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Abstract. This paper investigates the problem of estimating the parameters of a 
multicomponent signal observed in noise . The process is modeled as a special nons­
tationary autoregressive moving average (ARMA) process. The parameters of the 
multicomponent signal are determined from the spectral estimate of the ARMA 
model The spectral lines are closely spaced and the ARMA model must be deter­
mined from very short data records . Two high-resolution ARMA algorithms are 
develope d for determining the spectral estimates. The first ARM A algorithm 
modifies the extended Prony method to account fot the nonstationary aspects of 
noise in the model. For multicomponents signals with good signal to noise ratio 
(SNR) this algorithm provides excellent results. but for a lower SNR the perfor­
mance degrades resulting in a loss in resolution. The second algorithm is based on 
the work of Cadzow. The algorithm presented overcomes the difficulties of Cadzow's 
and Kaye's algorithms and provides the coefficients for the complete model not just 
the spectral estimate. This algorithm performs well in resolving multicomponent 
signals when the SNR is low. 

Keywords . Spectral Analysis; Discrete Systems; Modelling; Prediction; Parameter 
estimation. 

INTRODUCTION 

The problem of estimating highly spiked spec­
trums from short da ta records arises in all 
branches of Science and Engineering. . Classical 
approaches to this problem have limited r esolcl­
tion because of their dependence on the data 
record length. More recently digital signal pro­
cessing t echniques using finite parameter model­
ing have been proposed as an alternative 
approach to spectral estimation. A comprehen­
sive treatment of the topic is given by Kaye and 
Marple (1981) . One of the major advantages of the 
so called modern approach is that since it is only 
necessary to estimate a relatively small number of 
parameters for the model very accurate high 
resolution spectra can often be obtained from 
short data records . 

In this paper the multicomponent signal problem 
is converted to a spectral estimation problem, an 
ARMA model is formulated for the process and 
several new algorithms for determining the ARMA 
model are presented. Finally the algorithms are 
implemented and tested. 

The most general finite parameter model has a 
feedback and moving average component and is 
called an autoregressive moving average (ARMA) 
model. A problem of particular interest which can 
be modelled with an ARMA model is the well known 
multicomponent signal (Cohn-Sfetcu. Smith and 
Nichols , 1975) , formed by a superposition of com­
ponents having the same location in time but 
different widths and amplitudes. These signals 
arise in nuclear magnetic resonance (Smith, 
Cohn-Stefcu and Buckmaster, 1976) , compartmen­
tal analysis in physiology (Pizer and others. 1969) , 
and pharmokinetics (Lin and Duh, 1974) , to men­
tion a few. 
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MULTICOMPONENT SIGNALS 

Mathematically. the multi component continuous 
signal s(7") formed by a superposition of com­
ponents having the same 10catlOn In tlme but 
different widths and amplitudes is given by 

S(,) = t .4;p(",,) + n (,) ( 1) 
i=l 

where nR+ and R+ is the positive real line. The 
pulse shape p(,) is known, while the unknown 

parameters M and .4; . A; : i=1. ... . M. are to be deter­
mined. For convenience the parameters A; are 
considered ordered so that "I < "2 < "11 , The 
additive noise is denoted n(,) . More generally the 
signal is given by the integral equation 

S(7") = J g(A)p(",)dA + n(7") 
o 

(2) 

where the unknown function g (7") is to be deter­
mined from the noisy observations s(7"). Equation 
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(1) is a particular case of the integral equation 
when g(T) is given by the distribution 

g (T) = t A,; 6(T->-;) , (3) 
\=1 

where 6(T) is the dirac del ta function . Smith and 
Cohn Sfetcu [4J showed the inlegral equation (2) 
can be mapped into a convolution integral equa­
tIOn. Their result is repeated here for complete­
ness and extende d slightly by multi plying bv a fac-
lor of T" instead of T . ' 

Multiplying both sides of (2) by T" and introducing 
the log transformations T = e' , 1\ = ~-, gives the 
convolution integral 

y(t)=J x(A)h(t-A)dl\+v (t) (4) 

for -00 < t < 00 where y (t) = eO' s (e') , 
x(t) = e (o- I)' g(e-'), ' h(t) = ea' p (e') and 
v(l) = eO' n (e') . The input-output relationship (4) is 
a standard deconcolution problem when :r (t) is 
taken to be the unknown input, h(t) the known 
impulse response of the system and y(t ) the noisy 
output observations is a standard deconvolution 
problem, For the multicomponent signal (1) the 
unknown input signal x(l) is given by the distribu­
tion 

