1,519 research outputs found

    FedDiff: Diffusion Model Driven Federated Learning for Multi-Modal and Multi-Clients

    Full text link
    With the rapid development of imaging sensor technology in the field of remote sensing, multi-modal remote sensing data fusion has emerged as a crucial research direction for land cover classification tasks. While diffusion models have made great progress in generative models and image classification tasks, existing models primarily focus on single-modality and single-client control, that is, the diffusion process is driven by a single modal in a single computing node. To facilitate the secure fusion of heterogeneous data from clients, it is necessary to enable distributed multi-modal control, such as merging the hyperspectral data of organization A and the LiDAR data of organization B privately on each base station client. In this study, we propose a multi-modal collaborative diffusion federated learning framework called FedDiff. Our framework establishes a dual-branch diffusion model feature extraction setup, where the two modal data are inputted into separate branches of the encoder. Our key insight is that diffusion models driven by different modalities are inherently complementary in terms of potential denoising steps on which bilateral connections can be built. Considering the challenge of private and efficient communication between multiple clients, we embed the diffusion model into the federated learning communication structure, and introduce a lightweight communication module. Qualitative and quantitative experiments validate the superiority of our framework in terms of image quality and conditional consistency

    Federated Self-Supervised Learning of Multi-Sensor Representations for Embedded Intelligence

    Get PDF
    Smartphones, wearables, and Internet of Things (IoT) devices produce a wealth of data that cannot be accumulated in a centralized repository for learning supervised models due to privacy, bandwidth limitations, and the prohibitive cost of annotations. Federated learning provides a compelling framework for learning models from decentralized data, but conventionally, it assumes the availability of labeled samples, whereas on-device data are generally either unlabeled or cannot be annotated readily through user interaction. To address these issues, we propose a self-supervised approach termed \textit{scalogram-signal correspondence learning} based on wavelet transform to learn useful representations from unlabeled sensor inputs, such as electroencephalography, blood volume pulse, accelerometer, and WiFi channel state information. Our auxiliary task requires a deep temporal neural network to determine if a given pair of a signal and its complementary viewpoint (i.e., a scalogram generated with a wavelet transform) align with each other or not through optimizing a contrastive objective. We extensively assess the quality of learned features with our multi-view strategy on diverse public datasets, achieving strong performance in all domains. We demonstrate the effectiveness of representations learned from an unlabeled input collection on downstream tasks with training a linear classifier over pretrained network, usefulness in low-data regime, transfer learning, and cross-validation. Our methodology achieves competitive performance with fully-supervised networks, and it outperforms pre-training with autoencoders in both central and federated contexts. Notably, it improves the generalization in a semi-supervised setting as it reduces the volume of labeled data required through leveraging self-supervised learning.Comment: Accepted for publication at IEEE Internet of Things Journa

    MultiIoT: Towards Large-scale Multisensory Learning for the Internet of Things

    Full text link
    The Internet of Things (IoT), the network integrating billions of smart physical devices embedded with sensors, software, and communication technologies for the purpose of connecting and exchanging data with other devices and systems, is a critical and rapidly expanding component of our modern world. The IoT ecosystem provides a rich source of real-world modalities such as motion, thermal, geolocation, imaging, depth, sensors, video, and audio for prediction tasks involving the pose, gaze, activities, and gestures of humans as well as the touch, contact, pose, 3D of physical objects. Machine learning presents a rich opportunity to automatically process IoT data at scale, enabling efficient inference for impact in understanding human wellbeing, controlling physical devices, and interconnecting smart cities. To develop machine learning technologies for IoT, this paper proposes MultiIoT, the most expansive IoT benchmark to date, encompassing over 1.15 million samples from 12 modalities and 8 tasks. MultiIoT introduces unique challenges involving (1) learning from many sensory modalities, (2) fine-grained interactions across long temporal ranges, and (3) extreme heterogeneity due to unique structure and noise topologies in real-world sensors. We also release a set of strong modeling baselines, spanning modality and task-specific methods to multisensory and multitask models to encourage future research in multisensory representation learning for IoT

    A Cloud-Based Architecture with embedded Pragmatics Renderer for Ubiquitous and Cloud Manufacturing

    Get PDF
    The paper presents a Cloud-based architecture for Ubiquitous and Cloud Manufacturing as a multilayer communicational architecture designated as the Communicational Architecture. It is characterised as (a) rich client interfaces (Rich Internet Application) with sufficient interaction to allow user agility and competence, (b) multimodal, for multiple client device classes support and (c) communicational to allow pragmatics, where human-to-human real interaction is completely supported. The main innovative part of this architecture is sustained by a semiotic framework organised on three main logical levels: (a) device level, which allows the user `to use' pragmatics with the system, (b) application level which results for a set of tools which allows users pragmatics-based interaction and (c) application server level that implements the Pragmatics renderer,a pragmatics supporting engine that supports all pragmatics services. The Pragmatics renderer works as a communication enabler, and consists of a set of integrated collaboration technology that makes the bridge between the user/devices and the `system'. A federated or community cloud is developed using a particular cloud REST ful Application Programming Interface that supports (cloud) services registration, composition and governance (pragmatics services behaves as SaaS in the cloud).The work is supported by the Portuguese National Funding Agency for science, research and technology (FCT), (1) Grant No. UID/CEC/00319/2013, and (2) `Ph.D. Scholarship Grant' reference SFRH/BD/85672/2012.info:eu-repo/semantics/publishedVersio

