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Abstract. This paper investigates the problem of estimating the parameters of a
multicomponent signal observed in noise. The process is modeled as a special nons-
tationary autoregressive moving average (ARMA) process. The parameters of the
multicomponent signal are determined from the spectral estimate of the ARMA
model The spectral lines are closely spaced and the ARMA model must be deter-
mined from very short data records. Two high-resolution ARMA algorithms are
developed for determining the spectral estimates. The first ARMA algorithm
modifies the extended Prony method to account for the nonstationary aspects of
noise in the model. For multicomponents signals with good signal to noise ratio
(SNR) this algorithm provides excellent results, but for a lower SNR the perfor-
mance degrades resulting in a loss in resolution. The second algorithm is based on
the work of Cadzow. The algorithm presented overcomes the difficulties of Cadzow's
and Kaye's algorithms and provides the coeflicients for the complete model not just
the spectral estimate. This algorithm performs well in resolving multicomponent
signals when the SNR is low.

Keywords. Spectral Analysis; Discrete Systems; Modelling; Prediction; Parameter

estimation.

INTRODUCTION

The problem of estimating highly spiked spec-
trums from short data records arises in all
branches of Science and Engineering. ' Classical
approaches to this problem have limited resoiu-
tion because of their dependence on the data
record length. More recently digital signal pro-
cessing techniques using finite parameter model-
ing have been proposed as an alternative
approach to spectral estimation. A comprehen-
sive treatment of the topic is given by Kaye and
Marple (1981). One of the major advantages of the
so called modern approach is Lhat since it is only
necessary to estimate a relatively small number of
parameters for the model very accurate high
resolution spectra can often be obtained from
short data records.

The most general finite parameter model has a
feedback and moving average component and is
called an autoregressive moving average (ARMA)
model. A problem of particular interest which can
be modelled with an ARMA model is the well known
multicomponent signal (Cohn-Sfetcu, Smith and
Nichols, 1975), formed by a superposition of com-
ponents having the same location in time but
different widths and amplitudes. These signals
arise in nuclear magnetic resonance (Smith,
Cohn-Stefcu and Buckmaster, 1976), compartmen-
tal analysis in physiology (Pizer and others, 1969),
and pharmokinetics (Lin and Duh, 1974), to men-
tion a few.
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In this paper the multicomponent signal problem
is converted to a spectral estimation problem, an
ARMA model is formulated for the process and
several new algorithms for determining the ARMA
model are presented. Finally the algorithms are
implemented and tested.

MULTICOMPONENT SIGNALS

Mathematically, the multicomponent continuous
signal s(r) formed by a superposition of com-
ponents having the same location in time but
different widths and amplitudes is given by

s()=% apum) +n(m) . (1)

1=1

where reR* and R* is the positive real line. The
pulse shape p(r) is known, while the unknown

parameters M and 4 A.i=1,.. M, are to be deter-
mined. For convenience the parameters A are
considered ordered so that A, <Xz <<+ <Ayx. The
additive noise is denoted n(7). More generally the
signal is given by the integral equation

(2)

s(r) = i 9P (AL + nir)

where the unknown function g(r) is to be deter-
mined from the noisy observations s(r). Equation
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(1) is a particular case of the integral equation
when g(7) is given by the distribution

g =3 A 8(r-N). (3)

1=1

where 6(7) is the dirac delta function. Smith and
Cohn Sfeteu [4] showed the integral equation (2)
can be mapped into a conveolution integral equa-
tion. Their result is repeated here for complete-
ness and extended slightly by multiplying by a fac-
tor of 7@ instead of .

