates as a function of spatial position for fea-

tures displayed on figure 6.8. Each binaural basis function reveals a preferred

region in space where source’s position is encoded with higher accuracy. For

this reason, histograms depicted on figures 6.9A-E can be interpreted as an ab-

stract descriptions of auditory spatial receptive fields. Basis function (A), is most

strongly informative about position of the sound source behind the head (around

180 degrees), which is also reflected in the time course of its activation. The

Fisher information peaks in visually inaccessible areas also in other, depicted

basis functions (subfigures (B), (C), (E)). There, however, the peak is not as

pronounced as in the first basis function, and sensitivity to frontal positions is

also visible. Fisher information of monaural basis functions (subfigures (F)-(J))

does not reveal spatial selectivity, is order of magnitude smaller and would most

probably vanish in the limit of more samples.

All binaural basis functions presented on fig 6.8 are weakly temporally mod-

ulated. Temporally modulated basis functions, do not correlate strongly with

the speaker’s position (they also did not contribute to the position decoding, as

described in the previous section).
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Figure 6.9: Spatial sensitivity quantified with Fisher information. Polar plots
represent area surrounding the listener, black lines mark Fisher information I(θ)
at each angular position. Each subfigure corresponds to a basis function on the
previous figure marked with the same letter. Please note different scales of the
plots.

6.4 Discussion

The auditory system has to infer the spatial arrangement of the surrounding

space by analyzing spectrotemporal patterns of binaural sound. Auditory spatial

receptive fields are formed, by extracting signal features which correlate well

with environment’s spatial states and result from the head related filtering. Both

sound datasets used in the present study included two, categorically different

variability sources: spatial information carried by binaural differences resulting

from the HRTF filtering and the raw sound waveform. Application of ICA - a

simple redundancy reducing transform led to a separation of those information

sources and formation of distinct model neuron sub-populations with specific

spatial and spectrotemporal sensitivity.

6.4.1 Linear processing of spectrotemporal binaural cues

Emulation of the cochlear processing by performing spectral decomposition and

application of the logarithmic nonlinearity produces a data representation well

adapted for the position decoding task. While it is usually argued that the

logarithmic nonlinearity implemented by mechanical response of the cochlear

membrane is useful for reducing the dynamical range of the signal [117] it provides

an additional advantage. Since in the frequency domain convolution is equivalent

to a pointwise product of the signal and the filter [66], a logarithm transforms it

to a simple addition. A linear operation on the ”cochlear” data representation
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suffices to extract features imposed by the pinnae filtering [51]. One should

note, however, that in complex listening situations involving more than a single,

stationary sound source, this simple relationship (as described by equation 6.7)

may be distorted and extracted features can be mixing different aspects of the

signal.

It has been observed that a linear approximation of spectrotemporal recep-

tive fields in the auditory cortex predicts their spatial selectivity [125]. This

result may be surprising given that sound localization is a non-linear operation

[64] and that in a general case, linear STRF models do not explain firing pat-

terns of auditory neurons [36, 27]. Results described in this paper suggest that

a linear-redundancy reducing transform applied to log-spectrograms suffices to

create model spatial receptive fields, providing a candidate computational mecha-

nism explaining results provided by [125]. Localization of a natural sound source

involves information included in multiple frequency channels. Binaural cues such

as ILD are computed in each channel separately and have to be fused together at

a later stage. This is exemplified by temporally constant basis functions learned

using simulated and natural datasets. They linearly weight levels in frequency

channel of both ears and in this way form their spatial selectivity. Interestingly

the weighting is often asymmetric (which is reflected by BSI values different from

−1). Such patterns represent binaural level differences coupled across multiple

frequency channels. A recent study has shown that a similar computational strat-

egy underlies spatial tuning of binaural neurons in the nucleus of the brachium of

inferior colliculus (IC) in monkeys [132]. Since it has already been suggested that

IC neurons code natural sounds efficiently [25], present results extend evidence

in support of this hypothesis.