:e(t) = t E, 6(1 + lnA,) (5) 
\=1 

where E, = A,;ll\f , 

An estimate of the unknown signal :r(t) can be 
obtained by taking the Fourier transform of both 
sides of equation (4), dividing by H(:.;) , windowing 
the result and then inverse transforming to give 

x(t) = F - I [y~lJt'i:.;)l liMJ ' 

where W(:.;) is the window, Capitals are used to 
denote Fourier transforms, This estimate has 
been extensibely analyzed in the literature partic­
ularly since the advent of the FFT algorithm 
(Smith, Cohn-Stefcu and Buckmaster, 1976) . The 
~ajor advantages of s,!ch an approach to analyz­
mg multlcomponent signals are that no a-priori 
mformatlOn on the parameters is required, all the 
parameters are determined simultaneously and a 
r e liable analysIs of , data could be perfor~ed by 
personnel unskilled m curve fitting . 

The difficulties associated with this method have 
been detailed by a number of authors (Smith and 
Cohn-Stefcu, 1974, Smith and Nichols, 1983, 
kober, Gruble and Hillen , 1980, and Stockman, 
1978) . 'J!le major problems are the monotonically 
decreasmg slgnal-to-noise rat io of t he signa ls a nd 
the non-linear transformation of the experim ental 
data S (T) into the signal y (t) used in the deconvolu­
lion equation Another problem is the resolution 
obtainable using linear de convolution procedures 
is se riously limited by the high frequency noise 
mtroduced by deconvolution. This must be win­
dowed off which r estricts t he r esolution of the 
estimate. Roughly speaking the resolution will be 
limited to the reciprocal of lhe window width. 

The use of th is proc edure on th e a nalysis of true 
(non-simulated ) exper im ental da l a from nmr 
analys is of tissue biopsy samples (Cohn-Slefcu a nd 
others , 1975) , and activation r e ac tions in r a dioac­
tive decay (Stockman, 1978), have been r eporte d , 
For experimental data the t ech nique gave r ecog­
nizable peaks, but the presence of noise required 
the application of filte rs that lead to a significant 
decrease in the r e solution of t he exponential com­
ponents , 

In recent years, several new digit a l processing 
techniques have become important and a wide 
variety of m et hods have b een proposed for syst em 
mode ling. A major advantage of the modeling 
technique is that since it is only necessary to esti­
mate a relative ly small number of parameter s, 
ver y accurate r esults can ofte n be obt ained with 
short data r ecords. 

In the next section an ARMA model is derived for 
the multicompone nt signal given by e qn( 1) , 

MULTICOMPONE:\T AR~A ~ODEL 

Transforming eqn. (4) and dividing by H (:.;) gives 
the estimate 

X (:.; ) = ~~~1 = X (:.; ) + N(:.; ) (6) 

where the noise 

N(:.;) = V(:.; )I H (:.; ) (7) 

For the multicomponent signal (1 ), X (:.; ) is the 
Fourie r transform of eqn. (5) and is a superposi­
tlOn of complex sinusoids given by 

X(:.;) = t B,e;r.JIn~ 
\=1 

(8) 

In this case X (:.;) is the sum of complex sinusoids in 
additive noise . Formulated as problem in spectral 
analysis X(:.;) is the data signal while the d esired 
spectral estimate corresponds to the distribution 
x(t) given by eqn. (5) . 

To determine a finite parameter model, take uni­
formly spaced samples of eqn. (8) with frequency 
spacing t,:.; giving 

Xc = t H, ej6~tn\k 
\=1 

(9) 

for k = 0, += 1. .. . , += 00 . As X(:.;) is strictly time lim­
ited with time width In(A".1 Ai ) ' for AI < 1\2 < ' " < A", 
alaising is avoide d provided t,f In (1\,,/ AI) < 1, where 
t, :.; = 2rrt,f ' 

Taking the z-lransform of equalion (9) it is not 
difficult to show (Ulrych and Clayton 1976) that 
there is a set of U complex parameters 
a; : i = 1.2, "" M, such that the signal can be 
predicted exactly from M ini t ial points using the 
autoregressive (AR) model 

1/ 
Xk + L a; Xk - , = 0 

\=1 
(10) 
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The predIction error filter 

-' 
-'A (z) = ! + t a.; Z-i 

, i= I 

, 
has roots on the unit circle given by 

( 11) 

If the data is observed in additive noise then from 
equation (6) frequency samples of the estimate 
,t(,.,) can be expressed by 

( 12) 

where N}r. is due to the noise. Substituting into 
(10) gives the special autoregressive moving aver­
age (ARMA) model 

,- ' 
/; JI. JI. 

