A fundamental property of a material is the measure of its deformation under
applied stress. After studying the mechanical properties of bulk materials for
the past several centuries, with the discovery of graphene and other
two-dimensional materials, we are now poised to study the mechanical properties
of single atom thick materials at the nanoscale. Despite a large number of
theoretical investigations of the mechanical properties and rippling of single
layer graphene, direct controlled experimental measurements of the same have
been limited, due in part to the difficulty of engineering reproducible ripples
such that relevant physical parameters like wavelength, amplitude, sheet length
and curvature can be systematically varied. Here we report extreme (>10%)
strain engineering of monolayer graphene by a novel technique of draping it
over large Cu step edges. Nanoscale periodic ripples are formed as graphene is
pinned and pulled by substrate contact forces. We use a scanning tunneling
microscope to study these ripples to find that classical scaling laws fail to
explain their shape. Unlike a classical fabric that forms sinusoidal ripples in
the transverse direction when stressed in the longitudinal direction, graphene
forms triangular ripples, where bending is limited to a narrow region on the
order of unit cell dimensions at the apex of each ripple. This non-classical
bending profile results in graphene behaving like a bizarre fabric, which
regardless of how it is pulled, always buckles at the same angle. Using a
phenomenological model, we argue that our observations can be accounted for by
assuming that unlike a thin classical fabric, graphene undergoes significant
stretching when bent. Our results provide insights into the atomic-scale
bending mechanisms of 2D materials under traditionally inaccessible strain
magnitudes and demonstrate a path forward for their strain engineering.Comment: 22 pages, 4 figure