6.4.2 Complex shapes of binaural STRFs

Early binaural neurons localized in the auditory brainstem can be classified ac-

cording to kinds of input they receive from each ear (inhibitory-excitatory - IE

and excitatory-excitatory - EE) [49]. At the higher stages of auditory processing

(Inferior Colliculus, Auditory Cortex), binaural neurons respond also to complex

spectrotemporal excitation-inhibition patterns [94, 112, 125]. This chapter sug-

gests, which kinds of binaural features may be encoded and used for spatial hear-

ing tasks by higher binaural neurons. It demonstrates that the reconstruction of

natural binaural sounds requires basis functions representing various spectrotem-

poral patterns in each ear. The dictionary of learned binaural features is best

described by a continuous binaural similarity value (in this case Pearson’s corre-

lation coefficient - BSI) and not by a classification into non-overlapping IE-EE

groups. Temporally modulated basis functions constitute a particularly interest-

ing subset of all binaural ones. Many of them represent a single cycle of envelope

modulation, in opposite phase in each ear (see figure 6.6 (D)). The time interval
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corresponding to such phase shift is, however, much larger than the one required

for the soundwave to travel between the ears. Their emergence and aspects of

the environment they represent remain to be explained. Coding of different spec-

trotemporal features in each ear is useful not only for sound localization and

tracking, but may be also applied for separation of sources while parsing natural

auditory scenes (i.e. solving the ”cocktail party problem”).

6.4.3 The role of HRTF structure

Spatial information is created when the sound waveform becomes convoluted with

the head and pinnae filter - HRTF. By taking into account that this convolution

is equivalent to addition of the log-spectral representation of the sound and the

HRTF, one may conclude that the ICA recovers exact HRTF forms. A sub-

set of basis functions learned by the ICA model from the simulated data could,

in principle, contain 24 elements, which would constitute an exactly recovered

set of HRTFs used to generate the training data (see figure 6.1 D). The other

basis function subset would contain features modelling speech variability. This

is, however, not the case. Firstly - in the simulated dataset - HRTFs corre-

sponding to 24 positions were used, 10 basis functions emerged and only 8 were

temporally non-modulated, as HRTFs are. Despite such dimensionality reduc-

tion, information included in the 8 basis functions was sufficient to perform the

position decoding with 15 deg spatial resolution. This implies that binaural ba-

sis functions did not recover HRTF shapes but rather formed their compressed

representation. It is important to note here that learned binaural features were

much smoother and did not include all spectral detail included in HRTFs them-

selves (compare basis binaural basis functions from figures 6.2 A and 6.5 A with

HRTFs from figure 6.1 D). The fact that coarse spectral information suffices to

perform position decoding stands in accord with human psychophysical studies.

It has been demonstrated that HRTFs can be significantly smoothed without

influencing human performance in spatial auditory tasks [72].

In humans and many other species, the area behind the listener’s head is inac-

cessible to vision and information about the presence or motion of objects there

can be obtained only by listening. This particular spatial information is of high

survival value since it may inform about an approaching predator. Interestingly,

in both used datasets features providing pronounced information about presence

of sound sources behind the head clearly emerged (see figs 6.3 (B) and 6.8 (A)).

Their sensitivity to sound position quantified with Fisher information is highest

for the area roughly between 160 to 230 degrees. Since those basis functions

reflect the HRTF structure, one could speculate that the outer ear shape (which

determines the HRTF) was adapted to make this valuable spatial information

explicit. It is interesting to think that one of the factors in pinnae evolution, was

to provide spectral filters, highly informative about sound positions behind the
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head. This, however, can not be verified within the current setup and remains a

subject of the future research.

6.5 Conclusion

Taken together, results described in this chapter demonstrate that a theoretical

principle of efficient coding can explain the emergence of functionally separate

neural populations. Using an exemplary task of binaural hearing I have demon-

strated, that a linear redundancy-reducing transform is capable of learning in-

formative signal features, which belong to two classes - position and identity

invariant. As long as such invariances have not yet been conclusively identified in

the auditory system, their existance is theoretically possible and can be accounted

for by efficient coding principles.
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Chapter 7

Conclusions and Outlook

Being a theoretician and thinking about a specific part of the brain (such as

the binaural hearing system) one is exposed to a strong temptation of seeking

for generalities. Insights into the detailed functioning of a particular neuronal

subsystem could be hopefully generalized and provide hints of abstract principles

which describe functioning of other parts of the brain. In this chapter I will

summarize specific auditory findings of this work and relate them to two general

statments about sensory information processing proposed in the introduction.

7.1 Neuronal function in the natural environment - lessons

from spatial hearing

In this thesis I described my attempts to analyze the binaural auditory system

through the lens of natural stimulus statistics. Chapters 4 − 6 describe results

of three such studies and discuss them in the context of auditory physiology. In

the first chapter I have introduced two general tenets which relate the function of

sensory neurons (or what the external observer may call their ”role” or ”purpose”)

to natural stimuli. Below I state them again, and discuss them in light of results

described in this work.