    Combining heterogeneous sources in an interactive multimedia content retrieval model

    Get PDF
    Interactive multimodal information retrieval systems (IMIR) increase the capabilities of traditional search systems, by adding the ability to retrieve information of different types (modes) and from different sources. This article describes a formal model for interactive multimodal information retrieval. This model includes formal and widespread definitions of each component of an IMIR system. A use case that focuses on information retrieval regarding sports validates the model, by developing a prototype that implements a subset of the features of the model. Adaptive techniques applied to the retrieval functionality of IMIR systems have been defined by analysing past interactions using decision trees, neural networks, and clustering techniques. This model includes a strategy for selecting sources and combining the results obtained from every source. After modifying the strategy of the prototype for selecting sources, the system is reevaluated using classification techniques.This work was partially supported by eGovernAbility-Access project (TIN2014-52665-C2-2-R)

    Exploratory study to explore the role of ICT in the process of knowledge management in an Indian business environment

    Get PDF
    In the 21st century and the emergence of a digital economy, knowledge and the knowledge base economy are rapidly growing. To effectively be able to understand the processes involved in the creating, managing and sharing of knowledge management in the business environment is critical to the success of an organization. This study builds on the previous research of the authors on the enablers of knowledge management by identifying the relationship between the enablers of knowledge management and the role played by information communication technologies (ICT) and ICT infrastructure in a business setting. This paper provides the findings of a survey collected from the four major Indian cities (Chennai, Coimbatore, Madurai and Villupuram) regarding their views and opinions about the enablers of knowledge management in business setting. A total of 80 organizations participated in the study with 100 participants in each city. The results show that ICT and ICT infrastructure can play a critical role in the creating, managing and sharing of knowledge in an Indian business environment

    Measuring Non-Typical Emotions for Mental Health: A Survey of Computational Approaches

    Full text link
    Analysis of non-typical emotions, such as stress, depression and engagement is less common and more complex compared to that of frequently discussed emotions like happiness, sadness, fear, and anger. The importance of these non-typical emotions has been increasingly recognized due to their implications on mental health and well-being. Stress and depression impact the engagement in daily tasks, highlighting the need to understand their interplay. This survey is the first to simultaneously explore computational methods for analyzing stress, depression, and engagement. We discuss the most commonly used datasets, input modalities, data processing techniques, and information fusion methods used for the computational analysis of stress, depression and engagement. A timeline and taxonomy of non-typical emotion analysis approaches along with their generic pipeline and categories are presented. Subsequently, we describe state-of-the-art computational approaches for non-typical emotion analysis, including a performance summary on the most commonly used datasets. Following this, we explore the applications, along with the associated challenges, limitations, and future research directions.Comment: Under review in IEEE Transactions on Affective Computin

