
Adaptive User Interface Support for Ubiquitous Computing
Environments

Heiko Desruelle1, Dieter Blomme1, George Gionis2, and Frank Gielen1

1 Ghent University – IBBT, Ghent, Belgium
2 National Technical University of Athens – DSS lab, Athens, Greece

{heiko.desruelle, dieter.blomme, frank.gielen}@intec.ugent.be, gionis@epu.ntua.gr

ABSTRACT
Application developers are increasingly facing the need to
cover a wider variety of target devices. The diversity of
devices supporting software applications is expanding from
PC, to mobile, home entertainment systems, and even the
automotive industry. Maintaining a viable balance between
development costs and market coverage has turned out to be
a challenging issue when developing applications for such a
ubiquitous ecosystem. In this paper, we present the webi-
nos approach as a means to enable adaptive user interfaces
for web-based applications in ubiquitous computing envi-
ronments. We propose a model-based user interface adap-
tation framework driven by a rich description of the target
delivery context.

Author Keywords
Adaptation, context awareness, abstract user interface.

ACM Classification Keywords
D.2.2 Software Engineering: Design Tools and Techniques—
User interfaces; H.5.2 Information Interfaces and Presenta-
tion: User Interfaces—User-centered design

General Terms
Design, Human Factors.

INTRODUCTION
The availability of connected devices is growing rapidly. In
our everyday life, we already use a multitude of personal de-
vices that are connected to the Web. The number of shipped
smart-phones at the end of 2010 even surpassed the tradi-
tional computer segments for the first time in the US [10].
From PC, to mobile, to home entertainment and even in-
car units, consumers should prepare for a connected experi-
ence. Through the Web, applications can be accessed when-
ever and wherever the user wants, regardless of the type
of device that is being used. However, from an applica-
tion development perspective, ubiquitous environments gen-
erally introduce challenging and time-consuming require-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
UIDL’2011, September 6, 2011, Lisbon, Portugal.

ments. The variety of presentation and interaction modalities
make it very hard to support a wide range of devices. Even
with standardized and cross-platform web technologies such
as HTML, CSS, and JavaScript, efficiently managing ubiq-
uitous variability points remains an important ongoing re-
search topic [9].

Web-based software systems are traditionally modeled by
separation of concerns. The models are engineered along
three orthogonal dimensions: the development phases, the
system’s views, and its aspects (as illustrated in Figure 1)
[12]. The phase dimension sets out the different stages of
web development, ranging from analysis, to design and im-
plementation. Each of these phases requires a number of
specific views addressing the system’s content, its naviga-
tion structure, and its presentation to the end-user. Finally,
the aspects dimension defines both the structural and be-
havioral aspects of each of the view models. The growing
importance of ubiquitous applications emphasizes the need
for fragmentation management within this web engineering
model. This concern has to be handled throughout every
stage of the application’s development life cycle. As pro-
posed by Kappel et al., adaptability can be considered as an
additional web engineering dimension, crosscutting all three
other web modeling dimensions [11].

For developers, the straightforward incorporation of such
adaptability still remains an important challenge [17]. Ubiq-
uitous applications should adapt dynamically to the current
context of use, and even to contextual situations not fore-
seen at the application’s design time. From this perspec-
tive, the webinos project aims to deliver a platform for web
applications across mobile, PC, home media and in-car de-

Figure 1. Adaptability as a crosscutting aspect on the traditional mod-
eling dimensions of web engineering (from Koch et al. [12])

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55822571?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


vices [22]. Webinos is a service platform project under the
European Union’s FP7 ICT Programme. The project repre-
sents a leap forward as a federated web runtime that offers
a common set of APIs to allow applications to easily ac-
cess cross-user, cross-service, and cross-device functionality
in an open yet secure manner. Within the webinos project,
work is being done to achieve a maximum level of indepen-
dence from the various underlying operating systems and
hardware. The aim of our research is to propose a number
of frameworks that enable the development of self-adaptive
ubiquitous web applications. The Model Driven Develop-
ment (MDD) approach provides very useful support for this
type of challenge. In this paper, we focus on enabling the
adaptability of user interfaces according to an approach de-
rived from the CAMELEON Reference Framework (CRF)
[3]. We achieve this goal by incorporating webinos runtime
support for context-aware transformation of abstract user in-
terfaces description models.