X-\.+ 2.., 11; XJr.-i = NJr. + l.., 11; NJr.-i (13) 
.'v i=l (=1 

A similar expression is given in (Ulrych and Clay­
ton 1976). - There are however, several differences 
between the expression obtained by Ulrych and 
Clayton and equation (13). In equation (13) the 
signals are complex and the information signal is 
deterministic. Also through the original noise n(T) 

Vt is stationary, the noise samples N}r. = - of the 
HJr. 

deconvolved signal are nonstationary. The noise 
variance is given by u}; = uf; IHir. 12 where ui denotes 
the variance of VJr.. The noise usually increases 
substantially with increasing k because of the divi­
sion by H}r.. 

In the next section two specialized algorithms are 
given which estimate the distribution (5). 

TRANSIENT ERROR METHOD 

A well known algorithm which can be used to esti­
mate the distribution parameters lnA. and Bi of 
eqn (5) when the noise is small, is the extended 
Prony method (Kay and Marple, 1981) This 
method is complicated for this problem because 
the AR model coefficients required are complex 
and it assumes stationary noise which is not the 
case. Further it is requires prior knowldege of the 
number of components M. Another approach 
called the Transient Error Method, avoids the 
computational difficulties of the extended Prony 
method and is described be low. 

Regard the sample values Xk , for k ., 0, as the input 
to a discret e filter with transfer function A(z). In 
the absence of noise the output of the filter, 
denoted EJr., satisfies the recursive equation 

EJr. = XJr. + t rl.; XJr.-i (14) 
i=1 

for k .. 0. From equation (10) it follows that EJr. will 
be zero for k ;" M. Because the input is taken to be 
zero for k < ° the output transient Eo, El. " Ell - I 
will be non-zero. Taking the z-transform of equa­
tion (14) and sf)l"i~ ,o; for x(z) gives the A~~A _A r .,(l.,l 

( 15) 

The polynorni d . A(z) is given by equation (11) and 
can be calculated once the AR model coefficients 
al. a2, ' ''' all are known. The polynominal E(z) is 
calculated from 

E(z) = 'I:I EJr. z-Jr. , 
k=O 

where' Eo. El. "., Ell-I are determined from the M 
initial data values Xo. XI. ". , X" _I using the equation 
(14). Once A(z) and E(z) are known equation (15) 
can be used to determine x(z) . Evaluating x(z) on 
the unit circle gives an estimate of the distribu­
tion (5) . Since the distribution has delta functions 
,it may be necessary to move the poles of the 
polynominal A(z) toward the origin slightly by 
exponentially weighting AR the model coefficients 
to permit calculation of the distribution. 
Equivalently x(z) can be calculated on the circle 
I z I = 11 T for T < 1. 

In the presence of noise the filter output EJr. will 
not be zero after the transient but if the AR fit 
gives a good model they will be small. The output 
transient depends on the initial data values which 
have much less noise than data values further 
from the origin because of the division by H(r.;) . SO 
for the low noise equation (16) should provide a 
good estimate of the distribution. 