    Acoustic-based Smart Tactile Sensing in Social Robots

    Get PDF
    Mención Internacional en el título de doctorEl sentido del tacto es un componente crucial de la interacción social humana y es único entre los cinco sentidos. Como único sentido proximal, el tacto requiere un contacto físico cercano o directo para registrar la información. Este hecho convierte al tacto en una modalidad de interacción llena de posibilidades en cuanto a comunicación social. A través del tacto, podemos conocer la intención de la otra persona y comunicar emociones. De esta idea surge el concepto de social touch o tacto social como el acto de tocar a otra persona en un contexto social. Puede servir para diversos fines, como saludar, mostrar afecto, persuadir y regular el bienestar emocional y físico. Recientemente, el número de personas que interactúan con sistemas y agentes artificiales ha aumentado, principalmente debido al auge de los dispositivos tecnológicos, como los smartphones o los altavoces inteligentes. A pesar del auge de estos dispositivos, sus capacidades de interacción son limitadas. Para paliar este problema, los recientes avances en robótica social han mejorado las posibilidades de interacción para que los agentes funcionen de forma más fluida y sean más útiles. En este sentido, los robots sociales están diseñados para facilitar interacciones naturales entre humanos y agentes artificiales. El sentido del tacto en este contexto se revela como un vehículo natural que puede mejorar la Human-Robot Interaction (HRI) debido a su relevancia comunicativa en entornos sociales. Además de esto, para un robot social, la relación entre el tacto social y su aspecto es directa, al disponer de un cuerpo físico para aplicar o recibir toques. Desde un punto de vista técnico, los sistemas de detección táctil han sido objeto recientemente de nuevas investigaciones, sobre todo dedicado a comprender este sentido para crear sistemas inteligentes que puedan mejorar la vida de las personas. En este punto, los robots sociales se han convertido en dispositivos muy populares que incluyen tecnologías para la detección táctil. Esto está motivado por el hecho de que un robot puede esperada o inesperadamente tener contacto físico con una persona, lo que puede mejorar o interferir en la ejecución de sus comportamientos. Por tanto, el sentido del tacto se antoja necesario para el desarrollo de aplicaciones robóticas. Algunos métodos incluyen el reconocimiento de gestos táctiles, aunque a menudo exigen importantes despliegues de hardware que requieren de múltiples sensores. Además, la fiabilidad de estas tecnologías de detección es limitada, ya que la mayoría de ellas siguen teniendo problemas tales como falsos positivos o tasas de reconocimiento bajas. La detección acústica, en este sentido, puede proporcionar un conjunto de características capaces de paliar las deficiencias anteriores. A pesar de que se trata de una tecnología utilizada en diversos campos de investigación, aún no se ha integrado en la interacción táctil entre humanos y robots. Por ello, en este trabajo proponemos el sistema Acoustic Touch Recognition (ATR), un sistema inteligente de detección táctil (smart tactile sensing system) basado en la detección acústica y diseñado para mejorar la interacción social humano-robot. Nuestro sistema está desarrollado para clasificar gestos táctiles y localizar su origen. Además de esto, se ha integrado en plataformas robóticas sociales y se ha probado en aplicaciones reales con éxito. Nuestra propuesta se ha enfocado desde dos puntos de vista: uno técnico y otro relacionado con el tacto social. Por un lado, la propuesta tiene una motivación técnica centrada en conseguir un sistema táctil rentable, modular y portátil. Para ello, en este trabajo se ha explorado el campo de las tecnologías de detección táctil, los sistemas inteligentes de detección táctil y su aplicación en HRI. Por otro lado, parte de la investigación se centra en el impacto afectivo del tacto social durante la interacción humano-robot, lo que ha dado lugar a dos estudios que exploran esta idea.The sense of touch is a crucial component of human social interaction and is unique among the five senses. As the only proximal sense, touch requires close or direct physical contact to register information. This fact makes touch an interaction modality full of possibilities regarding social communication. Through touch, we are able to ascertain the other person’s intention and communicate emotions. From this idea emerges the concept of social touch as the act of touching another person in a social context. It can serve various purposes, such as greeting, showing affection, persuasion, and regulating emotional and physical well-being. Recently, the number of people interacting with artificial systems and agents has increased, mainly due to the rise of technological devices, such as smartphones or smart speakers. Still, these devices are limited in their interaction capabilities. To deal with this issue, recent developments in social robotics have improved the interaction possibilities to make agents more seamless and useful. In this sense, social robots are designed to facilitate natural interactions between humans and artificial agents. In this context, the sense of touch is revealed as a natural interaction vehicle that can improve HRI due to its communicative relevance. Moreover, for a social robot, the relationship between social touch and its embodiment is direct, having a physical body to apply or receive touches. From a technical standpoint, tactile sensing systems have recently been the subject of further research, mostly devoted to comprehending this sense to create intelligent systems that can improve people’s lives. Currently, social robots are popular devices that include technologies for touch sensing. This is motivated by the fact that robots may encounter expected or unexpected physical contact with humans, which can either enhance or interfere with the execution of their behaviours. There is, therefore, a need to detect human touch in robot applications. Some methods even include touch-gesture recognition, although they often require significant hardware deployments primarily that require multiple sensors. Additionally, the dependability of those sensing technologies is constrained because the majority of them still struggle with issues like false positives or poor recognition rates. Acoustic sensing, in this sense, can provide a set of features that can alleviate the aforementioned shortcomings. Even though it is a technology that has been utilised in various research fields, it has yet to be integrated into human-robot touch interaction. Therefore, in thiswork,we propose theATRsystem, a smart tactile sensing system based on acoustic sensing designed to improve human-robot social interaction. Our system is developed to classify touch gestures and locate their source. It is also integrated into real social robotic platforms and tested in real-world applications. Our proposal is approached from two standpoints, one technical and the other related to social touch. Firstly, the technical motivation of thiswork centred on achieving a cost-efficient, modular and portable tactile system. For that, we explore the fields of touch sensing technologies, smart tactile sensing systems and their application in HRI. On the other hand, part of the research is centred around the affective impact of touch during human-robot interaction, resulting in two studies exploring this idea.Programa de Doctorado en Ingeniería Eléctrica, Electrónica y Automática por la Universidad Carlos III de MadridPresidente: Pedro Manuel Urbano de Almeida Lima.- Secretaria: María Dolores Blanco Rojas.- Vocal: Antonio Fernández Caballer
    • …
    corecore