The remainder of this paper is structured as follows. Section
2 discusses related work. Section 3 provides background on
the webinos project and discusses the core web application
runtime platform. Section 4 elaborates on the webinos ap-
proach in offering adaptive user interface support to applica-
tion developers. In section 5 we discuss a case study in the
e-learning domain for providing learning assistance to stu-
dents with a disability. This use case demonstrates the goal
of our approach in order to reach adaptability support that
is driven by various contextual dimensions. Finally, future
work and our conclusion are presented in Section 6.

RELATED WORK
The CAMELEON Reference Framework (CRF) is a result
of the EU-funded FP5 CAMELEON Project [4]. The frame-
work defines a context-sensitive user interface development
process. The process is driven by an intrinsic notion of the
current user context, the environment context, as well as the
platform context. According to the CRF approach, user in-
terface (UI) development consists of four subsequent stages:

1. Specification of the task and domain model, defining a
user’s required activities in order to reach his goals.

2. Definition of an abstract user interface (AUI) model. The
AUI model expresses the application’s interface indepen-
dently from any of the delivery context attributes.

3. Definition of a concrete user interface (CUI) model, which
generates a more concrete description of the AUI by in-
cluding specific dependencies to the delivery context.

4. Specification of the final user interface (FUI), correspond-
ing with the user interface in its runtime environment.

Figure 2 shows the interconnections and transformations be-
tween the above-mentioned CRF stages. The downward ar-
rows depict reification processes. Reification is the trans-
formation from a higher-level abstraction to a lower-level
abstraction phase, hence inferring a more concrete UI de-
scription. The upward arrows, on the other hand, specify the
abstraction processes. An abstraction is the inverse transfor-
mation of reification. The third transformation type is the

Figure 2. Context-aware UI development according to the
CAMELEON Reference Framework (from Calvary et al. [3])

translation, depicted by the horizontal arrows. The transla-
tion deals with adapting the UI description to changes in one
of the context of use models. In this case, the UI descrip-
tion’s abstraction level remains the same when performing a
translation.

The Morfeo MyMobileWeb project [14] offers a framework
that simplifies the development of web-based applications.
MyMobileWeb specifically focuses on the mobile ecosys-
tem. Alternative device spaces are not addressed by the
project at this point. The framework applies a model-based
approach to enable an automated application adaptation pro-
cess based on the target delivery context. MyMobileWeb
uses the IDEAL2 language [6] to enable higher abstraction
levels during the application’s development. Adaptation de-
cisions are made at runtime, based on a contextual descrip-
tion of the target platform. The context space is modeled
according to the W3C Delivery Context Ontology [5]. The
mappings between the AUI and CUI descriptions are ex-
pressed using the standardized syntax of Cascading Style
Sheets Level 2 (CSS2) [1].

The Model-Based UI Working Group (MBUI WG) [21] is a
recently chartered W3C working group as part of the consor-
tium’s Ubiquitous Web Activity (UWA) [18]. Its goal is to
work on standards that enable the authoring of context-aware
user interfaces for web applications. The MBUI WG aims to
achieve this type of adaptivity by means of a model driven
design approach. In this context, the semantically structured
aspects of HTML5 will be used as key delivery platform for
the applications’ adaptive user interface.