Both the extended Prony method and the Tran­
sient Error method require as a first step, an 
algorithm to determine the AR coefficients. Two 
such algorithms are the well known Burg (1975) 
1algorithm and Marple's (1980) least squares algo­
rithm. Both these algorithms determine the AR 
coefficients based on the mean square of both the 
forward and backward prediction errors. Both are 
written for a complex data set. The use of forward 
and backward errors is based on the assumption 
that the data is weakly stationary. If the process is 
not weakly stationary the AR coefficients obtained 
from the forward prediction may be different than 
the AR coefficients obtained from the backward 
prediction. The Burg algorithm gives a minimum 
phase polynomial which insures a stable predictor 
but for short data lengths is known to biased esti­
mates and can even result in line spitting. The LS 
algorithm does not insure a stable predictor but 
usually gives better estimates of the spectral 
peaks for short data lengths. The Marple LS algo­
rithm is very sensitive to arithmetic errors and 
often does not converge. Another LS algorithm 
where the forward, backward and forward­
backward predictions can be selected has been 
given by 1. Barrodale and RE . Errickson (1980). 
This algorithm was is not as efficient as the Marple 
algorithm but is less sensitive to arithmetic 
errors. This algorithm was written for real data 
but has been extended to complex data by the 
authors and is refered to as the complex least 
squares (CLS) algorithm. The CLS algorithm is 
used in this report to determine AR coefficients. 

GENERAL ARMA ALGORITHM 

In the previous section two special algorithms 
were given for determining the distribution of the 
multicomponent signal (1) when the noise is small. 
More generally if the multi component signal is 
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given by the integral eqn.(2) or if the deconvolved 
data X(",) is regarded as a process then it is desir­
able to fit X(",) with a general ARMA model. For a 
process these models only give the spectral den­
SIty of the signal. There are many algorithms 
available in the literature for determining the 
parameters of an ARM A model. The algorithm 
used in this paper is based on Cadzow's (1982) 
method and is referred lo as the Improved Cadzow 
ARMA algorithm. 

Cadzow's method provides high resolution esti­
mates of the spectrum and does not produce 
spectral line splitting for short data records. It is 
computationally stable and uses Singular Value 
Decomposition (SVD) of the covariance matrix to 
obtain the order of the AR portion of the model. 
However, his method does not provide direct esti­
mates of the order and parameters of the MA por­
tion of the model and it can produce power spec­
tral density estimates which are not positive real. 
An improved algorithm has been developed by the 
authors which overcomes the difficulties of 
Cadzow's method. The details of the improved 
algorithm are beyond the scope of the this paper 
but the steps involved are given below. 

Improved Cadzow ARMA Algorithm 

1) Select an initial guess for the AR and MA orders 
respectively. 
2) Compute the covariance matrix of the data 
3) Decompose the covariance matrix USing SVD 
and determine the AR order from the effective 
rank of the matrix. 
4) Calculate the AR coefficients using a pseudo 
inversion of the covariance matrix. 
5) Compute Cadzow's modified MA coefficients and 

. take the Fourier transform of these coefficients. 
6) Check if the result obtained in 5) is positive 
definite. If not, the data is modified and step 5) is 
repeated . 
7) Perform Cepstral analysis on the modified MA 
portion to estimate the MA coefficients and order. 
8) Compute the ARMA estimate of the spectrum. 

MUL TICOMPONENT MODELING ALGORITHM 

The steps involved in analyzing experimental mui­
ticomponent data are described below. 

1) Log Transformation: The multicomponent 
integral equation is converted to a standard linear 
convolution integral by multiplying both sides of 
eqn.(2) by 'Ta and then making a log transforma­
tion to get eqn.(4). 

2) Discrete Time Deconvolution System: The con­
tinuous time deconvolution problem is converted 
into a discrete time deconvolution problem to 
facilitate digital analysis. This is achieved by mul­
tiplying both sides of eqn. (2) by or« and then taking 
log samples 'Tn = enT or by uniformly sampling y(t) 
in eqn.(4) at a sampling rate l iT. The sampling 
rate required depends on the bandwidth of the 
pulse. In practise one usually has uniformly 
spaced samples of s ('T) and it is necessary to inter­
polate the results to obtain the log samples. While 
the problem of interpolation is not investigated in 
this report good experimental results have been 
obtained using spline interpolators (Smith and' 
Nichols, 1983) . 

0.0 

-2!.O 

ID -50.0 

" w 
0 

~ -n.D 

z 
'-' « ,. 

- 100.0 

-125.0 

-t50.0 
0.0 0.5 to 

FREOUENCY 

Fig. 1. t1agnitude Spectrum 
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The class of pulses of interest are essentially time 
and frequency limited. For example : the exponen­
tial pulsep('T) = e ..... maps to the pulse h(t) = e(at)e--.

t 

and its magnitude spectrum is shown i;1 Fig.l for 
a=1.0. . . 