1. The function of sensory neurons can not be fully elucidated with-

out understanding statistics of natural stimuli they process

Since the early days of research into the binaural auditory system it has been ob-

served that neurons of the superior olivary complex reveal sensitivity to binaural

cues - IPDs and ILDs. Considering a very simple scenario (similar to the one

studied by Lord Rayleigh) extraction of a cue is equivalent to the localization of

a sound on the horizontal plane. In cases where this is true it can be said that the

nervous system at a surprisingly early processing stage computes the localization
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of a sound source. Neurons which perform this function for high-frequency sounds

by computing ILDs are located in LSO and low-frequency sounds are localized

by IPD extractors in the MSO.

This chain of reasoning raises a number of questions. If sounds are localized

so early, what is the function of further binaural processing? Is the auditory

cortex necessary for the sound localization? Those issues are often mentioned

and discussed in the literature [124, 125, 100, 101]. A satisfactory answer has not

yet been provided.

While the analysis of natural sound statistics presented in chapter 4 may not

give immediate answers to those questions, it may provide useful hints. Firstly,

as the ICA analysis has demonstrated, natural sounds in each ear seem to be

dominated by independent acoustic events. If this is the case then the computa-

tion of a cue as performed by SOC neurons is not equivalent to the localization

of a sound source. The function of those cells is therefore not to ”localize sound

sources” but to perform a stimulus transformation which constitutes a first step

of an intricate scene analysis process. It becomes obvious that numerous other

computations are required to understand the scene configuration from the sen-

sory input. The importance is shifted away from the question ”what does the

auditory cortex do?” towards ”how does it do it?”.

The second observation is that natural cue distributions deviate (in some as-

pects quite strongly) from analytical predictions. For instance ILD distributions

are almost invariant to the frequency and the scene, and profound level differ-

ences are present in low frequency ranges. To make use of such potentially useful

information the auditory system should encode low-frequency ILDs. This obser-

vation predicts existence of ILD sensitive cells of low best-frequencies, which may

be neglected according to the duplex-theory.

More generally, the results described in chapter 4 of this thesis highlight the

importance of understanding the structure of natural stimuli for sensory neuro-

science. Performing experiments with simple stimuli has without doubt many

advantages. Artificial stimuli are well controllable, and research basing on them

has led to a large increase of understanding of the auditory system as well as other

sensory systems. It has been even argued that it is a most fundamental line of

research, and that natural stimuli should be used as benchmark tests of theo-

ries derived in reductionist experimental settings [122]. In my view the analysis

of natural stimulus statistics is at least as important and should be performed

in parallel. After all it is impossible to understand the algorithm implemented

by an information processing system without knowing the data it processes. As

statistics of binaural sounds show, Nature can be surprisingly complex, and one

can rarely predict all features of the stimulus only with pen and paper.
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2. Function of sensory representations reflects redundancies present

in the natural sensory environment

Finding a tonotopic representation of sound in the auditory cortex has elevated

hopes that the brain also forms such clearly interpretable, topographic represen-

tations of other stimulus features - for instance sound location [92]. Surprisingly

this was not the case. When anaesthetized cats were presented with sounds lo-

cated at different positions multiple neurons were responding to a broad range of

locations [93]. Since they varied their activity with a change of the sound position

- the experimenters concluded that the function of studied neurons is to encode

this property. The coding strategy was not well understood - it was called ”the

panoramic code” [93]. In the following years attempts have been made to ex-

plain these experimentally observed tuning properties. For instance, it has been

argued that spatial tuning curves are ”designed” to be highly informative about

behaviorally relevant areas of space [137].

Results of chapter 5 show that a sparse representation of natural stereo sounds

reveals ”spatial tuning” very similar to cortical neurons. It has, however, not been

pre-designed to encode a pre-selected aspect of the environment - the position

of a point sound source. It rather emerges in a process of adaptation to the

natural stimulus via seeking an information efficient encoding. This observation

leads to a hypothesis that perhaps the entire nervous system, rather than being

a collection of loosely coupled ”problem-solvers”, follows a single coding strat-

egy. Introduction and chapter 3 discuss that as experimenters we may be under

the illusion that neurons we study in an experimental setup encode the chosen

parameter. Observed variation in neuronal responses does not necessarily mean

that.

As suggested by numerous previous studies, the function of sensory neurons

may be to recode the stimulus stream in an efficient form. It may be true even

for sensory neurons located away from the sensory periphery. This means that

the stimulus structure preferred by a neuron (i.e. its receptive field) can be very

hard to interpret using natural language terms. The form of neuronal receptive

fields may defy our high-level introspective intuitions, for instance the apparent

necessity of ”what” and ”where” separation. A good example has been provided

by a recent study, which questions the perceptual relevance of traditional clas-

sification of speech sounds into vowels and consonants [141]. As results of the

study indicate perception of speech depends on entropy of the signal not on the

presence of sounds belonging to these pre-supposed categories.