Multiplying both sides of (2) by v and introducing
the log transformations 7=ef , A=e™* gives the
convolution integral

y(!):_z (AR (E-N)dA + v (t) (4)

for — <t <o, where y(t) = e s(ef),
z(t) =ele g(e™), h{t)=e p(e') and
v(t) = e n(ef). The input-output relationship (4) is
a standard deconcolution problem when =z(¢t) is
taken to be the unknown input, k(t) the known
impulse response of the system and y(t) the noisy
output observations is a standard deconvolution
problem. For the multicomponent signal (1) the
unknown input signal z(t) is given by the distribu-
tion

2(0) = 3 Boo(t +1o\) (5)

where B = A4/ N\

An estimate of the unknown signal z(t) can be
obtained by taking the Fourier transform of both
sides of equation (4), dividing by H(w), windowing
the result and then inverse transforming to give

Y{w) Wlew
H(w) |

where W(w) is the window. Capitals are used to
denote Fourier transforms. This estimate has
been extensibely analyzed in the literature partic-
ularly since the advent of the FFT algorithm
(Smith, Cohn-Stefcu and Buckmaster, 1976). The
major advantages of such an approach to analyz-
ing multicomponent signals are that no a-priori
information on the parameters is required, all the
parameters are determined simultaneously, and a
reliable analysis of data could be performed by
personnel unskilled in curve fitting.

z(t) = F1

The difficulties associated with this method have
been detailed by a number of authors (Smith and
Cohn-Stefcu, 1974, Smith and Nichols, 1983,
kober, Gruble and Hillen, 1980, and Stockman,
1978). The major problems are the monotonically
decreasing signal-to-noise ratio of the signals and
the non-linear transformation of the experimental
data s(7) into the signal y{¢) used in the deconvolu-
tion equation Another problem is the resolution
obtainable using linear deconvolution procedures
is seriously limited by the high frequency noise
introduced by deconvolution. This must be win-
dowed off which restricts the resolution of the
estimate. Roughly speaking the resolution will be
limited to the reciprocal of the window width.

The use of this procedure on the analysis of true
(non-simulated) experimental data from nmr
analysis of tissue biopsy samples (Cohn-Stefcu and

others, 1975), and activation reactions in radioac-
tive decay (Stockman, 1978), have been reported.
For experimental data the technique gave recog-
nizable peaks, but the presence of noise required
the application of filters that lead to a significant
decrease in the resolution of the exponential com-
ponents.

In recent vears, several new digital processing
techniques have become important and a wide
variety of methods have been proposed for system
modeling. A major advantage of the modeling
technique is that since it is only necessary to esti-
mate a relatively small number of parameters,
very accurate results can often be obtained with
short data records.

In the next section an ARMA model is derived for
the multicomponent signal given by egn(1).

MULTICOMPONENT ARMA MODEL

Transforming eqn. (4) and dividing by H{») gives
the estimate

x() = Hk = x(@) + NE) | (6)

where the noise
N(w) = V(w)/ H(w) (7)

For the multicomponent signal (1), X(w) is the
Fourier transform of eqn. (5) and is a superposi-
tion of complex sinusoids given by

X@ = 3 B ®)
i=1
In this case x{w) is the sum of complex sinusoids in
additive noise. Formulated as problem in spectral
analysis X(w) is the data signal while the desired
spectral estimate corresponds to the distribution
z(t) given by eqn. (5).

To determine a finite parameter model, take uni-
formly spaced samples of eqn. (8) with frequency
spacing Aw giving

Xk = H‘ gjhu!n)\it

(9)

for k =0, +=1, ..., +==. As X(w) is strictly time lim-
ited with time width In{Am/A,), fOr A; <Az < -+ <Ay,
alaising is avoided provided Af in{Ay/ ) < :, where
Aw = 2rAf

Taking the z-transform of equation (9) it is not
difficult to show (Ulrych and Clayton 1976) that
there is a set of M complex parameters
a,:i=1.2 ..M, such that the signal can be
predicted exactly from 4 initial points using the
autoregressive (AR) model

Xk*‘{: a X =0 (10)
=1
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The prediction error filter

!