In practise the noise v(t) in eqn.(4) will be experi­
mentally bandlimited to avoid aliasing effects on 
sampling. The previous paragraph demonstrated 
that the pulse h(t) can be taken to be strictly 
bandlimited with negligible aliasing. Denote the 
bandwidth by B Hz. Since the convolution integral 
(4) only depends on frequencies of the input signal 
x(t) in the same frequency range as h(t) it follows 
that x(t) is also effectively bandlimited to B Hz. 
Thus the convolution integral given by eqn.(4) can 
be written as the summation (Papoulis, 1977) 

y(t) = :rf; x(mT)h(t-mT) + v(t) 

provided that 2BT> 1. Sampling at a rate lIT and 
letting x[n] = x(nT), h[n] = Th(nT) , v[n] = v(nT) 
and y[n] = y(nT) gives the discrete time system 

y[n] = i: x [m]h[n-m] + v[n). (16) 

3) Selection of the Data Values: The range of 
experimental data samples is of necessity finite 
and their selection is very important. The limits of 
the sample values for y[n] are given by 
nMlN<n<nMAX' The lower limit, denoted nMIN , is res­
tricted because the log spacing cannot become 
arbitrarily small. The upper limit, denoted nMAX, 
best should be limited because of the monotoni­
cally decreasing signal to noise ratio of the signal . 
The selection of these limits requires some experi­
mental testing. An alternative approach is to 
center the data between symmetrical limits, say 
-no and no. For exponential pulses this can be 
achieved by mUltiplying the experimental data by 
/., with an appropriate selection of Aa . 

4) The Deconvolved Data Signal: The discrete time 
system (16) is deconvolved using an N point DIT as 
follows. The number of points N required for the 
DFT depends on range of the estimate of the dis­
tribution x[n] to avoid aliasing. For the multicom­
ponent signal given by eqn. (1) the distribution 
range is In(AMI AI) and so NT> In (AMI AI)' If N < 
n}JAX-7tIJ!!I' + 1 then it is necessary to prealias the 
the data values y[n] and the pulse h[n] before tak­
ing their DFT's . The sample values x" of the 
deconvolved data are then determined by 

~ = DFT[y fnJl 
' " DFT ~ h ~nJJ 
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for - ;-;/2 < k < ;-;/2 - 1, where y[nJ and h[nJ are 
aliased ve rsions of y[nJ and h[nJ respectively. 
Because of Uje division by the DFT[h[n)) the 
estimate X. b,ecomes increasingly noisy and only 
the data valuEjs where the signal to noise ratio is 
high should 'I\lsed. Once the range of values is 
selected a model is fitted to the deconvolved data 
and the distribution is estimated. 

5) Finite Parameter Model and Spectral Estimate 
of the Unknown Distribution: A finite parameter 
model is fitted to the deconvolved data values x,., 
for -L < k < 1. The number of deconvolved data 
points is 2L+1 and L is selected to give values with 
good signal to noise ratios as described in step 4. 
Once the paraJ.Tleters of the selected model are 
determined an estimate of the unknown input dis­
tribution x( t) and hence 9 (r) can both be calcu­
lated. Again it is noted that because of the way the 
deconvolved data is obtained, it is regarded as a 
frequency function while the desired distribution 
is its spectral estimate. 

5.1) Trar:s;:nt Error method: For the multicom­
ponent sigrlal given by eqn.( 1) the parameters of 
the unknown distribution can be estimated using 
the Prony method described earlier andis not 
used bec,ause of reasons mentioned. Another 
approach is to estimate the . distribution x(t) using 
the Transient Error Method in the previous sec­
tion. The steps in this method are recapped below 
for convience. The distribution is estimated using 
eqn. (15) via 

r(z) =NT2!l 
A(z) 

for z = r- 1e - j2>rl/ NT , where 6/ = 1 INT and r < 1. The 
spectral estimate of the distribution is usually 
normallzed and so the multicative factor is not 
required. 

5.2) General Fitting Algorthms: In this paper the 
only general ARMA model considered is the 
Improved Cadzow method. The method is decribed 
in the previous section. 

SIMULATION RESULTS 

To illustrate the algorithm developed in the report 
a multicornponent signal consisting of four 
exponential pulses is investigated. The purpose of 
this simulation is to illustrate the viability of the 
technique and not provide a detailed statistical 
study. The data signal is given by 

for TeR '. 