As postulated by Barlow [9] maximization of the coding efficiency can extract

stimulus regularities which are vital to perform inferences about the environment.

As results presented in chapter 6 show, finding a linear efficient encoding of the

binaural sound in the log-spectral domain is capable of separating sources of

variability in the stimulus. Spatial information imposed by HRTFs is represented

133



by a distinct subpopulation of units. It is important to stress again that their

function is not pre-determined - they emerge in an unsupervised learning process

by adaptation to stimulus statistics.

It is interesting to speculate that the general principle of efficient coding

guides the formation of sensory representations at all processing stages. The

goal of the nervous system may be to remain in the ”informational equilibrium”

with the environment by absorbing as much information as possible. Categories

pre-supposed by human observers may therefore not map directly onto the true

function implemented by neuronal circuits. Their understanding may require

insights into the structure of the natural sensory world.

7.2 Caveats and limitations

Arguments presented in this thesis rely on the strong assumption that the set

of collected sound data is representative for the mammalian (and human in par-

ticular) sensory niche. In contrast to natural images, natural sounds seem to

have rather inhomogeneous structure. Statistics of image patches, are well repro-

ducible - algorithms such as sparse coding yield similar features when trained on

different images. Sparse representations of natural sounds in turn, vary strongly,

depending on a sound class [78]. There is an ongoing debate on how a repre-

sentative dataset of natural sounds would look like [145]. Results obtained here

could be strengthened by extending the set of analyzed auditory scenes.

It is important to keep in mind that stimulus statistics are determined not

only by the environment but also by the organism. In vision, for instance, it has

been demonstrated that local statistics of natural images measured at the center

of gaze differ from those of uniformly sampled image patches [115]. In spatial

hearing this is especially the case. Shape of the head and pinnae affect properties

of the stimulus. While certain features of neuronal space representations (such

as the broad tuning of cortical neurons) seem to be replicated across mammalian

species [49], some others may be not. Moreover, in birds [49, 88] and reptiles [37]

spatial hearing seems to rely on different mechanisms than in mammals.

In chapter 3, two possible roles of efficient coding have been proposed (illus-

trated on figure 2.7) They both assume the existence of the ”raw sensory stream”

- unprocessed stimulus from which relevant information has to be extracted. In

hearing this may be the activity of all haircells aligned along the cochleotopic

axis in the organ of Corti. An important and unanswered question is - how is the

”bandwidth” of this raw stream determined in the first place? Is the frequency

range available to humans selected by evolutionary mechanisms as behaviorally

relevant?

The second closely related problem regards time-scales of adaptation. In this

thesis I have analyzed relatively small datasets (at most 12 minutes long) and
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modelled short time receptive fields (measured in milliseconds). Efficient coding

mechanisms could in principle operate on different time-scales - from milliseconds

([142]) to evolutionary epochs. The work described here remains largely agnostic

about this issue.

Considerations discussed above provide possible starting points for extensions

of research described in this thesis.

7.3 Coda

Turtles and finches of the Galapagos quickly attracted Mr Darwin’s attention.

What seemed remarkable was that members of the same species looked very

different depending on which of the archipelago’s well separated islands they

inhabited. Anatomical traits such as the shell color or the shape of the beak

seemed to be determined by the animal’s surrounding. This observation has led

Charles Darwin to reason that organisms are adapted to their environment - it

is an idea, which became one of the cornerstones of the evolutionary theory.

Nowadays principles of adaptation to the environmental niche guide our study

of not only crude anatomical traits, but also of abstract information processing

mechanisms employed by the nervous system. The way to the satisfactory com-

prehension of the inner workings of this mysterious structure is still long. We

seem, however, to know at least the good direction. It has been indicated more

than one and a half century ago by a young naturalist on the deck of HMS Beagle.
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Appendix A

Appendix A - Derivations of

Gradients for Learning Sparse,

Complex-Valued and Hierarchical

Models

A.1 First layer - complex-valued basis functions

In this section learning rules i.e. gradients over the first layer linear coefficients

and basis functions are derived.