THE WEBINOS PLATFORM
Webinos is an EU-funded project. The project aims to define
and deliver an open source platform, to enable web-based
applications and services to be used in a consistent and se-
cure manner over a broad range of connected devices. The
supported devices range from mobile, to desktop, to home
entertainment systems, and in-car units. In order to sup-
port this variety of devices and minimize the required ef-
forts for application developers, webinos upholds a “single
service for every device” ideology. Figure 3 depicts a high-
level overview of the webinos platform structure. The sys-



Figure 3. High-level overview of the webinos ubiquitous application
runtime platform

tem’s components are spread over the devices, as well as the
cloud. The cloud components represent an important aspect
of the platform, as these components enable users to access
applications and services regardless of their device’s phys-
ical boundaries. This seamless interconnection principle is
centered around the notion of a so called Personal Zone. The
Personal Zone groups a user’s personal devices and services.
To enable external access to devices and services in the zone,
the webinos platform defines the Personal Zone Hubs (PZH).
Each user has his/her own PZH running in the cloud. This
facilitates access to someone’s services over the Web from
other devices. The PZHs are federated and provide support
for discovering other people’s hub, allowing users to easily
share data and services. Although the system is designed
with a strong focus on taking benefit from online usage, all
devices in the Personal Zone have access to a local context
model. This allows users to still operate their applications
when being offline, or temporarily unable to access the Inter-
net. Webinos provides offline support through the Personal
Zone Proxy (PZP) component on the device. The PZP acts
in place of the PZH when no Internet access is available.

The webinos Web Runtime (WRT) component can be con-
sidered as an extension to a traditional browser. It is capa-
ble of rendering web applications specified using standard-
ized web technologies such as HTML, CSS, and JavaScript.
The webinos WRT maintains a tight binding with the local
PZP. This binding allows the webinos WRT to be much more
powerful than traditional browser-based application environ-
ments, as it enables the runtime to interface with local device
APIs and services. Moreover, the PZP also allows the sys-
tem to connect and synchronize with other webinos devices
through its binding with the PZH.

CONTEXT-DRIVEN USER INTERFACE ADAPTATION
As described in the previous section, the webinos platform
uses the web to provide a rich delivery channel for ubiqui-
tous applications. Nevertheless, there is still a need for op-
timizing applications to their specific delivery context. We
use the Context-Aware Design Space (CADS) to visualize
the required degree of application adaptability that is aimed
for by the webinos platform (see Figure 4). The CADS is
proposed by Vanderdonckt et al. [20] as a means to ana-
lyze and compare a software system’s dimensions subject to

adaptation. By default, the design space defines seven adap-
tation dimensions, but it can be extended with additional di-
mensions based on the application domain’s specific needs.
As shown in Figure 4, the strong fragmentation of ubiqui-
tous computing in terms of interaction methods, hardware
characteristics, software capabilities, etc. clearly requires a
high level of adaptability.

In order to fulfill the requirements stated in the webinos
CADS regarding user interface adaptability, we propose to
incorporate a model driven approach derived from the CRF
approach. Webinos aims to support both the reification and
translation transformations from the AUI abstraction level
and lower (i.e., CUI and FUI level). Webinos enables this
process by means of two framework components: the con-
text framework, and the abstract user interface framework.
Both frameworks are part of the runtime platform. The two
platform components are described in more detail further on
this section. The webinos UI adaptation process is realized
as a dynamic rendering process. The at runtime adaptation
behavior potentially implies a number of important perfor-
mance issues. Nevertheless, this design decision is made due
to the enormous variety of devices and contextual attributes
covering the ubiquitous ecosystem.

