783 research outputs found

    Evidence of joint commitment in great apes’ natural joint actions

    Get PDF
    Human joint action seems special, as it is grounded in joint commitment—a sense of mutual obligation participants feel towards each other. Comparative research with humans and non-human great apes has typically investigated joint commitment by experimentally interrupting joint actions to study subjects’ resumption strategies. However, such experimental interruptions are human-induced, and thus the question remains of how great apes naturally handle interruptions. Here, we focus on naturally occurring interruptions of joint actions, grooming and play, in bonobos and chimpanzees. Similar to humans, both species frequently resumed interrupted joint actions (and the previous behaviours, like grooming the same body part region or playing the same play type) with their previous partners and at the previous location. Yet, the probability of resumption attempts was unaffected by social bonds or rank. Our data suggest that great apes experience something akin to joint commitment, for which we discuss possible evolutionary origins

    Simulation of subseismic joint and fault networks using a heuristic mechanical model

    Get PDF
    Flow simulations of fractured and faulted reservoirs require representation of subseismic structures about which subsurface data are limited. We describe a method for simulating fracture growth that is mechanically based but heuristic, allowing for realistic modelling of fracture networks with reasonable run times. The method takes a triangulated meshed surface as input, together with an initial stress field. Fractures initiate and grow based on the stress field, and the growing fractures relieve the stress in the mesh. We show that a wide range of bedding-plane joint networks can be modelled simply by varying the distribution and anisotropy of the initial stress field. The results are in good qualitative agreement with natural joint patterns. We then apply the method to a set of parallel veins and demonstrate how the variations in thickness of the veins can be represented. Lastly, we apply the method to the simulation of normal fault patterns on salt domes. We derive the stress field on the bedding surface using the horizon curvature. The modelled fault network shows both radial and concentric faults. The new method provides an effective means of modelling joint and fault networks that can be imported to the flow simulator

    Prosthetic Device For Total Joint Replacement In Small Joint Arthroplasty

    Get PDF
    The Prosthesis Device Can Have A Pair Of Articular Members Adapted To Be Mounted Onto Adjoining Bones, Respectively, To Replace A Joint. The First And Second Articular Members Can Have First And Second Bearing Elements, Respectively. The Bearing Elements Can Be Formed To Be Capable Of Replacing At Least A Portion Of The Bone Ends Of The Adjoining Bones, Respectively, And Providing An Articulation Close To That Of A Natural Joint. The Bearing Elements Can Be Fixed To The Respective Bones Through An Initial Implant Fixation Achieved By Press-Fit Anchoring Immediately After Surgery And/Or A Secondary Implant Fixation Established From Bone-Ingrowth.published_or_final_versio

    MotioNet: 3D Human Motion Reconstruction from Video with Skeleton Consistency

    Get PDF
    We introduce MotioNet, a deep neural network that directly reconstructs the motion of a 3D human skeleton from monocular video. While previous methods rely on either rigging or inverse kinematics (IK) to associate a consistent skeleton with temporally coherent joint rotations, our method is the first data-driven approach that directly outputs a kinematic skeleton, which is a complete, commonly used, motion representation. At the crux of our approach lies a deep neural network with embedded kinematic priors, which decomposes sequences of 2D joint positions into two separate attributes: a single, symmetric, skeleton, encoded by bone lengths, and a sequence of 3D joint rotations associated with global root positions and foot contact labels. These attributes are fed into an integrated forward kinematics (FK) layer that outputs 3D positions, which are compared to a ground truth. In addition, an adversarial loss is applied to the velocities of the recovered rotations, to ensure that they lie on the manifold of natural joint rotations. The key advantage of our approach is that it learns to infer natural joint rotations directly from the training data, rather than assuming an underlying model, or inferring them from joint positions using a data-agnostic IK solver. We show that enforcing a single consistent skeleton along with temporally coherent joint rotations constrains the solution space, leading to a more robust handling of self-occlusions and depth ambiguities.This work has been partly supported by the project that has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 739578 (RISE – Call: H2020-WIDESPREAD-01-2016-2017-TeamingPhase2) and the Government of the Republic of Cyprus through the Directorate General for European Programmes, Coordination and Development

    Performance of the resurfaced hip. Part 1: the influence of the prosthesis size and positioning on the remodelling and fracture of the femoral neck

    No full text
    Hip resurfacing is an established treatment for osteoarthritis in young active patients. Failure modes include femoral neck fracture and prosthesis loosening, which may be associated with medium-term bone adaptation, including femoral neck narrowing and densification around the prosthesis stem.Finite element modelling was used to indicate the effects of prosthesis sizing and positioning on the bone remodelling and fracture strength under a range of normal and traumatic loads, with the aim of understanding these failure modes better.The simulations predicted increased superior femoral neck stress shielding in young patients with small prostheses, which required shortening of the femoral neck to give an acceptable implant–bone interface. However, with a larger prosthesis, natural femoral head centre recreation in the implanted state was possible; therefore stress shielding was restricted to the prosthesis interior, and its extent was less sensitive to prosthesis orientation. With valgus orientation, the implanted neck strength was, at worst, within 3 per cent of its intact strength.The study suggests that femoral neck narrowing may be linked to a reduction in the horizontal femoral offset, occurring if the prosthesis is excessively undersized. As such, hip resurfacing should aim to reproduce the natural femoral head centre, and, for valgus prosthesis orientation, to avoid femoral neck fracture

    Consistent histories and relativistic invariance in the modal interpretation of quantum mechanics

    Get PDF
    Modal interpretations of quantum mechanics assign definite properties to physical systems and specify single-time joint probabilities of these properties. We show that a natural extension, applying to properties at several times, can be given if a decoherence condition is satisfied. This extension defines "consistent histories" of modal properties. We suggest a new form of the modal scheme, that offers prospects of a more general applicability of the histories concept. Finally, we discuss a possible way of applying these ideas to relativistic quantum field theory.Comment: 13 pages, no figure

    A methodology for the development of a Hinged Ankle-Foot Orthosis compatible with natural joint kinematics

    Get PDF
    This work presents a new concept to design Hinged Ankle-Foot Orthoses (HAFOs), based on the definition of a special mechanical articulation able to mimic the physiological behavior of the human ankle joint. Current commercial braces typically do not take into account the natural variability of the ankle joint axis. As the hinge location as well as the rotation axis variability are both relevant for the overall function of the device, and strongly depend on the subject-specific characteristics, a methodology for the development of a HAFO with a floating axis of rotation, based on the in-vivo kinematic analysis of the ankle joint, is here proposed. The kinematic analysis was performed by calculation of the instantaneous and mean helical axes over the collected stereo-photogrammetric data of joint motion. This procedure was tested on a healthy subject, leading to the design and fabrication of a first customized prototype of the orthosis. The performance of this HAFO was experimentally verified by motion analysis. All relevant results are presented, and further possible future improvements of the procedure are discussed
    • 

    corecore