Coefficients gradient

Let us remind that x̂ is the reconstruction of the original data vector x using

inferred coefficients z and basis functions A:

x̂t =

n/2∑
i=1

R{z∗iAi,t} (A.1)

Residue rt i.e. difference between the data vector and its reconstruction is:

rt = xt − x̂t (A.2)

Inference of coefficients is equivalent to minimization of the following energy

function:

E1(z, x,A) ∝ 1

2σ2

T∑
t=1

(x̂t − xt)2 + λ

N∑
i=1

S(ai) (A.3)
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In the present work use of function S(ai) = ai is equivalent to placing an L1

norm penalty on amplitudes ai = ‖zi‖ =
√
zR

2

i + zI
2

i . The gradient over linear

coefficients zR, zI becomes:

∂Ez

∂zSi
∝ 1

σ2

T∑
t=1

AS
i,trt + λ

zSi√
zR

2

i + zI
2

i

(A.4)

Where S ∈ {R, I} indicates whether the coefficient is real or imaginary.

Basis function gradient

Basis functions are learned by performing a gradient step given inferred z values.

The negative log-posterior is given by:

EA = ERes + γEφ + βESa =
1

2σ2

(
T∑
t=1

r2
t

)
+ γ

n/2∑
i=1

Sφ(Ai) + β

n/2∑
i=1

Sa(Ai) (A.5)

Functions Sφ(Ai) and Sa(Ai) are of following forms:

Sa(Ai) =
T∑
t>1

(
∆aAi,t

)2
(A.6)

Sφ(Ai) = −
T∑
t>1

sgn
(

∆φi,t

)(
∆φi,t

)2
(A.7)

where ∆aAi,t = aAi,t − aAi,t−1 and ∆φAi,t = φAi,t − φAi,t−1.

Priors defined by Sa and Sφ determine temporal phase and amplitude corre-

lations respectively.

Gradient of equation A.5 can be decomposed into three terms:

∂

∂Ai,t
EA =

∂

∂Ai,t
ERes + β

∂

∂Ai,t
ESa + γ

∂

∂Ai,t
ESφ (A.8)

representing the reconstruction error term and phase and amplitude priors

consecutively. In polar coordinates, for 1 < t < T phase prior gradient is:

∂

∂φAi,t
∝ 2φAi,t

[
sgn
(

∆φAi,t+1

)
φAi,t+1 − sgn

(
∆φAi,t

)
φAi,t

]
(A.9)

For boundary conditions i.e. t = 1 and t = T , this gradient becomes consec-

utively:

∂Eφ

∂φAi,1Eφ
∝ 2φAi,1sgn

(
∆φAi,2

)
φAi,2 (A.10)
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∂Eφ

∂φAi,T
∝ −2φAi,T sgn

(
∆φAi,T

)
φAi,T (A.11)

In the same way, the amplitude term gradient is defined separately for 1 <

t < T :

∂Ea

∂aAi,t
∝ 2
(

∆aAi,t −∆aAi,t+1

)
(A.12)

and separately for the boundary conditions (t = 1 and t = T ):

∂Ea

∂aAi,1
∝ −2∆aAi,2 (A.13)

∂

∂aAi,T
Ea ∝ 2∆aAi,T (A.14)

The residue term is most conveniently represented in Cartesian coordinates

for real and imaginary coefficients zSi , where, as previously, S ∈ {R, I}, indicates

whether coefficient is real or imaginary:

∂ERes

∂AS
i,t

∝
zSi,t
σ2
rt (A.15)

A.2 Second layer basis functions

The second layer of the model was trained after the first layer converged, and

cofficient values z were inferred for all training data samples. The higher order

encoding formed by coefficients s as well as the scaling factor w was inferred via

gradient descent on function E2 (equation 5.15):

∂

∂si
E2 ∝ −

2

σ2
2

2×T∑
n=1

Bi,n(an − ân) + κ|w|
P∑

m=1

sin(∆φm − ∆̂φm)ξi,m

+ 2λ2
si

log(1 + s2
i )

(A.16)

∂

∂wi
E2 ∝ κ

w

|w|2
P∑

m=1

∆̂φm sin(∆φm − ∆̂φm) + λw

[(
1

α

)β
βw|w|β−2

]
(A.17)

The gradients steered sparse coefficients s to explain amplitude and phase

vectors a and ∆φ while preserving maximal sparsity. Simultaneously the multi-

plicative factor w was adjusted to appropriately scale the estimated vector ∆̂φ.

Finally, learning rules for second-layer dictionaries were given by:
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∂

∂Bi,k
E2 ∝ −

2

σ2
2

si(ak − âk) (A.18)

∂

∂ξi,k
E2 ∝ siκ|w| sin(∆φk − ∆̂φk) (A.19)

154



Bibliographische Daten

Functional Sensory Representations of Natural Stimuli: The Case of Spatial Hearing

M lynarski, Wiktor

Universität Leipzig, Dissertation, 2014

154 Seiten, 48 Abbildungen, 156 Referenzen, S-Zahl 3
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