Webinos Context Model and Framework
Context management is an important aspect of the webi-
nos platform. The webinos context model comprises four
top-level submodels: the user context, the device context,
the environment context, and the application context. The
first three models are internally managed by the webinos
system, whilst the application context model provides de-
velopers the opportunity to structure a situation’s contex-
tual description from their application’s perspective. In ad-
dition, structuring the application’s context information al-
lows users to more easily open up data access from other
devices and services, or even allow access from the outside
world (e.g., by friends, family, collegues, etc.). The webi-
nos context framework is built on top of these models. The
framework is one of the core webinos service (see Figure

Figure 4. Context-aware design space (CADS) visualizing the adapt-
ability levels supported by the webinos platform for each of the design
dimensions



Figure 5. Architectural overview of the webinos context framework

3) and provides the necessary functionality for acquiring,
storing, and inferring rich contextualized data. Other we-
binos applications and services rely on this framework to
support the need for context-awareness during the execution
of their operations. The framework is responsible for ex-
tracting and storing context data through the identification of
specific context-related events that happen within webinos-
enabled devices. In addition, the framework provides appli-
cations with an API to access such context information either
by querying against the in-storage data or by being notified
in real time regarding specific context changes. The con-
text framework is closely coupled with the webinos policy
and privacy enforcement framework in the PZP. This bind-
ing aims to ensure the secure handling of the often highly
sensitive context data that is being stored and accessed. Fig-
ure 5 describes the conceptual architecture of the webinos
context framework.

The Context API constitutes a component that enables appli-
cations to access the underlying volume of contextual data in
a uniform way. The API provides interfaces that support two
different modes for accessing context information:

• The Query API enables applications to execute targeted
queries for specific context data in the storage system.

• The Change Subscription API enables applications to sub-
scribe for specific events that are triggered by a contextual
change within webinos. Subsequently, subscribed appli-
cations are notified in real time when such events occur.

API access requests are passed to the Query Processor. The
processor parses the request and checks its execution rights
in collaboration with the PZP. In case the request is granted
by the PZP, the query is optimized and executed. Besides
acting as policy enforcement point, the PZP is also responsi-
ble for dispatching context events to the Context Acquisition

Figure 6. Architectural overview of the webinos adaptive user interface
framework

component, and synchronizing contextual data between the
local device and the Personal Zone (cfr. description of the
general webinos architecture in Section 3).

Webinos User Interface Framework
The UI Framework is another core webinos service (see Fig-
ure 6). It enables application developers to focus the de-
sign of their user interfaces on the AUI abstraction level.
The framework takes care of processing UI-related platform
and context dependencies by using the AUI model to drive
the CUI generation in a (semi-)automated way. Whilst the
framework is capable of generating CUIs without human in-
tervention, webinos wants to keep developers in the loop
and enables them to specify their own transformation re-
quirements throughout the entire UI generation process. The
framework addresses this requirement by providing plugable
support for User Interface Description Languages (UIDL).
The extensible nature of the framework allows developers
to use their preferred CAMELEON Reference Framework-
compliant UIDL (e.g., UsiXML [19], or MariaXML [16]) to
define their application’s user interface. The only require-
ment to use a specific UIDL is the presence of a connec-
tor component for this particular UIDL in the webinos UI
framework. The UIDL-specific connectors are required in
order to enable the framework’s automated transformation
inference.

The UI Transformation Manager component is at the heart
of the framework. The component drives the transformation
processes, aiming for a contextually optimized final user in-
terface through a series of reification and translation opera-
tions. The Transformation Manager comprises an inference



engine to attain this goal. The webinos UI transformation
process relies on inference through dynamic pattern match-
ing. Each transformation rule Φ within the transformation
model can be represented as a conditional substitution oper-
ation

Φ := P ? [S] : [T ] . (1)

The predicate P in Equation 1 is used to set the required con-
dition before executing the transformation operation. The
actual transformation is expressed in terms of the substitu-
tion S = e [l := r], consisting of an expression e which is
matched for pattern l that in turn is substituted by the ex-
pression r. T is an optional substitution, executed in case
the required condition P is not met. The structural pat-
terns are searched for in the AUI model. This matching step
is performed in order to detect structural abstractions (i.e.,
widget structures) within the application’s user interface de-
scription. The transformation’s precondition expression P ,
on the other hand, is based on the variables in the context
model and the application’s domain model. The transfor-
mation rules are selected from the transformation model. In
case multiple transformation rules match the discovered UI
pattern, the default conflict resolution strategy is to allocate
higher priority to rules defined by the application developer.
This way, application developers maintain maximum control
over the transformation process.

