889 research outputs found

    A SVD-based transient error method for analyzing noisy multicomponent exponential signals

    Get PDF
    The problem of estimating the parameters of noisy multicomponent signals using parametric modeling technique is considered in this paper. The multicomponent signal of interest is formed by a superposition of basic functions having the same location in time but different widths and amplitudes. Based on the modified Gardner transformation, some samples of deconvolved data are derived from the multicomponent signals. The deconvolved data are then modeled using a special nonstationary autoregressive moving average (ARMA) process in which the parameters of the ARMA model are obtained by linear least-squares procedure. The least-squares procedure is based on the singular value decomposition (SVD) to overcome the limitations of the transient error method (TEM) of analysis that uses cholesky decomposition to determine its AR coefficients. The moving average (MA) coefficients corresponds to the initial residual error sequences so as to account for the nonstationary noise in the deconvolved data. This new method of analysis, termed the SVD-based transient error method, produces high resolution estimates of the exponents of multicomponent signals at both low and high signal to noise (SNR) ratios

    Application of ARMA modeling to multicomponent signals

    Get PDF
    This paper investigates the problem of estimating the parameters of a multicomponent signal observed in noise. The process is modeled las a special nonstationary autoregressive moving average (ARMA) process. The parameters of the multicomponent signal are determined from the spectral estimate of the ARMA model The spectral lines are closely spaced and the ARMA model must be determined from very short data records. Two high-resolution ARMA algorithms are developed for determining the spectral estimates. The first ARMA algorithm modifies the extended Prony method to account for the nonstationary aspects of noise in the model.For comPonents signals with good signal to noise ratio (SNR) this algorithm provides excellent results, but for a lower SNR the performance degrades resulting in a loss in resolution. The second algorithm is based on the work of Cadzow. The algorithm presented overcomes the difficulties of Cadzow's and Kaye's algorithms and provides the coefficients for the complete model not just the spen ral estimate. This algorithm performs well in resolving multicomponent signals when the SNR is low

    A Novel Approach for Ridge Detection and Mode Retrieval of Multicomponent Signals Based on STFT

    Full text link
    Time-frequency analysis is often used to study non stationary multicomponent signals, which can be viewed as the surperimposition of modes, associated with ridges in the TF plane. To understand such signals, it is essential to identify their constituent modes. This is often done by performing ridge detection in the time-frequency plane which is then followed by mode retrieval. Unfortunately, existing ridge detectors are often not enough robust to noise therefore hampering mode retrieval. In this paper, we therefore develop a novel approach to ridge detection and mode retrieval based on the analysis of the short-time Fourier transform of multicomponent signals in the presence of noise, which will prove to be much more robust than state-of-the-art methods based on the same time-frequency representation

    Analysis and decomposition of frequency modulated multicomponent signals

    Get PDF
    Frequency modulated (FM) signals are studied in many research fields, including seismology, astrophysics, biology, acoustics, animal echolocation, radar and sonar. They are referred as multicomponent signals (MCS), as they are generally composed of multiple waveforms, with specific time-dependent frequencies, known as instantaneous frequencies (IFs). Many applications require the extraction of signal characteristics (i.e. amplitudes and IFs). that is why MCS decomposition is an important topic in signal processing. It consists of the recovery of each individual mode and it is often performed by IFs separation. The task becomes very challenging if the signal modes overlap in the TF domain, i.e. they interfere with each other, at the so-called non-separability region. For this reason, a general solution to MCS decomposition is not available yet. As a matter of fact, the existing methods addressing overlapping modes share the same limitations: they are parametric, therefore they adapt only to the assumed signal class, or they rely on signal-dependent and parametric TF representations; otherwise, they are interpolation techniques, i.e. they almost ignore the information corrupted by interference and they recover IF curve by some fitting procedures, resulting in high computational cost and bad performances against noise. This thesis aims at overcoming these drawbacks, providing efficient tools for dealing with MCS with interfering modes. An extended state-of-the-art revision is provided, as well as the mathematical tools and the main definitions needed to introduce the topic. Then, the problem is addressed following two main strategies: the former is an iterative approach that aims at enhancing MCS' resolution in the TF domain; the latter is a transform-based approach, that combines TF analysis and Radon Transform for separating individual modes. As main advantage, the methods derived from both the iterative and the transform-based approaches are non-parametric, as they do not require specific assumptions on the signal class. As confirmed by the experimental results and the comparative studies, the proposed approach contributes to the current state of the-art improvement

    Novel characterization method of impedance cardiography signals using time-frequency distributions

    Get PDF
    The purpose of this document is to describe a methodology to select the most adequate time-frequency distribution (TFD) kernel for the characterization of impedance cardiography signals (ICG). The predominant ICG beat was extracted from a patient and was synthetized using time-frequency variant Fourier approximations. These synthetized signals were used to optimize several TFD kernels according to a performance maximization. The optimized kernels were tested for noise resistance on a clinical database. The resulting optimized TFD kernels are presented with their performance calculated using newly proposed methods. The procedure explained in this work showcases a new method to select an appropriate kernel for ICG signals and compares the performance of different time-frequency kernels found in the literature for the case of ICG signals. We conclude that, for ICG signals, the performance (P) of the spectrogram with either Hanning or Hamming windows (P¿=¿0.780) and the extended modified beta distribution (P¿=¿0.765) provided similar results, higher than the rest of analyzed kernels.Peer ReviewedPostprint (published version

    Estimation of signal parameters in the frequency domain in the presence of harmonic interference: a comparative analysis

    Get PDF
    In this paper, a novel method for the estimation of the parameters of the spectral components of a signal, also in the case of harmonic interference, is characterized and compared to other methods proposed in literature. The comparison criteria include the evaluation of residual errors and uncertainties on estimated parameters for different multicomponent signals

    Performance evaluation of the Hilbert–Huang transform for respiratory sound analysis and its application to continuous adventitious sound characterization

    Get PDF
    © 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/The use of the Hilbert–Huang transform in the analysis of biomedical signals has increased during the past few years, but its use for respiratory sound (RS) analysis is still limited. The technique includes two steps: empirical mode decomposition (EMD) and instantaneous frequency (IF) estimation. Although the mode mixing (MM) problem of EMD has been widely discussed, this technique continues to be used in many RS analysis algorithms. In this study, we analyzed the MM effect in RS signals recorded from 30 asthmatic patients, and studied the performance of ensemble EMD (EEMD) and noise-assisted multivariate EMD (NA-MEMD) as means for preventing this effect. We propose quantitative parameters for measuring the size, reduction of MM, and residual noise level of each method. These parameters showed that EEMD is a good solution for MM, thus outperforming NA-MEMD. After testing different IF estimators, we propose Kay¿s method to calculate an EEMD-Kay-based Hilbert spectrum that offers high energy concentrations and high time and high frequency resolutions. We also propose an algorithm for the automatic characterization of continuous adventitious sounds (CAS). The tests performed showed that the proposed EEMD-Kay-based Hilbert spectrum makes it possible to determine CAS more precisely than other conventional time-frequency techniques.Postprint (author's final draft
    • …
    corecore