% age

=

CA() =14

(11)

\
has roots on the unit circle given by

N .
Alz) =T (1 -2

If the data is observed in additive noise then from
equation (6) frequency samples of the estimate
X{z) can be expressed by

Xe=Xe + N (12)

where AN is due to the noise. Substituting into
(10) gives the special autoregressive moving aver-
age (ARMA) model
w:
A
K, ‘fl G Xes = N + (i‘ @ Ne -
W - =

(13)
A similar expression is given in (Ulrych and Clay-
ton 1976).- There are however, several differences
between the expression obtained by Ulrych and
Clayton and equation (13). In equation (13) the
signals are complex and the information signal is
deterministic. Also through the original noise n(7)

Hj
deconvolved signal are nonstationary. The noise
variance is given by of = 0@/ | H | where of denotes
the variance of ¥. The noise usually increases
substantially with increasing k because of the divi-
sion by H,.

is stationary, the noise samples A, = L3 of the
k

In the next section two specialized algorithms are
given which estimate the distribution (5).

TRANSIENT ERROR METHOD

A well known algorithm which can be used to esti-
mate the distribution parameters inx, and B; of
eqn (5) when the noise is small, is the extended
Prony method (Kay and Marple, 1981). This
method is complicated for this problem because
the AR model coefficients required are complex
and it assumes stationary noise which is not the
case. Further it is requires prior knowldege of the
number of components M. Another approach
called the Transient Error Method, avoids the
computational difficulties of the extended Prony
method and is described below.

Regard the sample values X;, for & = 0, as the input
to a discrete filter with transfer function A{z). In
the absence of noise the output of the filter,
denoted E;, satisfies the recursive equation

B=X+ 3 ok (14)

for k = 0. From equation (10) it follows that &, will
be zero for k = #. Because the input is taken to be
zero for k <0 the output transient E, £, ..., Ey-,
will be non-zero. Taking the z-transform of equa-
tion (14) and solving for z(z) gives the ARMA m adel

2{z) = %(K:—}L . (15)
The polynomi 21 A(z) is given by equation (11) and
can be calculated once the AR model coeflicients
a, ap ..., ay are known. The polynominal E(z) is
calculated from
- "
E‘(g) = & E, z ‘
k=0
where Eg E, ..., Ey-, are determined from the M
initial data values X, X, .... Xy, using the equation

(14). Once A(z) and E(z) are known equation (15)

can be used to determine z(z). Evaluating z(z) on
the unit circle gives an estimate of the distribu-
tion (5). Since the distribution has delta functions

it may be necessary to move the poles of the

polynominal A(z) toward the origin slightly by
exponentially weighting AR the model coeflicients
to permit calculation of the distribution.
Equivalently z{z) can be calculated on the circle
|z| =1/7 forr < 1.

In the presence of noise the filter output £, will
not be zero after the transient but if the AR fit
gives a good model they will be small. The output
transient depends on the initial data values which
have much less noise than data values further
from the origin because of the division by H(w). So
for the low noise equation (16) should provide a
good estimate of the distribution.

Both the extended Prony method and the Tran-
sient Error method require as a first step, an
algorithm to determine the AR coefficients. Two
such algorithms are the well known Burg (1975)
lalgorithm and Marple's (1980) least squares algo-
rithm. Both these algorithms determine the AR
coefficients based on the mean square of both the
forward and backward prediction errors. Both are
written for a complex data set. The use of forward
and backward errors is based on the assumption
that the data is weakly stationary. If the process is
not weakly stationary the AR coefficients obtained
from the forward prediction may be different than
the AR coefficients obtained from the backward
prediction. The Burg algorithm gives a minimum
phase polynomial which insures a stable predictor
but for short data lengths is known to biased esti-
mates and can even result in line spitting. The LS
algorithm does not insure a stable predictor but
usually gives better estimates of the spectral
peaks for short data lengths. The Marple LS algo-
rithm is very sensitive to arithmetic errors and
often does not converge. Another LS algorithm
where the forward, backward and forward-
backward predictions can be selected has been
given by 1. Barrodale and RE. Errickson (1980).
This algorithm was is not as efficient as the Marple
algorithm but is less sensitive to arithmetic
errors. This algorithm was written for real data
but has been extended to complex data by the
authors and is refered to as the complex least
squares (CLS) algorithm. The CLS algorithm is
used in this report to determine AR coeflicients.