CASE STUDY: LEARNING ASSISTANCE FOR DISABLED
STUDENTS
In this section, we demonstrate the concepts of our approach
based on a case study from the e-learning domain. The pre-
sented case aims to provide optimized e-learning facilities to
students with a certain disability. For students with a disabil-
ity, learning assistance services can be indispensable to the
successful pursuit of education. In general, course material
can significantly benefit from accessibility adaptations for
sighted, blinds, hearing impaired persons, etc. This process
is very resource consuming and often requires the allocation
of dedicated caretakers. Technologies such as Braille read-
ers, text-to-speech (TTS), and speech recognition have con-
siderably increased the accessibility of user interfaces. Us-
ing these technologies, disabled persons are given the oppor-
tunity to become more independent from their environment.
Nevertheless, every type of disability imposes its own us-
ability and structuring requirements on applications. Provid-
ing end-users with an optimal experience requires develop-
ers to address each of these requirements individually. This
approach leads to ad hoc development processes, in which
developers have to create and maintain multiple versions of
their learning application for each specifically supported dis-
ability.

This case study emphasizes the need for adaptability pro-
cesses driven by the user context, as well as the device and
environment context. The remainder of this section will elab-
orate on the dynamic adaptation of an e-learning AUI into a
contextually optimized CUI, performed within the webinos

Figure 7. Partial representation of the AUI model for a context-aware
e-learning application using the W3C XForms standard

Figure 8. Simplified representation of e-learning application’s domain
model

UI framework. We will examine the case in which a user
needs to be presented with an interactive form-based user
interface. Form-filling is a frequently performed action in e-
learning environments (e.g., online assessments, submitting
assignments, etc.).

Abstract User Interface Model
An application developer starts the UI design process by
defining the AUI model. The developer can choose any CRF-
compliant description language, as long as the webinos UI
framework contains the necessary connector component for
that specific UIDL. In this case, the developer needs to create
an abstract form-based user interface for applying to a cer-
tain e-learning course and decides to use W3C XForms [2]
as abstract UI description language. The XForms description
provides an overview of which control types should be pre-
sented in the UI, whilst remaining at a high abstraction level
and not specifying how to exactly display these controls. A
partial representation of the application form’s AUI is shown
in Figure 7. The form controls are abstracted to a level of in-
put and selection components. Grouping controls provide a



high level means of hierarchical interface structuring. These
grouping controls will also help in the detection of widget
structures by the UI Transformation Engine. Moreover, all
controls contain a reference to their corresponding entity in
the application’s domain model (see Figure 8, and the we-
binos UI Framework description in Section 4). For form-
based interfaces these bindings provide additional semantics
regarding structure, data types, data ranges, etc. This infor-
mation can in turn be exploited by the UI Transformation
Engine as rich a-priori knowledge concerning the adaptation
process.

Transformation Model
The system’s transformation model encompasses the reifi-
cation and translation steps in order to obtain a final user
interface that is optimized for the end-user’s current con-
text of use. The webinos UI Framework enables develop-
ers to fall back on a generic set of transformations provided
by the platform. The standard set of transformations ranges
from screen-fitting media adaptations, to adaptations based
on generic accessibility and resource saving best practices
[7][8]. On the other hand, application developers are still
able to maintain control over the transformation process. De-
velopers are free to refine their own transformation sets, spe-
cific to the application domain. As elaborated in Section 4,
reification and translation rules can be expressed in terms
of conditioned substitutions. Substitutions define structural
changes to the AUI model. Furthermore, the link between
the structural transformation and the conditionally required
context attributes is realized through the specification of the
transformations’ conditional predicate description. These
transformation preconditions can contain references to vari-
ables within the application’s domain model, as well as the
webinos Context Framework model. Nevertheless, based on
privacy and security considerations, model queries are only
permitted as long as the Personal Zone Proxy grants the ap-
plication access to that specific type of information.