Multiplying by r' and letting r = et gives the linear 
de convolution system described by eqn. (4) .. The 
distribution to be estimated is given by 

z(t) = 0.5J- a6(t-ln2) + 21 - a6( t+ln2) + 51- a6(t+ln5) 

+ 101- 0 6( t +In 10) . 

Wh",n « = ! all the delt.a f1.m~tions have an ",qual 
weight of unity. 

The distribution is estimated using the algorithm 
and described in the previous section. After the 

nonlinear log transformation the linear deconvolu­
tion system , given by the equation (4), is con­
verted to a discrete time system by sampling at 
rate i/ T = 4. 0Hz, see Fig. 1. For a = i the range of 
the sampled data was selected to be nMlN = - 50 and 
n .N.AJ( = 12. These limit.s are det.ermined bv observ­
ing the sampled data. The selection of n~lN is not 
critical but great care and usually some trail and 
error is r equired in selecting nllAX since the noise 
is increasing exponentially. Once the range was 
determined, the data was transformed using a 64 
point FIT algorithm and then deconvolved using 
equation (17) . The useful range of the deconvol u­
tion data was selected to be - 16";; k ,,;; 16. These 
limits again are critical and an initial estimate can 
be obtained by observing the deconvolved data. If 
the distribution components are widely spaced a 
visual selection is usually adequate, but for closely 
spaced impulses the deconvolution range was 
selected by recursively fitting the data and 
selecting the fit with the least normalized mean 
square error. The deconvolved data consists of 
samples of 4 complex sinusoidal signals in nonsta­
tionary noise with normalized frequencies 0.144 
Hz., 0.101 Hz., 0.043 Hz. and -0 .043 Hz. The associ­
ated spectrum (distribution) is estimated from 17 
data points. Once the deconvolved signal is 
obtained the distribution can be estimated. 
Results for the algorithm given are shown below. 

Fourier Transform Window Approach: The result 
obtained by windowing the deconvolved data with 
a J:Iarris (1978) .window to remove high frequency 
nOIse and then Inverse transforming, rather than 
using the modelling technique described in this 
paper, 'is shown in Fig . 2 for a = l. 

5.0 
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Fig. 2. Distribution Estimate using Window Method 

Transient Error Method: The estimate of the dis­
tribution using the transient error method for the 
CLS algorithm is shown in Fig. 3 for a = 1 and 
a = 1/ 2 . Both of these results was calculated for 
z = 1/r exp(2rrjtl NT) with r = 0.99. This moves the 
poles away from the unit circle giving a better 
estimate of the peaks of the distribution. The 
magnitude of the results are expressed in d.B and 
normalized to a maximum value of 0 dB . The 
actual peak value in both cases was 40 dB . The 
CLS gives ve ry accura t e location (hence an excel­
lent estimate of Ai ) of the distribution impulses . 
The peaks of t he distribution give a r elative esti­
mate of the amplitudes AI At' . The actual values 
can then be obtained by evaluating eqn. (1) for 
'T = 0.0 . For a = ! all the amplitudes are unity while 
for a =1/2 the amplitudes should increase as 
shown in Fig. 4. This method does not give . as 
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accurate an estimate of the amplitudes as it does 
of the impulse locations. This is expected 
because the poles are very close to the unit circle. 

Burg's algorithm was also tested. It gave good 
results but the location of the peaks were slighlly 
biased. It is well known that Burg's algorithm can 
give biased peak locations so the result was not 
unexpected. Marple's l.S algorithm was also used 
but did not converge . 

Improved Cadzow's ARMA Algorithm: The estimate 
of the distribution using the improved Cadzow's 
ARMA algorithm are shown in Fig . 4 for Cl = ~ using 
a (4,4) ARMA model. The results of this method 
give excellent estimates of the peak locations but 
the amplitude are not as good as the previous 
methods. Arunachalm (1980) Burg 's algorithm 
obtained reasonable estimates of the amplitudes 
by integrating. The ARMA algorithm was found to 
be computationally much more stable than any of 
the other algorithms. More importanlly the 
improved Cadzow ARMA algorithm was found to 
give better estimate for lower SNR's. 
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Fig. 3. 

Fig. 4. 

Distribution Bstimate using Transient 
Error Method 

Dis tribution using Improved 
Cadzow AR~ Algorithm 
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