GENERAL ARMA ALGORITHM

In the previous section two special algorithms
were given for determining the distribution of the
multicomponent signal (1) when the noise is small.
More generally if the multicomponent signal is
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given by the integral eqn.(2) or if the deconvolved
data X(w) is regarded as a process then it is desir-
able to fit X{w) with a general ARMA model. For a
process these models only give the spectral den-
sity of the signal. There are many algorithms
available in the literature for determining the
parameters of an ARMA model. The algorithm
used in this paper is based on Cadzow's (1982)
method and is referred to as the Improved Cadzow
ARMA algorithm.

Cadzow's method provides high resolution esti-
mates of the spectrum and does not produce
spectral line splitting for short data records. It is
computationally stable and uses Singular Value
Decomposition (SVD) of the covariance matrix to
obtain the order of the AR portion of the model.
However, his method does not provide direct esti-
mates of the order and parameters of the MA por-
tion of the model and it can produce power spec-
tral density estimates which are not positive real.
An improved algorithm has been developed by the
authors which overcomes the difficulties of
Cadzow's method. The details of the improved
algorithm are beyond the scope of the this paper
but the steps involved are given below.

Improved Cadzow ARMA Algorithm

1) Select an initial guess for the AR and MA orders
respectively.

2) Compute the covariance matrix of the data

3) Decompose the covariance matrix using SVD
and determine the AR order from the effective
rank of the matrix.

4) Calculate the AR coeflicients using a pseudo
inversion of the covariance matrix.

5) Compute Cadzow's modified MA coefficients and
.take the Fourier transform of these coefficients.

6) Check if the result obtained in 5) is positive
definite. If not, the data is modified and step 5) is
repeated.

7) Perform Cepstral analysis on the modified MA
portion to estimate the MA coefficients and order.
8) Compute the ARMA estimate of the spectrum.

MULTICOMPONENT MODELING ALGORITHM

The steps involved in analyzing experimental mui-
ticomponent data are described below.

1) Log Transformation: The multicomponent
integral equation is converted to a standard linear
convolution integral by multiplying both sides of
eqn.(2) by ¢ and then making a log transforma-
tion to get eqn.(4).

2) Discrete Time Deconvolution System: The con-
tinuous time deconvolution problem is converted
into a discrete time deconvolution problem to
facilitate digital analysis. This is achieved by mul-
tiplying both sides of eqn.(2) by == and then taking
log samples 7, =™ or by uniformly sampling y(t)
in eqn.(4) at a sampling rate 1/T. The sampling
rate required depends on the bandwidth of the
pulse. In practise one usually has uniformly
spaced samples of s(7) and it is necessary to inter-
polate the results to obtain the log samples. While
the problem of interpolation is not investigated in
this report good experimental results have been

obtained using spline interpolators (Smith and -

Nichols, 1983).
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Fig. 1._ Magnitude Spectrum

The class of pulses of interest are essentially time
and frequency limited. For example: the exponen-
tial pulse p(r) = e ™ maps to the pulse h{t) = elee '
and its magnitude spectrumis shown in Fig.1 for
a= 1.0