The process of filling in forms with a mobile device can be
tedious task, as these devices lack the presence of a decent
keyboard [15]. A potential translation rule for a form-based
user interface in a mobile delivery context could be to match
the AUI for optional input controls. If such a pattern is de-
tected, the Transformation Manager can be instructed to re-
move the matching controls from the AUI. Alternatively, the
translation rule can state to make such optional controls less
obtrusive by rearranging them to the back of the form. More-
over, at the reification transformation level, the AUI can be
transformed to a CUI with a look-and-feel matching the tar-
get device context.

On the other hand, taking the user context into account is
also an important aspect. As indicated above in the case
study description, the use of abstract user interfaces can sup-
port the process of optimizing UIs for people with specific
disabilities. A useful reification rule in this context can be
to transform AUI structures to a VoiceXML-based [13] CUI
in case the end-user is blind or sighted. Figure 9 depicts the
code snippet of a VoiceXML-based form filling CUI model
after application of such reification ruleset. In the same way,

Figure 9. Partial representation of the VoiceXML-based CUI model for
a context-aware e-learning application

motor impaired persons can be supported. E.g, by trans-
forming the default rendering of form interaction controls in
order to simplify their selection.

CONCLUSION AND FUTURE WORK
It is essential to provide end-users with an UI design that is
optimized to their specific context of use. When developing
for ubiquitous computing environments, this requirement is
even further emphasized. It is not a sustainable business to
require developers to manually address all variability points
of the ubiquitous ecosystem. Such an approach only leads
to developers rapidly loosing market share, and on the other
hand entire consumer segments being ignored due to their
marginal revenue potential. Hence, the development of ubiq-
uitous applications requires a higher level of abstraction.

In this paper, we presented the webinos platform approach
as a means to support adaptive ubiquitous user interfaces.
We propose an adaptive UI framework driven by a detailed
description of the target delivery context. The framework
handles the processing of context related user interface de-
pendencies, whilst still providing developers the means to
keep control over the adaptation process. The UI adaptation
is performed on a high abstraction level through the incor-
poration of the CAMELEON Reference Framework (CRF).

We are currently working on a reference implementation of
the webinos platform. The extensive evaluation of our plat-
form has yet to be carried out. An iterative evaluation pro-
cess is planned throughout the implementation. Various test
groups will be addressed in order to validate our approach
from the perspective of developers as well as end-users.



ACKNOWLEDGEMENTS
The research leading to these results has received funding
from the European Union’s Seventh Framework Programme
(FP7-ICT-2009-5) under grant agreement number 257103.

REFERENCES
1. Bos, B., Celik, T., Hickson, I., Lie, H.W.: Cascading

Style Sheets Level 2. Available at
http://www.w3.org/TR/CSS2

2. Boyer, J.M.: XForms 1.1. Available at
http://www.w3.org/TR/xforms

3. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q.,
Bouillon, L. and Vanderdonckt, J.: A Unifying
Reference Framework for Multi-Target User Interfaces.
Interacting with Computers 15, pp. 289–308 (2003)

4. Cameleon project, http://giove.isti.cnr.
it/projects/cameleon.html

5. Cantera, C.M., Rhys, L.: Delivery Context Ontology.
Available at
http://www.w3.org/TR/dcontology

6. Cantera, C.M., Roderiguez, C., Diaz, J.L.: IDEAL2.
Available at
https://files.morfeo-project.org/
mymobileweb/public/specs/ideal

7. Chisholm, W., Vanderheiden, G., Jacobs, I.: Web
Content Accessibility Guidelines 1.0. Available at
http://www.w3.org/TR/WAI-WEBCONTENT

