10,078 research outputs found

    Raman spectroscopy as probe of nanometer-scale strain variations in graphene

    Full text link
    Confocal Raman spectroscopy is a versatile, non-invasive investigation tool and a major workhorse for graphene characterization. Here we show that the experimentally observed Raman 2D line width is a measure of nanometer-scale strain variations in graphene. By investigating the relation between the G and 2D line at high magnetic fields we find that the 2D line width contains valuable information on nanometer-scale flatness and lattice deformations of graphene, making it a good quantity for classifying the structural quality of graphene even at zero magnetic field.Comment: 7 pages, 4 figure

    Multi-shell gold nanowires under compression

    Full text link
    Deformation properties of multi-wall gold nanowires under compressive loading are studied. Nanowires are simulated using a realistic many-body potential. Simulations start from cylindrical fcc(111) structures at T=0 K. After annealing cycles axial compression is applied on multi-shell nanowires for a number of radii and lengths at T=300 K. Several types of deformation are found, such as large buckling distortions and progressive crushing. Compressed nanowires are found to recover their initial lengths and radii even after severe structural deformations. However, in contrast to carbon nanotubes irreversible local atomic rearrangements occur even under small compressions.Comment: 1 gif figure, 5 ps figure

    Crack fronts and damage in glass at the nanometer scale

    Full text link
    We have studied the low speed fracture regime for different glassy materials with variable but controlled length scales of heterogeneity in a carefully mastered surrounding atmosphere. By using optical and atomic force microscopy (AFM) techniques we tracked in real-time the crack tip propagation at the nanometer scale on a wide velocity range (mm/s - pm/s and below). The influence of the heterogeneities on this velocity is presented and discussed. Our experiments reveal also -for the first time- that the crack progresses through nucleation, growth and coalescence of nanometric damage cavities within the amorphous phase. This may explain the large fluctuations observed in the crack tip velocities for the smallest values. This behaviour is very similar to what is involved, at the micrometric scale, in ductile fracture. The only difference is very likely due to the related length scales (nanometric instead of micrometric). Consequences of such a nano-ductile fracture mode observed at a temperature far below the glass transition temperature in glass is finally discussed.Comment: 12 pages, 8 figures, submitted to Journal of Physics: Condensed Matter; Invited talk at Glass and Optical Materials Division Fall 2002 Meeting, Pittsburgh, Pa, US

    Fluorescent nanodiamonds for FRET-based monitoring of a single biological nanomotor FoF1-ATP synthase

    Full text link
    Color centers in diamond nanocrystals are a new class of fluorescence markers that attract significant interest due to matchless brightness, photostability and biochemical inertness. Fluorescing diamond nanocrystals containing defects can be used as markers replacing conventional organic dye molecules, quantum dots or autofluorescent proteins. They can be applied for tracking and ultrahigh-resolution localization of the single markers. In addition the spin properties of diamond defects can be utilized for novel magneto-optical imaging (MOI) with nanometer resolution. We develop this technique to unravel the details of the rotary motions and the elastic energy storage mechanism of a single biological nanomotor FoF1-ATP synthase. FoF1-ATP synthase is the enzyme that provides the 'chemical energy currency' adenosine triphosphate, ATP, for living cells. The formation of ATP is accomplished by a stepwise internal rotation of subunits within the enzyme. Previously subunit rotation has been monitored by single-molecule fluorescence resonance energy transfer (FRET) and was limited by the photostability of the fluorophores. Fluorescent nanodiamonds advance these FRET measurements to long time scales.Comment: 10 pages, 4 figure