In practise the noise v{t) in eqn.(4) will be experi-
mentally bandlimited to avoid aliasing effects on
sampling. The previous paragraph demonstrated
that the pulse h(t) can be taken to be strictly
bandlimited with negligible aliasing. Denote the
bandwidth by B Hz. Since the convolution integral
(4) only depends on frequencies of the input signal
x(t) in the same frequency range as h(t) it follows
that x(t) is also effectively bandlimited to B Hz.
Thus the convolution integral given by eqn.(4) can
be written as the summation (Papoulis, 1977)

y(t) = 15 z(mT)h(t-mT) + u(t)
provided that 2BT>1. Sampling at a rate 1/T and
letting x[n] = x(nT), h[n] = Th(nT), v[n] = v(nT)
and y[n] = y(nT) gives the discrete time system

yin]= ¥ z(mrln-m] +vn] (16)

—

3) Selection of the Data Values: The range of
experimental data samples is of necessity finite
and their selection is very important. The limits of
the sample values for y[n] are given by
nuv<n<nyy. The lower limit, denoted nyy , is res-
tricted because the log spacing cannot become
arbitrarily small. The upper limit , denoted ngux.
best should be limited because of the monotoni-
cally decreasing signal to noise ratio of the signal.
The selection of these limits requires some experi-
mental testing. An alternative approach is to
center the data between symmetrical limits, say
-ny and ng. For exponential pulses this can be
achieved by multiplying the experimental data by
Ay . . ¥

e? with an appropriate selection of A,.

4) The Deconvolved Data Signal: The discrete time
system (16) is deconvolved using an N point DFT as
follows. The number of points N required for the
DFT depends on range of the estimate of the dis-
tribution x[n] to avoid aliasing. For the multicom-
ponent signal given by eqn.(1) the distribution
range is In{Ag/A,) and so NT> In{Ag/A). If N <
ngyw-nuy+! then it is necessary to prealias the
the data values y[n] and the pulse h[n] before tak-
ing their DFT's. The sample values X, of the
deconvolved data are then determined by

7. = DFTyin]]
X = DFT'hn])
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for - N/2 < k < N/2 - 1, where y[n] and h[n] are
aliased versions of y[n] and h[n] respectively.
Because of thle division by the DFT[h[n]] the
estimate X, becomes increasingly noisy and only
the data values where the signal to noise ratio is
high should ysed. Once the range of values is
selected a model is fitted to the deconvolved data
and the distribution is estimated.

5) Finite Parameter Model and Spectral Estimate
of the Unknown Distribution: A finite parameter
model is fitted to the deconvolved data values X,
for -L < k < L. The number of deconvolved data
points is 2L+1 and L is selected to give values with
good signal to noise ratios as described in step 4.
Once the parameters of the selected model are
determined an estimate of the unknown input dis-
tribution x(t) and hence g{s) can both be calcu-
lated. Again it is noted that because of the way the
deconvolved data is obtained, it is regarded as a
frequency function while the desired distribution
Is its spectral estimate.

5.1) Traﬁ;fent Error method: For the multicom-
ponent sigral given by eqn.(1) the parameters of
the unknown distribution can be estimated using
the Prony method described earlier andis not
used because of reasons mentioned. Another
approach is to estimate the distribution x(t) using
the Transient Error Method in the previous sec-
tion. The steps in this method are recapped below
for convience. The distribution is estimated using

eqn.(15) via
= E(z
Ble) = NTE(%)L

for z = r=1e12M/NT  where Af = 1/NTand r < 1. The
spectral estimate of the distribution is usually
normalized and so the multicative factor is not
required.

5.2) General Fitting Algorthms: In this paper the
only general ARMA model considered is the
improved Cadzow method. The method is decribed
in the previous section.

SIMULATION RESULTS

To illustrate the algorithm developed in the report
a multicomponent signal consisting of four
exponential pulses is investigated. The purpose of
this simulation is to illustrate the viability of the
technique and not provide a delailed statistical
study. The data signal is given by

s(7) = 0.5e7%% + 2e " + 5¢ %" + 10e 7107

for reR*.

Multiplying by = and letting 7 = et gives the linear
deconvolution system described by egn. (4). The
distribution to be estimated is given by

z(t) = 0.5'796(t —In2) + 2'"26(t +In2) + 5'84(¢t +in5)
+ 10'7%6(t +1n 10).