8. Connors, A., Sullivan, B.: Mobile Web Application
Best Practices. Available at
http://www.w3.org/TR/mwabp

9. Frederick, G.R., Lal, R.: The future of the mobile web.
Beginning smartphone web development, pp. 303–313,
Springer (2009)

10. International Data Corporation (IDC),
http://www.idc.com/research

11. Kappel, G., Proll, B., Retschitzegger, W.,
Schwinger, W.: Modeling ubiquitous web applications:
the WUML approach. Conceptual Modeling for New
Information Systems Technologies, pp. 183–197,
Springer (2002)

12. Koch, N., Knapp, A., Zhang, G., Baumeister, H.:
UML-Based web engineering. Web engineering:
modeling and implementing web applications,
pp.157–191, Springer (2008)

13. McGlashan, S., Burnett, D.C., Akolkar, R., Auburn,
R.J., Baggia, P., Barnett, J., Bodell, M., Carter, J.,
Deshmukh, M., Oshry, M., Rehor, K., Yang, X., Young,
M., Hosh, R.: Voice Extensible Markup Language
(VoiceXML). Available at
http://www.w3.org/TR/voicexml30

14. Morfeo MyMobileWeb project,
http://mymobileweb.morfeo-project.org

15. Nakagawa, T., and Uwano, H.: Usability Evaluation for
Software Keyboard on High-Performance Mobile
Devices. In: Proceedings of HCI International 2011,
pp. 181–185, Springer (2011)

16. Paterno, F., Santoro, C., and Spano, L.D.: MARIA: A
universal, declarative, multiple abstraction-level
language for service-oriented applications in ubiquitous
environments. ACM Trans. Comput.-Hum. Interact.,
pp. 324–353 ACM (2009)

17. Schauerhuber, A., Wimmer, M., Schwinger, W.,
Kapsammer, E., Retschitzegger, W.: Aspect-oriented
modeling of ubiquitous web applications: the
aspectWebML approach. In: 14th International
Conference and Workshops on the Engineering of
Computer-Based Systems, pp. 569–576 (2007)

18. W3C Ubiquitous Web Applications Activity,
http://www.w3.org/2007/uwa

19. UsiXML, http://www.usixml.org

20. Vanderdonckt, J., Coutaz, D., Calvary, G.,
Stanciulescu, A.: Multimodality for Plastic User
Interfaces: Models, Methods, and Principles. In:
Multimodal user interfaces: signals and communication
technology, Lecture Notes in Electrical Engineering,
pp. 61–84 Springer-Verlag (2007)

21. W3C Model-Based UI Working Group Charter
http://www.w3.org/2011/01/
mbui-wg-charter.html

22. Webinos project, http://www.webinos.org

http://www.w3.org/TR/CSS2
http://www.w3.org/TR/xforms
http://giove.isti.cnr.it/projects/cameleon.html
http://giove.isti.cnr.it/projects/cameleon.html
http://www.w3.org/TR/dcontology
https://files.morfeo-project.org/mymobileweb/public/specs/ideal
https://files.morfeo-project.org/mymobileweb/public/specs/ideal
http://www.w3.org/TR/WAI-WEBCONTENT
http://www.w3.org/TR/mwabp
http://www.idc.com/research
http://www.w3.org/TR/voicexml30
http://mymobileweb.morfeo-project.org
http://www.w3.org/2007/uwa
http://www.usixml.org
http://www.w3.org/2011/01/mbui-wg-charter.html
http://www.w3.org/2011/01/mbui-wg-charter.html
http://www.webinos.org

	Introduction
	Related Work
	The Webinos Platform
	Context-Driven User Interface Adaptation
	Webinos Context Model and Framework
	Webinos User Interface Framework

	Case Study: Learning Assistance for Disabled Students
	Abstract User Interface Model
	Transformation Model

	Conclusion and Future Work
	Acknowledgements
	REFERENCES 