    Aharonov-Bohm interferences from local deformations in graphene

    Full text link
    One of the most interesting aspects of graphene is the tied relation between structural and electronic properties. The observation of ripples in the graphene samples both free standing and on a substrate has given rise to a very active investigation around the membrane-like properties of graphene and the origin of the ripples remains as one of the most interesting open problems in the system. The interplay of structural and electronic properties is successfully described by the modelling of curvature and elastic deformations by fictitious gauge fields that have become an ex- perimental reality after the suggestion that Landau levels can form associated to strain in graphene and the subsequent experimental confirmation. Here we propose a device to detect microstresses in graphene based on a scanning-tunneling-microscopy setup able to measure Aharonov-Bohm inter- ferences at the nanometer scale. The interferences to be observed in the local density of states are created by the fictitious magnetic field associated to elastic deformations of the sample.Comment: Some bugs fixe

    Atomically sharp non-classical ripples in graphene

    Full text link
    A fundamental property of a material is the measure of its deformation under applied stress. After studying the mechanical properties of bulk materials for the past several centuries, with the discovery of graphene and other two-dimensional materials, we are now poised to study the mechanical properties of single atom thick materials at the nanoscale. Despite a large number of theoretical investigations of the mechanical properties and rippling of single layer graphene, direct controlled experimental measurements of the same have been limited, due in part to the difficulty of engineering reproducible ripples such that relevant physical parameters like wavelength, amplitude, sheet length and curvature can be systematically varied. Here we report extreme (>10%) strain engineering of monolayer graphene by a novel technique of draping it over large Cu step edges. Nanoscale periodic ripples are formed as graphene is pinned and pulled by substrate contact forces. We use a scanning tunneling microscope to study these ripples to find that classical scaling laws fail to explain their shape. Unlike a classical fabric that forms sinusoidal ripples in the transverse direction when stressed in the longitudinal direction, graphene forms triangular ripples, where bending is limited to a narrow region on the order of unit cell dimensions at the apex of each ripple. This non-classical bending profile results in graphene behaving like a bizarre fabric, which regardless of how it is pulled, always buckles at the same angle. Using a phenomenological model, we argue that our observations can be accounted for by assuming that unlike a thin classical fabric, graphene undergoes significant stretching when bent. Our results provide insights into the atomic-scale bending mechanisms of 2D materials under traditionally inaccessible strain magnitudes and demonstrate a path forward for their strain engineering.Comment: 22 pages, 4 figure

    Nonharmonic oscillations of nanosized cantilevers due to quantum-size effects

    Full text link
    Using a one-dimensional jellium model and standard beam theory we calculate the spring constant of a vibrating nanowire cantilever. By using the asymptotic energy eigenvalues of the standing electron waves over the nanometer-sized cross-section area, the change in the grand canonical potential is calculated and hence the force and the spring constant. As the wire is bent more electron states fits in its cross section. This has an impact on the spring"constant" which oscillates slightly with the bending of the wire. In this way we obtain an amplitude-dependent resonance frequency of the oscillations that should be detectable.Comment: 6 pages, 5 figure

    Hydrogen-Induced Deformations of Metals Followed by in Situ Scanning Tunneling Microscopy : Palladium Electrolytic Hydrogen Charging and Discharging in Alkaline Solution

    Get PDF
    In situ scanning tunneling microscopy measurements of Pd single-crystal domains during hydrogen charging/discharging cycles in 0.25 M KOH at 298 K allowed us to follow deformations produced by the Pd ↔ S β(H-Pd) phase transition in real time. The stress produced by this transition leads to elastic deformations involving reversible volume changes and plastic deformations resulting in one- or two-atom high slip lines and slip bands. These results demonstrate the capability of nanoscopies to investigate solid deformations on the nanometer scale in different environments, discriminate different types of deformations, and distinguish possible additional steps that are involved in the dynamics of solids.Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicada

    The Escape Problem in a Classical Field Theory With Two Coupled Fields

    Full text link
    We introduce and analyze a system of two coupled partial differential equations with external noise. The equations are constructed to model transitions of monovalent metallic nanowires with non-axisymmetric intermediate or end states, but also have more general applicability. They provide a rare example of a system for which an exact solution of nonuniform stationary states can be found. We find a transition in activation behavior as the interval length on which the fields are defined is varied. We discuss several applications to physical problems.Comment: 24 page
    • …
    corecore