When o =1 all the delta functions have an equal
weight of unity.

The distribution is estimated using the algorithm
and described in the previous section. After the

nonlinear log transformation the linear deconvolu-
tion system, given by the equation (4), is con-
verted to a discrete time system by sampling at
rate i/ T = 40Hz, see Fig. 1. For a = i the range of
the sampled data was selected to be nyy = -50 and
nyy = 12, These limits are determined by observ-
ing the sampled data. The selection of nyy is not
critical but great care and usually some trail and
error is required in selecting nyu since the noise
is increasing exponentially. Once the range was
determined, the data was transformed using a 64
point FFT algorithm and then deconvolved using
equation (17). The useful range of the deconvolu-
tion data was selected to be -i6<k < :6. These
limits again are critical and an initial estimate can
be obtained by observing the deconvolved data. If
the distribution components are widely spaced a
visual selection is usually adequate, but for closely
spaced impulses the deconvolution range was
selected by recursively fitting the data and
selecting the fit with the least normalized mean
square error. The deconvolved data consists of
samples of 4 complex sinusoidal signals in nonsta-
tionary noise with normalized frequencies 0.144
Hz., 0.101 Hz., 0.043 Hz. and -0.043 Hz. The associ-
ated spectrum (distribution) is estimated from 17
data points. Once Lhe deconvolved signal is
obtained the distribution can be estimated.
Results for the algorithm given are shown below.

Fourier Transform Window Approach: The result
obtained by windowing the deconvolved data with
a Harris (1978) window to remove high frequency
noise and then inverse transforming, rather than
using the modelling technique described in this
paper, ‘is shown in Fig. 2 for a=1.

5.0 5
B
2
z
o
<
x _3504
-35.0 T T T T 3=
-80 -4.0 00 40 80
Fig. 2. Distribution Estimate using Window Method

Transient Error Method: The estimate of the dis-
tribution using the transient error method for the
CLS algorithm is shown in Fig. 3 for a=1 and
a=1/2. Both of these results was calculated for
z = 1/7 exp(2mjt/ NT) with » =0.99. This moves the
poles away from the unit circle giving a better
estimate of the peaks of the distribution. The
magnitude of the results are expressed in df and
normalized to a maximum value of 0 d4B. The
actual peak value in both cases was 40 dB. The
CLS gives very accurate location (hence an excel-
lent estimate of A; ) of the distribution impulses.
The peaks of the distribution give a relative esti-
mate of the amplitudes A /A2, The actual values
can then be obtained by evaluating egn. (1) for
7=00. Fora=1! all the amplitudes are unity while
for a=1/2 the amplitudes should increase as

shown in Fig. 4. This method does not give as
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accurate an estimate of the amplitudes as it does
of the impulse locations. This is expected
because the poles are very close to the unit circle.

Burg's algorithm was also tested. It gave good
results but the location of the peaks were slightly
biased. It is well known that Burg's algorithm can
give biased peak locations so the result was not
unexpected. Marple's LS algorithm was also used
but did not converge.

Improved Cadzow's ARMA Algorithm: The estimate
of the distribution using the improved Cadzow’s
ARMA algorithm are shown in Fig. 4 for a = i using
a (4,4) ARMA model. The results of this method
give excellent estimates of the peak locations but
the amplitude are not as good as the previous
methods. Arunachalm (1980) Burg's algorithm
obtained reasonable estimates of the amplitudes
by integrating. The ARMA algorithm was found to
be computationally much more stable than any of
the other algorithms. More importantly the
improved Cadzow ARMA algorithm was found to
give better estimate for lower SNR's.

MAGNITUDE(dB)
|
g

i
i

-20 -to 0o 1o 20 10
Fig. 3. Distribution Fstimate using Transient
Error Method

20 -1 oo 3 20 o
Fig. 4. Distribution using Improved
Cadzow ARMA Algorithm
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